首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seed dispersal by ants (myrmecochory) is a widely distributed plant–animal interaction in many ecosystems, and it has been regarded as a generalized (multiple species) interaction in which specialization on specific ant partners is uncommon. In this paper, we demonstrate species-specific seed dispersal of spotted spurge (Chamaesyce maculata) by ants in Japan. C. maculata produces seeds from summer to autumn in Japan. The seeds produced in autumn are carried by two ant species, Tetramorium tsushimae and Pheidole noda. We performed laboratory experiments to investigate the fate of C. maculata seeds in the nests of T. tsushimae and P. noda. P. noda consumed the seeds in the nest and rarely carried seeds out of the nest, while T. tsushimae consumed only the seed coat, and subsequently carried the seeds out of the nest. Removal of the seed coat by T. tsushimae may increase seed survival by reducing their susceptibility to infection by fungi. We also observed ant responses to filter paper soaked with an aqueous extract of the seed coat. P. noda did not react to the filter paper, but T. tsushimae carried the filter paper into their nest. Analysis by high-pressure liquid chromatography revealed that the aqueous extract contained at least four sugars and one unknown substance. Myrmecochory has been regarded as a generalized interaction with specialization for specific ant partners uncommon. However, our study suggests there is a species-specific interaction in seed dispersal by ants in autumn-flowering individuals of C. maculata in Japan.  相似文献   

2.
To elucidate roles of an omnivorous ant, Tetramorium tsushimae Emery, against pre-dispersal seed consumers in the seed dispersal of Chamaesyce maculata (L.) Small, the effects of the seed injury by a stinkbug, Nysius plebeius Distat, on the seed removal by the ant and the germination rate were examined in laboratory experiments. The ants of T. tsushimae removed more frequently non-injured seeds than injured seeds. Therefore, low removal frequency of injured seeds by T. tsushimae ants might facilitate the increase in removal frequency of non-injured seeds, consequently leading to efficient seed dispersal of C. maculata. The germination rate of injured seeds that N. plebeius nymphs sucked was conspicuously lower than the non-injured seeds. The germination rate of seeds that T. tsushimae ants carried out of their nest was similar to that of the non-injured seeds. Thus, seed removal by T. tsushimae ants has hardly effects on the germination of these seeds. Therefore, the preferential removal of non-injured seeds by T. tsushimae ants might contribute to the dispersal success of C. maculata seeds. These results might show a novel interaction between myrmecochorous plants and ants in which the assessment of seed quality by ants contributes to the reproductive success of plants.  相似文献   

3.
Seeds are often carried by omnivorous ants even if they do not carry elaiosomes. Although many seeds carried by ants are consumed, both seeds abandoned during the seed carrying and leftover seeds are consequently dispersed (dyszoochory). These non-myrmecochorous seeds do not necessarily attract ants quickly. Therefore, these seeds often seem to be exposed to the danger of consumption by pre-dispersal seed predators. We propose the hypotheses, “seed predator deterrence hypothesis” that plants may benefit from seed-carrying ants if they deter seed predators from visiting plants, and seed-carrying ants may play additional roles in plant reproductive success, besides dyszoochory by ants. To test the hypotheses, we investigated the abundance of seed-carrying ants of the species Tetramorium tsushimae Linnaeus and Pheidole noda Smith F., and of the seed predatory stinkbug, Nysius plebeius Distat, on the spotted sandmat, Chamaesyce maculata L. Small, of which the seeds have no elaiosomes but are consumed by both ants and bugs. In the field, ants and stinkbugs seldom encountered each other on the plant. The number of stinkbugs beneath the plants with ants was smaller than that beneath the plants without ants. In laboratory experiments, the number of stinkbugs on the shoot was smaller when ants were present than when they were absent. These results might support the seed predator deterrence hypothesis: the probability of seed predation by stinkbugs seems to be reduced by the ant visits on plants and/or the existence of ants beneath the plants. This study highlights a new ant–plant interaction in seed dispersal by ants.  相似文献   

