首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Left and right ventricular pressures in mice   总被引:1,自引:0,他引:1  
  相似文献   

3.
4.
The goal of this project was to determine the effects of elevated cardiac temperature on preload-dependent and preload-independent regulation of left ventricular developed pressure (LVDP) in Langendorff-perfused, electrically paced (420 bpm), Sprague-Dawley rat hearts. LVDP responses to steady-state isoproterenol infusions (10−8 M) were determined at 37, 38, 39, and 40 °C. Preload-dependent LVDP was determined at 37 and 40 °C. Isoproterenol-induced LVDP and preload-dependent LVDP time controls were conducted in a separate group maintained at 37 °C. The percent increase in LVDP during isoproterenol infusion significantly decreased at 40 °C to 42±6 (SE), compared to 55±9, 55±6, and 53±7% at 37, 38, and 39 °C, respectively. No significant differences were observed in the percent increase in LVDP to isoproterenol among the corresponding time controls (50±6, 47±3, 56±4, and 56±5%). Preload-dependent LVDP decreased across the experimental protocol, but there were no cardiac temperature effects. These data indicate that β-adrenergic mediated contractility is not altered by moderate heating from normothermia but is compromised at very high temperatures (40 °C). Cardiac temperatures from 37 to 40 °C do not alter the inherent preload-dependent LVDP, indicating that the Frank–Starling relation is not directly affected within this temperature range.  相似文献   

5.
Optimization of right atrial (RA) mechanics is important for maintaining right ventricular (RV) filling and global cardiac output. However, the impact of pericardial restraint on RA function and the compensatory role of the right atrium to changes in RV afterload remain poorly characterized. In eight open-chest sheep, RA elastance (contractility) and chamber stiffness were measured (RA pressure-volume relations) at baseline and during partial pulmonary artery (PA) occlusion. Data were collected before and after pericardiotomy. With the pericardium intact and partial PA occlusion, RA elastance increased by 28% (P < 0.04), whereas RA stiffness tended to rise (P = 0.08). However, after pericardiotomy, there was a significant fall in both RA elastance (54%, P < 0.04) and stiffness (39%, P < 0.04), and subsequent PA occlusion failed to induce a change in elastance (P > 0.19) or stiffness (P > 0.84). After pericardiotomy, RA elastance and stiffness fell dramatically, and the compensatory response of the right atrium to elevated RV afterload was lost. The ability of the right atrium to respond to changes in RV hemodynamics is highly dependent on pericardial integrity.  相似文献   

6.
Left ventricular (LV) wave speed (LVWS) was studied experimentally and confirmed in theory. Combining the definition of elastance (E) with the equations for the conservation of mass and momentum shows that LVWS is proportional to the square root of ELA, where L is long-axis length and A is the cross-sectional area, and the density of the blood. (We defined ELA = gamma, where gamma is compressibility.) We studied nine open chest, anesthetized dogs, three of which were studied during caval constriction when LV end-diastolic pressure was < or =0 mmHg. The hearts were paced at approximately 90 beats/min, and LV cross-sectional area was measured by using two pairs of ultrasonic crystals; E was calculated from the LV pressure-area loop. A pulse generator was connected to the LV apex, and LVWS was measured by using two pressure transducers: one near the apex and the other near the base. Their distance was measured roentgenographically and compared with the diameter of a reference ball. LVWS ranged from approximately 1 m/s during diastole to approximately 10 m/s during systole. The slope of the log c (where c is wave speed) vs. log gamma was 0.546, which is in agreement with theory (0.5). When gamma < or = 0, LVWS was approximately 1.5 m/s.  相似文献   

7.
The left ventricular dysfunction following acute pulmowary hypertension remains unexplained. We wondered if acute pulmonary hypertension could alter the transmural flow distribution within the left ventricular myocardium, independent of coronary flow and perfusion pressure. We used a canine preparation in which the left coronary system was perfused at constant flow and induced a two- to three-fold increase in pulmonary artery pressure by banding the pulmonary artery. Regional myocardial blood flow of the left coronary system was measured using radioactive microspheres, injected into the left coronary system before and after 10-30 min of banding of the pulmonary artery. The left ventricular subendocardial:epicardial ratio fell by 12 and 31% (p less than 0.05) of control value, 10 and 30 min, respectively, after banding of the pulmonary artery, the total flow to the left coronary system being kept constant. Left atrial mean pressure increased from 2.9 +/- 2.4 to 3.6 +/- 1.9 and 6.0 +/- 2.1 (p less than 0.05) following banding. The mechanism of the redistribution of coronary flow may relate to inappropriate vasodilation of the right septal myocardium with consequent relative left ventricular subendocardial hypoperfusion which might aggravate left ventricular ischemia in the presence of hypotension and hypoxia.  相似文献   

