首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Alcoholic cardiomyopathy is characterized by impaired ventricular function although its toxic mechanism is unclear. This study examined the impact of cardiac overexpression of alcohol dehydrogenase (ADH), which oxidizes ethanol into acetaldehyde (ACA), on ethanol-induced cardiac contractile defect. Mechanical and intracellular Ca(2+) properties were evaluated in ventricular myocytes from ADH transgenic and wild-type (FVB) mice. ACA production was assessed by gas chromatography. ADH myocytes exhibited similar mechanical properties but a higher efficiency to convert ACA compared with FVB myocytes. Acute exposure to ethanol depressed cell shortening and intracellular Ca(2+) in the FVB group with maximal inhibitions of 23.3% and 23.4%, respectively. Strikingly, the ethanol-induced depression on cell shortening and intracellular Ca(2+) was significantly augmented in the ADH group, with maximal inhibitions of 43.7% and 40.6%, respectively. Pretreatment with the ADH inhibitor 4-methylpyrazole (4-MP) or the aldehyde dehydrogenase inhibitor cyanamide prevented or augmented the ethanol-induced inhibition, respectively, in the ADH but not the FVB group. The ADH transgene also substantiated the ethanol-induced inhibition of maximal velocity of shortening/relengthening and unmasked an ethanol-induced prolongation of the duration of shortening/relengthening, which was abolished by 4-MP. These data suggest that elevated cardiac ACA exposure due to enhanced ADH expression may play an important role in the development of alcoholic cardiomyopathy.  相似文献   

2.
Acute ethanol exposure depresses ventricular contractility and contributes to alcoholic cardiomyopathy in both men and women chronically consuming ethanol. However, a gender-related difference in the severity of myopathy exists with female being more sensitive to ethanol-induced tissue damage. Acetaldehyde (ACA), the major oxidized product of ethanol, has been implicated to play a role in the pathogenesis and gender-related difference of alcoholic cardiomyopathy, possibly due to its direct cardiac effect and interaction with estrogen. This study was designed to compare the effects of cardiac overexpression of alcohol dehydrogenase (ADH), which converts ethanol into ACA, on the cardiac contractile response to ethanol in ventricular myocytes isolated from age-matched adult male and female transgenic (ADH) and wild-type (FVB) mice. Mechanical properties were measured with an IonOptix SoftEdge system. ACA production was assessed by gas chromatography. The ADH myocytes from both genders exhibited similar mechanical properties but a higher efficacy to produce ACA compared to FVB myocytes. Exposure to ethanol (80-640 mg/dl) for 60 min elicited concentration-dependent decrease of cell shortening in both FVB and ADH groups. The ethanol-induced depression on cell shortening was significantly augmented in female but not male ADH group. ADH transgene did not exacerbate the ethanol-induced inhibition of maximal velocity of shortening/relengthening in either gender. In addition, neither ethanol nor ADH transgene affect the duration of shortening and relengthening in male or female mice. These data suggest that females may be more sensitive to ACA-induced cardiac contractile depression than male, which may attribute to the gender-related difference of alcoholic cardiomyopathy.  相似文献   

3.
Guo KK  Ren J 《Aging cell》2006,5(3):259-265
Aging is a complex biological process with contributions from a wide variety of genes including insulin-like growth factor I and alcohol dehydrogenase (ADH), which decline with advanced age. The goal of this study was to examine if ADH enzyme plays any role in cardiac aging. Ventricular myocytes were isolated from young (2-3 months old) or aged (26-28 months old) male FVB wild-type and cardiac-specific ADH (class I, isozyme type 1) transgenic mice. Mechanical properties were measured using an IonOptix system. Aged FVB myocytes displayed significantly reduced ADH activity compared with young ones, which was restored by the ADH transgene. Compared with young cardiomyocytes, aged FVB myocytes exhibited prolonged relengthening duration and a steaper decline in peak shortening amplitude in response to elevated electrical stimuli. Although ADH transgene itself did not alter mechanical properties in young mice, it rescued aging-associated diastolic dysfunction without affecting dampened contractile response to high stimulus frequency. Immunoblot analysis revealed reduced sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a) and Na(+)-Ca(2+) exchanger (NCX) levels in conjunction with enhanced phospholamban expression in aged FVB hearts. ADH transgene prevented aging-induced reduction in SERCA2a and NCX without affecting up-regulated phospholamban. Our data suggest that aging is associated with a reduced ADH enzymatic activity and diastolic dysfunction, which may be corrected with cardiac overexpression of the ADH enzyme. Alteration in cardiac Ca(2+) cycling proteins including SERCA2a and NCX may play a role in both pathogenesis of cardiac aging and the beneficial effect of ADH enzyme.  相似文献   

