共查询到20条相似文献,搜索用时 0 毫秒
1.
Sugar-activated ion transport in canine lingual epithelium. Implications for sugar taste transduction 总被引:1,自引:1,他引:1
下载免费PDF全文

There is good evidence indicating that ion-transport pathways in the apical regions of lingual epithelial cells, including taste bud cells, may play a role in salt taste reception. In this article, we present evidence that, in the case of the dog, there also exists a sugar-activated ion-transport pathway that is linked to sugar taste transduction. Evidence was drawn from two parallel lines of experiments: (a) ion-transport studies on the isolated canine lingual epithelium, and (b) recordings from the canine chorda tympani. The results in vitro showed that both mono- and disaccharides in the mucosal bath stimulate a dose-dependent increase in the short-circuit current over the concentration range coincident with mammalian sugar taste responses. Transepithelial current evoked by glucose, fructose, or sucrose in either 30 mM NaCl or in Krebs-Henseleit buffer (K-H) was partially blocked by amiloride. Among current carriers activated by saccharides, the current response was greater with Na than with K. Ion flux measurements in K-H during stimulation with 3-O-methylglucose showed that the sugar-evoked current was due to an increase in the Na influx. Ouabain or amiloride reduced the sugar-evoked Na influx without effect on sugar transport as measured with tritiated 3-O-methylglucose. Amiloride inhibited the canine chorda tympani response to 0.5 M NaCl by 70-80% and the response to 0.5 M KCl by approximately 40%. This agreed with the percent inhibition by amiloride of the short-circuit current supported in vitro by NaCl and KCl. Amiloride also partially inhibited the chorda tympani responses to sucrose and to fructose. The results indicate that in the dog: (a) the ion transporter subserving Na taste also subserves part of the response to K, and (b) a sugar-activated, Na-preferring ion-transport system is one mechanism mediating sugar taste transduction. Results in the literature indicate a similar sweet taste mechanism for humans. 相似文献
2.
The transduction of sodium salts occurs through a variety of mechanisms,including sodium influx through amiloride-sensitive sodium channels,anion-dependent sodium movement through intercellular junctions andunidentified amiloride-insensitive mechanisms. Characterizations of sodiumtransport in lingual epithelium mounted in Ussing chambers have focusedalmost exclusively on epithelia containing only fungiform taste buds. Inthe present study we have investigated sodium transport by measuringNaCl-induced short-circuit current from lingual epithelia containingfungiform, foliate, vallate and palatine taste buds in the hamster and therat. All areas show measurable sodium transport, yet significantdifferences were noted between the epithelia from the rat and the hamsterand among the different epithelia within a single species in terms ofcurrent density, transepithelial resistance and mucosal amiloridesensitivity. In general, epithelia from the anterior tongue were of a lowerresistance and transported sodium more effectively than from the posteriortongue. Moreover, fungiform- and vallate-containing epithelia in the rathad a greater current density than did the corresponding tissues in thehamster. Amiloride sensitivity also differed between the rat and thehamster. In the hamster all gustatory areas showed some amiloridesensitivity, while in the rat the vallate-containing epithelia were devoidof amiloride- sensitive sodium transport. The results are consistent withthe interpretation that all chemosensitive areas may participate in thedetection of salts but the degree of salt transport and the mechanism oftransport is variable among different lingual epithelia and differentspecies. 相似文献
3.
4.
S Mierson G L Heck S K DeSimone T U Biber J A DeSimone 《Biochimica et biophysica acta》1985,816(2):283-293
Ion transport across the lingual epithelium has been implicated as an early event in gustatory transduction. The fluxes of isotopically labelled Na+ and Cl- were measured across isolated canine dorsal lingual epithelium under short-circuit conditions. The epithelium actively absorbs Na+ and to a lesser extent actively secretes Cl-. Under symmetrical conditions with Krebs-Henseleit buffer on both sides, (1) Na+ absorption accounts for 46% of the short-circuit current (Isc); (2) there are two transcellular Na+ pathways, one amiloride-sensitive and one amiloride-insensitive; (3) ouabain, added to the serosal solution, inhibits both Isc and active Na+ absorption. When hyperosmotic (0.25 M) NaCl is placed in the mucosal bath, both Isc and Na+ absorption increase; net Na+ absorption is at least as much as Isc. Ion substitution studies indicate that the tissue may transport a variety of larger ions, though not as effectively as Na+ and Cl-. Thus we have shown that the lingual epithelium, like other epithelia of the gastrointestinal tract, actively transports ions. However, it is unusual both in its response to hyperosmotic solutions and in the variety of ions that support a transepithelial short-circuit current. Since sodium ion transport under hyperosmotic conditions has been shown to correlate well with the gustatory neural response, the variety of ions transported may likewise indicate a wider role for transport in taste transduction. 相似文献
5.