8.
To investigate the role of hypertrophy of the right ventricle upon right heart performance and the significance of the peak systolic pressure/end-systolic volume (P/V) ratio in terms of right ventricular systolic performance, simultaneous measurements of radionuclide ventriculograms and central hemodynamics were done in 32 patients with chronic obstructive pulmonary disease. In 26 of the patients (80%) technically adequate two-dimensional echocardiograms could be performed. In the subset of patients with increased (greater than or equal to 6 mm) right ventricular end-diastolic wall thickness no relationship between pulmonary artery pressure and right ventricular ejection fraction (RVEF) existed in comparison with the remaining patients. P/V indices and cardiac output were not decreased. Considering the patients, whose P/V ratio did not increase from rest to exercise, RVEF decreased highly significantly more than in the remaining patients. The ratio of wall thickness and end-diastolic radius as determinant of peak systolic stress was significantly decreased in these patients compared with the remaining patients. In the patients with right ventricular hypertrophy despite significantly higher values of pulmonary artery pressures and resistances, the afterload in terms of systolic wall stress is markedly reduced. We conclude that in the hypertrophic state, right ventricular performance is not impaired despite decreased RVEF values. In the patients whose P/V ratio does not increase from rest to exercise, an inappropriate high peak systolic wall stress may exist both due to inadequate wall thickness and increased diameter of the right ventricle. The role of P/V in terms of prognosis and development of decompensated right heart failure remains undetermined.  相似文献   

9.
The interventricular septum, which flattens and inverts in conditions such as pulmonary hypertension, is considered by many to be an unstressed membrane, in that its position is assumed to be determined solely by the transseptal pressure gradient. A two-dimensional finite element model was developed to investigate whether compression and bending moments (behavior incompatible with a membrane) exist in the septum during diastole under abnormal loading, i.e., pulmonary artery (PA) constriction. Hemodynamic and echocardiographic data were obtained in six open-chest anesthetized dogs. For both control and PA constriction, the measured left ventricular and right ventricular pressures were applied to a residually stressed mesh. Adjustments were made to the stiffness and end-bending moments until the deformed and loaded residually stressed mesh matched the observed configuration of the septum. During PA constriction, end-bending moments were required to obtain satisfactory matches but not during control. Furthermore, substantial circumferential compressive stresses developed during PA constriction. Such stresses might impede septal blood flow and provoke the unexplained ischemia observed in some conditions characterized by abnormal septal motion.  相似文献   

10.
Increased right atrial (RA) and ventricular (RV) chamber volumes are a late maladaptive response to chronic pulmonary hypertension. The purpose of the current investigation was to characterize the early compensatory changes that occur in the right heart during chronic RV pressure overload before the development of chamber dilation. Magnetic resonance imaging with radiofrequency tissue tagging was performed on dogs at baseline and after 10 wk of pulmonary artery banding to yield either mild RV pressure overload (36% rise in RV pressure; n = 5) or severe overload (250% rise in RV pressure; n = 4). The RV free wall was divided into three segments within a midventricular plane, and circumferential myocardial strain was calculated for each segment, the septum, and the left ventricle. Chamber volumes were calculated from stacked MRI images, and RA mechanics were characterized by calculating the RA reservoir, conduit, and pump contribution to RV filling. With mild RV overload, there were no changes in RV strain or RA function. With severe RV overload, RV circumferential strain diminished by 62% anterior (P = 0.04), 42% inferior (P = 0.03), and 50% in the septum (P = 0.02), with no change in the left ventricle (P = 0.12). RV filling became more dependent on RA conduit function, which increased from 30 ± 9 to 43 ± 13% (P = 0.01), than on RA reservoir function, which decreased from 47 ± 6 to 33 ± 4% (P = 0.04), with no change in RA pump function (P = 0.94). RA and RV volumes and RV ejection fraction were unchanged from baseline during either mild (P > 0.10) or severe RV pressure overload (P > 0.53). In response to severe RV pressure overload, RV myocardial strain is segmentally diminished and RV filling becomes more dependent on RA conduit rather than reservoir function. These compensatory mechanisms of the right heart occur early in chronic RV pressure overload before chamber dilation develops.  相似文献   