4.
Seed dispersal by ants (i.e. myrmecochory) is usually considered as a mutualism: ants feed on nutritive bodies, called elaiosomes, before rejecting and dispersing seeds in their nest surroundings. While mechanisms of plant dispersal in the field are well documented, the behaviour of the ant partner was rarely investigated in details. Here, we compared in laboratory conditions the foraging behaviour of two ant species, the omnivorous Lasius niger and the insectivorous Myrmica rubra to which seeds of two European myrmecochorous plants (Chelidonium majus and Viola odorata) were given. Ant colonies were simultaneously presented three types of items: entire seeds with elaiosome (SE), seeds without elaiosome (S) and detached elaiosomes (E). The presence of elaiosomes on seeds did not attract workers from a distance since ants first contact equally each type of items. Although ants are mass-recruiting species, we never observed any recruitment nor trail-laying behaviour towards seeds. For ants having contacted seed items, their antennation, manipulation and seed retrieval behaviour strongly varied depending on the species of each partner. Antennation behaviour, followed by a loss of contact, was the most frequent ant-seed interaction and can be considered as a “hesitation” clue. For both plant species, insectivorous Myrmica ants removed items in larger number and at higher speed than Lasius. This fits with the hypothesis of a convergence between odours of elaiosomes and insect preys. For both ant species, the small Chelidonium seeds were retrieved in higher proportion than Viola ones, confirming the hypothesis that ants prefer the higher elaiosome/diaspore-ratio. Thus, in these crossed experiments, the ant-plant pair Myrmica/Chelidonium was the most effective as ants removed quickly almost all items after a few antennations. The presence of an elaiosome body increased the seed removal by ants excepting for Myrmica which retrieved all Chelidonium seeds, even those deprived of their elaiosome. After 24 h, all the retrieved seeds were rejected out of the nest to the refuse piles. In at least half of these rejected items, the elaiosome was discarded by ants. Species-specific patterns and behavioural differences in the dynamics of myrmecochory are discussed at the light of ant ecology. Received 10 September 2007; revised 5 February 2008; accepted 5 March 2008.  相似文献   

5.
6.
Rowles AD  O'Dowd DJ 《Oecologia》2009,158(4):709-716
The indirect effects of biological invasions on native communities are poorly understood. Disruption of native ant communities following invasion by the Argentine ant (Linepithema humile) is widely reported to lead indirectly to the near complete collapse of seed dispersal services. In coastal scrub in southeastern Australia, we examined seed dispersal and handling of two native and two invasive alien plant species at Argentine ant-invaded or -uninvaded sites. The Argentine ant virtually eliminates the native keystone disperser Rhytidoponera victoriae, but seed dispersal did not collapse following invasion. Indeed, Argentine ants directly accounted for 92% of all ant-seed interactions and sustained overall seed dispersal rates. Nevertheless, dispersal quantity and quality among seed species differed between Argentine ant-invaded and -uninvaded sites. Argentine ants removed significantly fewer native Acacia retinodes seeds, but significantly more small seeds of invasive Polygala myrtifolia than did native ants at uninvaded sites. They also handled significantly more large seeds of A. sophorae, but rarely moved them >5 cm, instead recruiting en masse, consuming elaiosomes piecemeal and burying seeds in situ. In contrast, Argentine ants transported and interred P. myrtifolia seeds in their shallow nests. Experiments with artificial diaspores that varied in diaspore and elaiosome masses, but kept seed morphology and elaiosome quality constant, showed that removal by L. humile depended on the interaction of seed size and percentage elaiosome reward. Small diaspores were frequently taken, independent of high or low elaiosome reward, but large artificial diaspores with high reward instead elicited mass recruitment by Argentine ants and were rarely moved. Thus, Argentine ants appear to favour some diaspore types and reject others based largely on diaspore size and percentage reward. Such variability in response indirectly reduces native seed dispersal and can directly facilitate the spread of an invasive alien shrub.  相似文献   