We present the first electrophysiological evidence for electrogenicion transport across the frog olfactory mucosa in vitro. Whenthe isolated dorsal mucosa was placed in an Ussing chamber andbathed symmetrically in amphibian Ringer's, the ciliated sidebecame electronegative (V = 5.2 mV ± 0.7 mV).The resistance of the mucosal preparation was 148 ± 4 cm2. The true short-circuit current was obtained as the intersectionof the IV curve with the current axis after correctingfor the series solution resistance. The average value of theshort-circuit current was 35.9 µA/cm2. The IV relationwas linear over the applied potential range of ± 16mV.The magnitude of the specific resistance of the olfactory mucosais comparable to values reported for various actively transportingrespiratory and oral cavity epithelia. Because the geometricalarea of the aperture used to normalize both the short-circuitcurrent and the resistance undoubtedly underestimates the actualarea of the dorsal olfactory epithelium, the specific resistanceand the short-circuit current are probably underestimated andoverestimated, respectively. Therefore, the nominally low resistanceneed not imply a leaky epithelium. Substitution of NO3for Cl caused the current to increase and the resistanceto decrease. These results suggest that cation absorption playsa role in the sign of the short-circuit current. The in vitropreparation responded to the odorant ethyl n-butyrate by givingan electro-olfactogram (EOG)-like voltage transient which wassuperimposed on the steady-state potential created by activeion transport. The significance of these results is discussedfrom the perspective of the peripheral events surrounding olfactorytransduction. 相似文献
6.
Sodium and potassium ion-stimulated adenosine triphosphatase ((Na+ + K+)-ATPase) was partially purified from canine brain gray matter and reconstituted into vesicles of phosphatidylcholine. A proportion of the enzyme molecules was reconstituted into sealed vesicles with the ATP-hydrolyzing site facing the outside of the vesicles. ATP was added to the outside of the vesicles after they had equilibrated with radioactive tracer, and the resulting active transport of Na+ and K+ was followed. Unlike the purified kidney renal medulla enzyme used in an earlier study, the brain enzyme transports both Na+ and K+(Rb+). Vesicles were made in solutions with different proportions of NaCl and KCl, and over the range studied, an average of 1.8 Rb+ ions were transported for every 3 Na+ ions. When ATP is depleted, the transported ions diffuse back to their equilibrium level in the vesicles. 相似文献
7.
8.
Hasegawa I Niisato N Iwasaki Y Marunaka Y 《Biochemical and biophysical research communications》2006,343(2):475-482
Ambroxol is often used as a mucolytic agent in various lung diseases. However, it is unclear how ambroxol acts on bronchial epithelial cells. To clarify the action of ambroxol, we studied the effects of ambroxol on the ion transport in human Calu-3 cells, a human submucosal serous cell line, measuring the transepithelial short-circuit current and conductance across monolayers of Calu-3 cells. Ambroxol of 100 microM diminished the terbutaline (a beta2-adrenergic agonist)-stimulated Cl-/HCO3(-)-dependent secretion without any decreases in the conductance of cystic fibrosis transmembrane conductance regulator (CFTR) channel locating on the apical membrane. On the other hand, under the basal (unstimulated) condition ambroxol increased the Cl(-)-dependent secretion with no significant change in the apical CFTR channel conductance and decreased the HCO3- secretion associated with a decrease in the apical CFTR channel conductance. Ambroxol had no major action on the epithelial Na+ channel (ENaC) or the ENaC-mediated Na+ absorption. These results indicate that in Calu-3 cells: (1) under the basal (unstimulated) condition ambroxol increases Cl- secretion by stimulating the entry step of Cl- and decreases HCO3- secretion by diminishing the activity of the CFTR channel and/or the Na+/HCO3(-)-dependent cotransporter, (2) under the adrenergic agonist-stimulated condition, ambroxol decreases Cl- secretion by acting on the Cl-/HCO3- exchanger, and (3) ambroxol has a more powerful action than the adrenergic agonist on the Cl-/HCO3- exchanger, leading fluid secretion to a moderately stimulated level from a hyper-stimulated level. 相似文献
9.
B A Tashmukhamedov 《Biofizika》1969,14(5):948-951
10.
Sphingosine kinase was partially purified and characterized from rat brain microsomes. A new assay, utilizing octyl-beta-D-glucopyranoside and sphingosine mixed micelles, was developed to quantitate formation of the sphingosine-1-phosphate product. The assay was proportional with respect to time and protein, displayed Michaelis-Menten kinetics, and was subject to surface dilution in regard to the sphingosine substrate. Investigations into substrate specificity showed that the enzyme is specific for the erythro-enantiomers of sphingosine and dihydrosphingosine. Neither of the threo-enantiomers were phosphorylated in this system, but both were found to be potent competitive inhibitors of sphingosine kinase activity. Human platelet sphingosine kinase activity displayed substrate and inhibitor specificities similar to the rat brain enzyme. A mixture of DL-threo-dihydrosphingosine competitively inhibited sphingosine kinase activity in a dose dependent manner in isolated platelets. DL-Threo-dihydrosphingosine caused a prolongation of the inhibition of thrombin-induced protein kinase C-dependent 40 (47)-kDa protein phosphorylation in platelets. D-, L-, or DL-Threo-dihydrosphingosine may be useful as a tool to investigate D-Erythrosphingosine metabolism and the function of sphingosine-1-phosphate in signal transduction processes. 相似文献
11.