11.
12.
13.
14.
15.
16.
Temporary sequential biventricular pacing (BiVP) is a promising treatment for postoperative cardiac dysfunction, but the mechanism for improvement in right ventricular (RV) dysfunction is not understood. In the present study, cardiac output (CO) was optimized by sequential BiVP in six anesthetized, open-chest pigs during control and acute RV pressure overload (RVPO). Ventricular contractility was assessed by the maximum rate of increase of ventricular pressure (dP/dt(max)). Mechanical interventricular synchrony was measured by the area of the normalized RV-left ventricular (LV) pressure diagram (A(PP)). Positive A(PP) indicates RV pressure preceding LV pressure, whereas zero indicates complete synchrony. In the control state, CO was maximized with nearly simultaneous stimulation of the RV and LV, which increased RV (P = 0.006) and LV dP/dt(max) (P = 0.002). During RVPO, CO was maximized with RV-first pacing, which increased RV dP/dt(max) (P = 0.007), but did not affect LV dP/dt(max), and decreased the left-to-right, end-diastolic pressure gradient (P = 0.023). Percent increase of RV dP/dt(max) was greater than LV dP/dt(max) (P = 0.014). There were no increases in end-diastolic pressure to account for increases in dP/dt(max). In control and RVPO, RV dP/dt(max) was linearly related to A(PP) (r = 0.779, P < 0.001). The relation of CO to A(PP) was curvilinear, with a peak in CO with positive A(PP) in the control state (P = 0.004) and with A(PP) approaching zero during RVPO (P = 0.001). These observations imply that, in our model, BiVP optimization improves CO by augmenting RV contractility. This is mediated by changes in mechanical interventricular synchrony. Afterload increases during RVPO exaggerate this effect, making CO critically dependent on simultaneous pressure generation in the RV and LV, with support of RV contractility by transmission of LV pressure across the interventricular septum.  相似文献   

17.
Pattern of right ventricular pressure (RVP) fall and its afterload dependence were examined by analyzing ventricular pressure curves and corresponding pressure dP/dt phase planes obtained in both ventricles in the rat heart in situ. Time and value of dP/dt(min), and the time constant tau were measured at baseline and during variable RV afterload elevations, induced by beat-to-beat pulmonary trunk constrictions. RVP and left ventricular pressure (LVP) decays were divided into initial accelerative and subsequent decelerative phases separated by corresponding dP/dt(min). At baseline, LVP fall was decelerative during 4/5 of its course, whereas only 1/3 of RVP decay occurred in a decelerative fashion. During RV afterload elevations, the absolute value of RV-dP/dt(min) and RV-tau increased, whilst time to RV dP/dt(min) decreased. Concomitantly, the proportion of RVP decay following a decelerative course increased, so that in highly RV afterloaded heartbeats RVP fall became more similar to LVP fall. In conclusion, RVP and LVP decline have distinct patterns, their major portion being decelerative in the LV and accelerative in the RV. In the RV, dP/dt(min), tau and the proportional contribution of accelerative and decelerative phases for ventricular pressure fall are afterload-dependent. Consequently, tau evaluates a relatively much shorter segment of RVP than LVP fall.  相似文献   

18.

Background

Right ventricular (RV) dysfunction is a complication of pulmonary hypertension and portends a poor prognosis. Pharmacological therapies targeting RV function in pulmonary hypertension may reduce symptoms, improve hemodynamics, and potentially increase survival. We hypothesize that recombinant human angiotensin-converting enzyme 2 (rhACE2) will improve RV function in a pressure overload model.

Results

rhACE2 administered at 1.8 mg/kg/day improved RV systolic and diastolic function in pulmonary artery banded mice as measured by in vivo hemodynamics. Specifically, rhACE2 increased RV ejection fraction and decreased RV end diastolic pressure and diastolic time constant (p<0.05). In addition, rhACE2 decreased RV hypertrophy as measured by RV/LV+S ratio (p<0.05). There were no significant negative effects of rhACE2 administration on LV function. rhACE2 had no significant effect on fibrosis as measured by trichrome staining and collagen1α1 expression. In pulmonary artery banded mice, rhACE2 increased Mas receptor expression and normalized connexin 37 expression.

Conclusion

In a mouse RV load-stress model of early heart failure, rhACE2 diminished RV hypertrophy and improved RV systolic and diastolic function in association with a marker of intercellular communication. rhACE2 may be a novel treatment for RV failure.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号