7.
Erodium paularense is a threatened plant species that is subject to seed predation by the granivorous ant Messor capitatus. In this paper we assessed the intensity and pattern of ant seed predation and looked for possible adaptive strategies at the seed and plant levels to cope with this predation. Seed predation was estimated in 1997 and 1998 at the population level by comparing total seed production and ant consumption, assessed by counting seed hulls in refuse piles. According to this method, ant seed predation ranged between 18% and 28%. A more detailed and direct assessment conducted in 1997 raised this estimate to 43%. In this assessment spatial and temporal patterns of seed predation by ants were studied by mapping all nest entrances in the studied area and marking the mature fruits of 109 reproductive plants with a specific colour code throughout the seed dispersal period. Intact fruit coats were later recovered from the refuse piles, and their mother plants and time of dispersal were identified. Seeds dispersed at the end of the dispersal period had a greater probability of escaping from ant seed predation. Similarly, in plants with late dispersal a greater percentage of seeds escaped from ant predation. Optimum dispersal time coincided with the maximum activity of granivorous ants because, at this time, ants focused their harvest on other plant species of the community. It was also observed that within-individual seed dispersal asynchrony minimised seed predation. From a conservation perspective, results show that the granivorous ant–plant interaction cannot be assessed in isolation and that the intensity of its effects basically depends on the seed dispersal pattern of the other members of the plant community. Furthermore, this threat must be assessed by considering the overall situation of the target population. Thus, in E. paularense, the strong limitation of safe-sites for seedling establishment reduces the importance of seed predation.  相似文献   

8.
The seeds of many plant species present a food body that is consumed by animal dispersers. In theory, if the animals are polyphagous, the availability of alternative food resource other than the diaspore itself may influence its dispersal and survival. We used the myrmecochore Helleborus foetidus L. (Ranunculaceae), the seeds of which are attached to a lipid-rich elaiosome that is attractive to ants, as a model system to investigate (1) whether alternative foods that are present along with the plant affect ant foraging behavior and diaspore removal and (2) whether food availability in an ant nest affects seed predation and germination. In a field experiment, artificial diaspore depots were offered together with either sugar, insect corpses, seed, or no food (control). Contrary to the prediction that ants would rather concentrate their foraging effort on the highly rewarding alternative foods only, many workers, attracted by the sugar, switched to the hellebore diaspores, which significantly enhanced removal rate. Results obtained in the laboratory further indicated that the larvae of Aphaenogaster iberica (a major seed disperser) predated more on the H. foetidus embryos when no alternative food was available. This, in turn, slightly reduced seed germination. Overall, these results shed light, for the first time, on the potential indirect effects of alternative resources on the fate of diaspores adapted for ant dispersal.  相似文献   

9.
Seed dispersal by ants is an important means of migration for plants. Many myrmecochorous plants have specialized appendages in their seeds called elaiosome, which provides nutritional rewards for ants, and enable effective seed dispersal. However, some nonmyrmecochorous seeds without elaiosomes are also dispersed by ant species, suggesting the additional mechanisms other than elaiosomes for seed dispersal by ants. The seeds of the achlorophyllous and myco‐heterotrophic herbaceous plant Monotropastrum humile are very small without elaiosomes; we investigated whether odor of the seeds could mediate seed dispersal by ants. We performed a bioassay using seeds of M. humile and the ant Nylanderia flavipes to demonstrate ant‐mediated seed dispersal. We also analyzed the volatile odors emitted from M. humile seeds and conducted bioassays using dummy seeds coated with seed volatiles. Although elaiosomes were absent from the M. humile seeds, the ants carried the seeds to their nests. They also carried the dummy seeds coated with the seed volatile mixture to the nest and left some dummy seeds inside the nest and discarded the rest of the dummy seeds outside the nest with a bias toward specific locations, which might be conducive to germination. We concluded that, in M. humile seeds, volatile odor mixtures were sufficient to induce seed‐carrying behavior by the ants even without elaiosomes.  相似文献   