4.
Fang CX  Doser TA  Yang X  Sreejayan N  Ren J 《Aging cell》2006,5(2):177-185
Aging is often accompanied by reduced insulin sensitivity and cardiac dysfunction. However, the causal relationship between the two remains poorly understood. This study was designed to determine the impact of cardiac-specific overexpression of antioxidant metallothionein (MT) on aging-associated cardiac dysfunction and impaired insulin signaling. Contractile and intracellular Ca(2+) properties were evaluated in left ventricular myocytes including peak shortening (PS), maximal velocity of shortening/relengthening (+/- dL/dt), time-to-PS (TPS), time-to-90% relengthening (TR(90)), fura-2 fluorescence intensity change (DeltaFFI) and intracellular Ca(2+) decay rate. Expression of insulin receptor, protein-tyrosine phosphatase 1B (PTP1B), phosphorylation of insulin receptor (Tyr1146) and Akt were evaluated by Western blot analysis. Aged wild-type FVB and MT transgenic mice (26-28 months old) displayed glucose intolerance and hyperinsulinemia. Cardiomyocytes from aged FVB mice exhibited prolonged TR(90) and intracellular Ca(2+) decay associated with normal PS, +/- dL/dt, TPS and DeltaFFI compared with those from young (2-3 months old) mice. Western blot analysis revealed reduced Akt expression and insulin (5 mU g(-1))-stimulated Akt phosphorylation, elevated PTP1B expression and diminished basal insulin receptor tyrosine phosphorylation associated with comparable insulin receptor expression in aged FVB mouse hearts. All of these aging-related defects in cardiac contractile function and insulin signaling (although not hyperinsulinemia and glucose intolerance) were significantly attenuated or ablated by MT transgene. These data indicate that enhanced antioxidant defense is beneficial for aging-induced cardiac contractile dysfunction and alteration in insulin signaling.  相似文献   

5.
Obesity plays a pivotal role in metabolic and cardiovascular diseases. Certain types of obesity may be related to alcohol ingestion, which itself leads to impaired cardiac function. This study analyzed basal and ethanol-induced cardiac contractile response using left-ventricular papillary muscles and myocytes from lean and obese Zucker rats. Contractile properties analyzed include: peak tension development (PTD), peak shortening amplitude (PS), time to PTD/PS (TPT/TPS), time to 90% relaxation/relengthening (RT(90)/TR(90)) and maximal velocities of contraction/shortening and relaxation/relengthening (+/-VT and +/-dL/dt). Intracellular Ca(2+) transients were measured as fura-2 fluorescence intensity (DeltaFFI) changes and fluorescence decay time (FDT). In papillary muscles from obese rats, the baseline TPT and RT(90) were significantly prolonged accompanied with low to normal PTD and +/-VT compared to those in lean rats. Muscles from obese hearts also exhibited reduced responsiveness to postrest potentiation, increase in extracellular Ca(2+) concentration, and norepinephrine. By contrast, in isolated myocytes, obesity reduced PS associated with a significant prolonged TR(90), normal TPS and +/-dL/dt. Intracellular Ca(2+) recording revealed decreased resting Ca(2+) levels and prolonged FDT. Acute ethanol exposure (80-640 mg/dl) caused comparable concentration-dependent inhibitions of PTD/PS and DeltaFFI, associated with reduced +/-VT in both groups. Collectively, these results suggest altered cardiac contractile function and unchanged ethanol-induced depression in obesity.  相似文献   