12.
Na,K-ATPase was localized in canine fungiform and circumvallfltepapillae by immunocytochemical and histochemical methods. Monoclonalantibodies raised against the -subunit of Na,K-ATPase showedspecific staining in the stratum basale and in the lower layersof the stratum spinosum. Small stained wavy lines, interpretedas trigerrunal fibers, were found in the epithelium near tastebuds. In contrast, conventional histochemical methods showedno staining in the epithelium. In both immunocytochemical and histochemical methods taste budswere densely stained. The histochemical stain in taste budswas essentially eliminated by levamisole and L-cysteine butremained in the presence of 10 mM ouabain or in the absenceof potassium. These data suggest that the majority of the histochemicalstain arises from phosphatases other than Na,K-ATPase. 相似文献
13.
14.
Transgenic Keratin14-rtTA-PTR mice specifically express Keratin14 (K14) in the tongue epithelia, as well as co-express EGFP and the dominant negative ΔTgfbr2 genes upon treatment with Doxycycline (Dox). As TGF-β signaling negatively regulates the stem cell cycle and proliferation, its disruption by Dox induction in these transgenic mice shortens the cell cycle and allows observation of the final fate of those mutated cell lineages within a short period of time. Here, we used inducible transgenic mice to track the K14+ cells through the cell migration stream by immunohistochemical an immunofluorescent imaging. We showed that these cells have different development patterns from the tip to posterior of the tongue, achieved presumably by integrating positional information from the microenvironment. The expression of the K14 gene was variable, depending on the location of the tongue and papillae. Disruption of TGF-β signaling in K14+ progenitor cells resulted in proliferation of stem cell pools. 相似文献
15.
16.
Georgios Scheiner-Bobis 《European journal of biochemistry》2002,269(10):2424-2433
The sodium pump (Na(+)/K(+)-ATPase; sodium- and potassium-activated adenosine 5'-triphosphatase; EC 3.6.1.37) has been under investigation for more than four decades. During this time, the knowledge about the structure and properties of the enzyme has increased to such an extent that specialized groups have formed within this field that focus on specific aspects of the active ion transport catalyzed by this enzyme. Taking this into account, this review, while somewhat speculative, is an attempt to summarize the information regarding the enzymology of the sodium pump with the hope of providing to interested readers from outside the field a concentrated overview and to readers from related fields a guide in their search for gathering specific information concerning the structure, function, and enzymology of this enzyme. 相似文献
17.
Yan Z Lei-Butters DC Liu X Zhang Y Zhang L Luo M Zak R Engelhardt JF 《The Journal of biological chemistry》2006,281(40):29684-29692
The choice of adeno-associated virus serotypes for clinical applications is influenced by the animal model and model system used to evaluate various serotypes. In the present study, we sought to compare the biologic properties of rAAV2/1, rAAV2/2, and rAAV2/5 transduction in polarized human airway epithelia using viruses purified by a newly developed common column chromatography method. Results demonstrated that apical transduction of human airway epithelia with rAAV2/1 was 100-fold more efficient than rAAV2/2 and rAAV2/5. This transduction profile in human airway epithelia (rAAV2/1 > rAAV2/2 = rAAV2/5) was significantly different from that seen following nasal administration of these vectors to mouse lung (rAAV2/5 > rAAV2/1 > rAAV2/2), emphasizing differences in transduction of these serotypes between these two species. In stark contrast to rAAV2/2 and rAAV2/5, rAAV2/1 transduced both the apical and basolateral membrane of human airway epithelia with similar efficiency. However, the overall level of transduction across serotypes did not correlate with vector internalization. We hypothesized that differences in post-entry processing of these serotypes might influence the efficiency of apical transduction. To this end, we tested the effectiveness of proteasome inhibitors to augment nuclear translocation and gene expression from the three serotypes. Augmentation of rAAV2/1 apical transduction of human polarized airway epithelia was 10-fold lower than that for rAAV2/2 and rAAV2/5. Cellular fractionation studies demonstrated that proteasome inhibitors more significantly enhanced rAAV2/2 and rAAV2/5 translocation to the nucleus than rAAV2/1. These results demonstrate that AAV1 transduction biology in human airway epithelia differs from that of AAV2 and AAV5 by virtue of altered ubiquitin/proteasome sensitivities that influence nuclear translocation. 相似文献
18.
19.
20.
Timashev SF 《Biofizika》2008,53(4):610-612
It has been shown that recent investigations of the electron density distribution and high resolution (approximately 0.5 nm) spatial structure of transport ATPases open new possibilities in the development of general models for the mechanisms of energy of ATP hydrolysis and its use for active transmembrane ion transfer. 相似文献