10.
The efficiency of herbivore exclusion by ants on the vetch Vicia angustifolia L. (Leguminosae) with extrafloral nectary, mediated by ant attraction to aphids was investigated in a field census and laboratory experiments. In the field, workers of Lasius japonicus Santschi and Tetramorium tsushimae Emery frequently visited plants of the vetch parasitized by aphids of Aphis craccivora Koch, but only a few workers visited plants without aphids. An increase in the number of ants visiting a plant with increasing numbers of aphids caused a decrease in the number of larvae of the weevil, Hypera postica Gyllenhal. Therefore, the efficiency of herbivore exclusion by ants was higher on plants parasitized by Ap.craccivora aphids than that on plants unparasitized by aphids. In the laboratory experiments, L.japonicus workers frequently patrolled not only shoots with Ap.craccivora aphids but also shoots without them. However, T.tsushimae workers visited mainly shoots with Ap.craccivora aphids but less frequently on shoots without aphids. Therefore, L.japonicus workers excluded herbivores more efficiently on plants of the vetch than T.tsushimae workers. Consequently, the efficiency of herbivore exclusion by ants on the vetch can be influenced directly by differences in ant species and indirectly by the presence of aphids on plants. The present study highlights the significance of indirect interactions between ants and plants with extrafloral nectary, mediated by ant attraction to aphids for herbivore exclusion of plants.  相似文献   

11.
祝艳  王东 《生态学报》2014,34(17):4938-4942
蚂蚁是无脊椎动物中重要的种子传播者,蚂蚁散布影响植物种子的传播和扩散,进而会影响种苗的空间分布格局。在野外研究了蚂蚁觅食及搬运行为对阜平黄堇(Corydalis wilfordii Regel)和小花黄堇(C.racemosa(Thunb.)Pers.)种子散布的影响。结果显示,双针棱胸蚁和束胸平结蚁是两种植物种子的共同搬运者,前者行使群体募集,后者行使简单协作募集。在搬运阜平黄堇种子时,双针棱胸蚁在原地或搬运途中取食油质体后抛弃的种子约占种子总数的56%,而拖至蚁巢的种子约占种子总数的44%,平均搬运距离为(1.85±0.24)m,搬运效率为(43.8±7.5)粒/h;而束胸平结蚁将完整种子全部直接搬运至蚁巢,平均搬运距离为0.45 m,搬运效率为(7.3±2.2)粒/h。在搬运小花黄堇种子时,双针棱胸蚁和束胸平结蚁均将完整种子全部直接搬运至蚁巢,平均搬运距离分别为(6.27±4.40)m和(6.65±1.64)m,搬运效率分别为(34.2±6.5)粒/h和(10.6±3.2)粒/h。这说明行使群体募集的蚂蚁比行使简单协作募集的蚂蚁有较高的搬运效率,蚂蚁散布导致阜平黄堇和小花黄堇种子到达蚁巢的数量和搬运距离不同,而这种不同与相应搬运蚂蚁的觅食对策、搬运行为和种子特征有关。阜平黄堇种子比小花黄堇种子大,但阜平黄堇的油质体质量比小于小花黄堇的油质体质量比,讨论了种子特征对蚂蚁散布的影响。  相似文献   