6.
Objective: Consumption of high‐fat diet and alcohol is associated with obesity, leading to enhanced morbidity and mortality. This study was designed to examine the interaction between high‐fat diet and the alcohol metabolizing enzyme alcohol dehydrogenase (ADH) on ethanol‐induced cardiac depression. Research Methods and Procedures: Mechanical and intracellular Ca2+ properties were measured in cardiomyocytes from ADH transgenic and Friend Virus‐B type (FVB) mice fed a low‐ or high‐fat diet for 16 weeks. Expression of protein kinase B (Akt) and Foxo3a, two proteins essential for cardiac survival, was evaluated by Western blot. Cardiac damage was determined by carbonyl formation. Results: High fat but not ADH induced obesity without hyperglycemia or hypertension, prolonged time‐to‐90% relengthening (TR90), and depressed peak shortening (PS) and maximal velocity of shortening/relengthening (± dL/dt) without affecting intracellular Ca2+ properties. Ethanol suppressed PS and intracellular Ca2+ rise in low‐fat‐fed FVB mouse cardiomyocytes. ADH but not high‐fat diet shifted the threshold of ethanol‐induced inhibition of PS and ± dL/dt to lower levels. The amplitude of ethanol‐induced cardiac depression was greater in the high‐fat but not the ADH group without additive effects. Ethanol down‐ and up‐regulated Akt and Foxo3a expression, respectively, and depressed intracellular Ca2+ rise, the effects of which were exaggerated by ADH, high‐fat, or both. High‐fat diet, but not ADH, enhanced Foxo3a expression and carbonyl content in non‐ethanol‐treated mice. Ethanol challenge significantly enhanced protein carbonyl formation, with the response being augmented by ADH, high‐fat, or both. Discussion: Our data suggest that high‐fat diet and ADH transgene may exaggerate ethanol‐induced cardiac depression and protein damage in response to ethanol.  相似文献   

7.
Li Q  Fang CX  Nunn JM  Zhang J  LaCour KH  Ren J 《Life sciences》2006,80(3):187-192
Mice are extensively used for gene modification research and isolated cardiomyocytes are essential for evaluation of cardiac function without interference from non-myocyte contribution. This study was designed to characterize cardiomyocyte excitation-contraction coupling in FVB/N-C57BL/6 intercrossed brown mice. Mechanical and intracellular Ca(2+) properties were evaluated using an IonOptix softedge system including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90)), maximal velocity of shortening and relengthening (+/- dL/dt), intracellular Ca(2+) rise and decay rate. Resting cell length was longer in age- and gender-matched C57BL/6 and brown mice compared to FVB strain. PS and +/- dL/dt were significantly lower in brown mice compared to FVB/N and C57BL/6 groups. TPS was shortened in C57BL/6 mice and TR(90) was prolonged in brown mice compared to other groups. Resting intracellular Ca(2+) level and single exponential intracellular Ca(2+) decay constant were comparable among all three mouse lines. Rise in intracellular Ca(2+) in response to electrical stimulus was higher in C57BL/6 mouse myocytes whereas bi-exponential intracellular Ca(2+) decay was faster in brown mice. Myocytes from all three groups exhibited similar fashion of reduction in PS in response to increased stimulus frequency. These data suggest that inherent differences in cardiomyocyte excitation-contraction coupling exist between strains, which may warrant caution when comparing data from these mouse lines.  相似文献   