12.
For animal‐dispersed plants, evolutionary direction of seed traits is largely determined by the trait preference of disperser animals. Thus, clarifying conditions determining the disperser's preferences is important for understanding the evolution of dispersal traits in animal‐dispersed plants. The intensity of the interference competition among dispersers may be a factor affecting the seed trait preference of disperser animals, because it often weakens the food preference of various animals. To test this possibility, we examined correlation between the intensity of interference competition among disperser ants and their trait preference for seeds of an ant‐dispersed sedge, Carex tristachya Thunb. (Cyperaceae). By a cafeteria experiment conducted in the field, we first confirmed the overall preference by disperser ants for the elaiosome, which is a seed appendage facilitating the dispersal by ants. Second, we detected the negative correlation between the preference for elaiosomes and the frequency of interference among ants at a depot. Third, we compared this trend between dominants and subordinates of ants and revealed that the negative correlation was seen only in dominant species. These results suggest that the intensity of interference competition and the variation in its effect on animal species at different social status play important roles for the evolution of seed traits via the modification of seed trait preference by disperser animals.  相似文献   

13.
江谱娟  王东 《生态学报》2015,35(17):5797-5803
作为蚁播植物种子的重要传播者,蚂蚁不但取食种子上附着的油质体,也喜食其它富含蛋白质、脂类、糖和维生素等的食物,因此环境中其它可利用食物的存在可能会影响蚂蚁对种子的搬运进而影响种子散布,但目前对于这种影响是如何发生的仍不清楚。在野外研究了蚂蚁对小花宽瓣黄堇(Corydalis giraldii Fedde)种子、肉、蜂蜜、苹果、馒头等食物的趋性和偏好程度,以及添加食物后蚂蚁对种子的拜访频率和搬运效率,以揭示其它可利用食物如何影响蚂蚁觅食和取食偏好,进而影响小花宽瓣黄堇种子散布。结果显示,在所诱捕的8种蚂蚁中,玉米毛蚁(Lasius alienus(Foerster))和丝光蚁(Formica fusca Linnaeus)是小花宽瓣黄堇种子的主要搬运者,不同食物诱捕的玉米毛蚁数量无显著性差异(P0.05),但蜂蜜和苹果诱捕的丝光蚁数量均显著大于种子(P0.05)。玉米毛蚁和丝光蚁均为杂食性,在觅食中分别行使群体募集和简单协作性募集。在仅有种子的对照处理中,玉米毛蚁和丝光蚁对种子的拜访频率分别为(38.73±4.57)头和(30.8±2.87)头(40min,n=15),两种蚂蚁对种子的拜访频率差异不显著(P0.05);玉米毛蚁和丝光蚁搬运种子的效率分别为(33.87±4.22)粒和(16.27±3.35)粒(40min,n=15),玉米毛蚁的搬运效率显著高于丝光蚁(P0.05)。与对照相比,添加馒头、苹果和蜂蜜后丝光蚁对种子的拜访频率显著降低(P0.05),分别为(15.6±3.61)头、(9.07±1.4)头和(7.67±1.58)头(40min,n=15);添加苹果和蜂蜜后丝光蚁对种子的搬运效率显著降低(P0.05),分别为(3.47±1.17)粒和(2.87±0.9)粒(40min,n=15);添加不同食物后玉米毛蚁对种子的拜访频率和搬运效率均无显著变化(P0.05)。研究结果表明行使群体募集的玉米毛蚁比行使简单协作募集的丝光蚁有更高的种子搬运效率,添加食物后影响丝光蚁对种子的拜访频率和搬运效率,这说明其它可利用食物对小花宽瓣黄堇种子散布的影响与搬运蚂蚁的种类及其觅食的募集方式有关。研究结果可为进一步研究蚂蚁与植物(种子)间的互利共生关系及其影响因素提供资料。  相似文献   

14.
Summary Of 36 plant species surveyed, 6 were significantly associated with nests of the desert seed-harvester ant Veromessor pergandei or Pogonomyrmex rugosus; two other plant species were significantly absent from ant nests. Seeds of two common desert annuals, Schismus arabicus and Plantago insularis, realize a 15.6 and 6.5 fold increase (respectively) in number of fruits or seeds produced per plant growing in ant nest refuse piles compared to nearby controls. Mass of individual S. arabicus seed produced by plants growing in refuse piles also increased significantly. Schismus arabicus, P. insularis and other plants associated with ant nests do not have seeds with obvious appendages attractive to ants. Dispersal and reproductive increase of such seeds may represent a relatively primitive form of ant-plant dispersal devoid of seed morphological specializations. Alternatively, evolution of specialized seed structures for dispersal may be precluded by the assemblage of North American seed-harvester ants whose workers are significantly larger than those ants normally associated with elaiosome-attached seed dispersal. Large worker size may permit consumption of elaiosome and seed.  相似文献   

15.
True myrmecochory involves the dispersal of elaiosome-bearing seeds by ants. Between the guild of ants that are attracted to these seeds, only a few of them will act as effective dispersers, that is, transporting the seeds to suitable sites (the nests) for germination and plant establishment. Ant communities are known to be highly hierarchical, and subordinate ants quickly deliver resources to their nest rather than consuming it on-site, thereby avoiding encounters with more dominant species. As a result of a series of studies that were carried out during summer in semi-arid Northwest Argentina, we have found that the most important seed disperser of the myrmecochorous plant Jatropha excisa Griseb. (Euphorbiaceae), the ant Pogonomyrmex cunicularius pencosensis Forel, was the most subordinate species during interspecific interactions. The daily timing of release of the J. excisa seeds through ballistic dispersal increased their probability of being removed by the highly thermophilic P. cunicularius pencosensis. Foraging during the warmest hours of the day allowed P. cunicularius pencosensis ants to avoid the risk of interference competition with dominant species, which also behaved as elaiosome predators. As a conclusion, subordinance behaviour appears to be integral to successful myrmecochory, and also the timing of seed release plays a key role in shaping the dynamics of myrmecochorous interactions. Therefore, ant-dispersed plants should not only favour their discovery by subordinate ants, but also should present their seeds at those times of the day when the behaviourally dominant ants are less active.  相似文献   

16.
Ant behaviour and seed morphology: a missing link of myrmecochory   总被引:2,自引:2,他引:0  
Gómez C  Espadaler X  Bas JM 《Oecologia》2005,146(2):244-246
Seed dispersal by ants (myrmecochory) is mediated by the presence of a lipid-rich appendage (elaiosome) on the seed that induces a variety of ants to collect the diaspores. When seeds mature or fall onto the ground, these ant species transport them to their nest. After eating the elaiosome, the seed is discarded in nest galleries or outside, in the midden or farther away, where seeds can potentially germinate. The final location of seeds with their elaiosomes removed was evaluated to assess the importance of possible handles (structures that ants can grasp to carry) in transporting ants during re-dispersal experiments of seeds from nests of six species of ants. The results indicate that seeds remained within the nest because the ants were not able to transport them out of the nest. As a consequence of the elaiosome being removed, small ant species could not take Euphorbia characias seeds out of their nests. Only large ant species could remove E. characias seeds from their nests. Attaching an artificial handle to E. characias seeds allowed small ant species to redistribute the seeds from their nests. On the other hand, Rhamnus alaternus seeds that have a natural handle after the elaiosome removal were removed from the nests by both groups of ant species. If a seed has an element that acts as a handle, it will eventually get taken out of the nest. The ants’ size and their mandible gap can determine the outcome of the interaction (i.e. the pattern of the final seed shadow) and as a consequence, could influence the events that take place after the dispersal process.  相似文献   

17.
1. Myrmecochory sensu stricto is an ant–plant mutualism in which non‐granivorous ants disperse plant diaspores after feeding on their nutrient‐rich seed appendage, the elaiosome. Phenological traits associated with the diaspore can influence the behaviour of ants and thus their ultimate efficiency as seed dispersers. 2. This study investigated how a contrasting availability of seeds (20 vs. 200 seeds) from the diplochorous Chelidonium majus (Papaveraceae, Linnaeus) plant species influences the behaviour of Myrmica rubra (Formicidae, Linnaeus) ants, from the retrieval of seeds until their dispersal outside the ant nest. 3. Regardless of seed abundance, the ants collected the first diaspores at similar rates. Then, seed retrieval sped up over time for large seed sources until satiation took place with only one‐third of the tested colonies wholly depleting abundant seed sources. 4. No active recruitment by trail‐laying ants was triggered, even to an abundant seed source 5. In both conditions of seed abundance, the majority of the diaspores retrieved inside the nest were discarded with the elaiosome removed and were dispersed at similar distances from the nest. 6. The paper concludes with a discussion of how the quantity of seeds released by a plant with a dual mode of dispersal can potentially influence the behaviour of ant dispersers and hence the dispersal efficiency derived from myrmecochory.  相似文献   

18.
Myrmecochores are plants with seeds adapted for ant dispersal. This specialized dispersal syndrome may provide Erythronium americanum seeds with protection from predators within the eastern deciduous forests. To determine the adaptive significance of myrmecochory in E. americanum, seed removal rates and seed predation in relation to seed release date and location along the Potomac River in Langley, Virginia, were examined. The number of seeds removed from four exclosure treatments were monitored two times in 1992 and three times in 1993 within floodplain and hilltop populations of E. americanum. Overall, seed removal was greatest from control depots, and E. americanum seeds were removed at nearly the same rate from predator-exclusion depots, indicating that removal from open depots is largely due to ant removal. Ants removed significantly more seeds than predators in the first 48 h of seed exposure and could potentially remove all E. americanum seeds before nightfall. Aphaenogaster rudis was identified as the primary disperser of E. americanum. Seeds placed in depots after the natural seed release period were discovered more quickly and removed by ants at a significantly higher rate than seeds released at the natural date. These results suggest that ant dispersal of E. americanum seeds reduces the likelihood of seed predation.  相似文献   

19.
Myrmecochory commonly complements the advantages of ballistic dispersal in diplochorous species. We studied the role of the elaiosome in two populations of the two diplochorous Mediterranean spurges Euphorbia boetica and E. nicaeensis, which share an efficient ballistic dispersal mechanism followed by secondary removal by ants. They differ in elaiosome persistence, as most E. boetica seeds lose the elaiosome during explosive dispersal. Self-assessed dietary preferences with seeds with and without elaiosomes of each species showed differences in behaviour among and within ant species. In general, the absence of elaiosome entailed a decrease in the number of disperser ant species interacting with the seeds, whereas the number of predatory ants remains invariable. However, in one population of E. nicaeensis, experimental elimination of the elaiosome did not affect seed removal by mutualistic ants. On the other hand, analysis of refuse piles of the granivorous Messor marocanus and M. bouvieri suggests that they act as seed predators in E. boetica, whereas unintentional dispersal can be important in E. nicaeensis. We suggest, therefore, that the presence of the elaiosome in the seeds of the studied spurges increases the interaction with disperser ant species, but the possible dispersal advantage is not apparent and is spatially variable.  相似文献   

20.
Summary Seed dispersal by ants in Polygala vulgaris, Luzula campestris and Viola curtisii was studied in a primary dune valley on the island of Terschelling, The Netherlands. Normally developed seeds of all three species are taken by the ants into their nests. The ants show a distinct preference for the seeds of the specialized myrmecochore Polygala vulgaris, as compared with the two diplochorous species. It could be demonstrated that the elaiosome is the attractive part of the seed. Mapping studies demonstrate that the dispersal of the seeds by ants has a marked effect on the distribution pattern of the standing population of Polygala and Viola. Adult plants are often found on or close to the active nest mounds of all ant species present, while the growing sites of juvenile individuals and seedlings are practically restricted to the nest environment. The nests of two of the seed-dispersing ant species, viz., those of Lasius niger and Tetramorium caespitum, show differences in soil chemistry with the surroundings. The ant nests are significantly richer in some essential plant macronutrients, such as phosphate, potassium and nitrate. The advantage of myrmecochory in the dune area of Terschelling is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号