8.
Ethanol, a risk factor for myocardial dysfunction, depresses myocardial contraction. This study was to determine whether ethanol-induced myocardial depression is affected by hypertension. Mechanical properties of ventricular myocytes isolated from both normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive (SHR) rats were evaluated using a video edge-detection system. Myocytes were electrically stimulated to contract at 0.5 Hz. Contractile properties analyzed include peak twitch amplitude (PTA), time-to-PTA (TPS), time-to-90% relengthening (TR(90)), and maximal velocities of shortening/relengthening (+/-dL/dt). Intracellular Ca(2+) transients were measured as fura-2 fluorescence intensity (DeltaFFI) changes. Acute ethanol exposure (80-640 mg/dl) caused a concentration-dependent inhibition of PTA and DeltaFFI in both WKY and SHR myocytes. The extent of maximal inhibition of PTA and FFI was significantly greater in SHRs (53.7 and 38.9%) compared to the WKY group (21.0 and 25.4%). Ethanol did not affect TPS but shortened TR(90) and slowed +/-dL/dt at high concentration ranges. Interestingly, the augmented ethanol-induced inhibition of cell shortening in hypertension was greatly attenuated by Ca(2+) channel opener BayK 8644 (1 microM). These results suggest that ethanol-induced myocardial depression may be augmented in hypertension, possibly due to mechanism(s) involving sarcolemmal Ca(2+) channels.  相似文献   

9.
10.

Objectives

Binge alcohol drinking often triggers myocardial contractile dysfunction although the underlying mechanism is not fully clear. This study was designed to examine the impact of cardiac-specific overexpression of alcohol dehydrogenase (ADH) on ethanol-induced change in cardiac contractile function, intracellular Ca2+ homeostasis, insulin and AMP-dependent kinase (AMPK) signaling.

Methods

ADH transgenic and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Oral glucose tolerance test, cardiac AMP/ATP levels, cardiac contractile function, intracellular Ca2+ handling and AMPK signaling (including ACC and LKB1) were examined.

Results

Ethanol exposure led to glucose intolerance, elevated plasma insulin, compromised cardiac contractile and intracellular Ca2+ properties, downregulated protein phosphatase PP2A subunit and PPAR-γ, as well as phosphorylation of AMPK, ACC and LKB1, all of which except plasma insulin were overtly accentuated by ADH transgene. Interestingly, myocardium from ethanol-treated FVB mice displayed enhanced expression of PP2Cα and PGC-1α, decreased insulin receptor expression as well as unchanged expression of Glut4, the response of which was unaffected by ADH. Cardiac AMP-to-ATP ratio was significantly enhanced by ethanol exposure with a more pronounced increase in ADH mice. In addition, the AMPK inhibitor compound C (10 µM) abrogated acute ethanol exposure-elicited cardiomyocyte mechanical dysfunction.

Conclusions

In summary, these data suggest that the ADH transgene exacerbated acute ethanol toxicity-induced myocardial contractile dysfunction, intracellular Ca2+ mishandling and glucose intolerance, indicating a role of ADH in acute ethanol toxicity-induced cardiac dysfunction possibly related to altered cellular fuel AMPK signaling cascade.  相似文献   

11.
This study characterized the cardiac contractile function and IGF-I response in a transgenic diabetic mouse model. Mechanical properties were evaluated in cardiac myocytes from OVE26 diabetic and FVB wild-type mice, including peak shortening (PS), time to PS (TPS), time to 90% relengthening (TR(90)) and maximal velocity of shortening/relengthening (+/-dL/dt). Intracellular Ca(2+) was evaluated as Ca(2+)-induced Ca(2+) release [difference in fura 2 fluorescent intensity (Delta FFI)] and fluorescence decay rate (tau). Sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a, phospholamban (PLB), Na(+)-Ca(2+) exchanger (NCX), GLUT4, and the serine-threonine kinase Akt were assessed by Western blot. RhoA and IGF-I/IGF-I receptor mRNA levels were determined by RT-PCR and Northern blot. OVE26 myocytes displayed decreased PS, +/-dL/dt, and Delta FFI associated with prolonged TPS, TR(90), and tau. SERCA2a, NCX, and Akt activation were reduced, whereas PLB and RhoA were enhanced in OVE26 hearts. GLUT4 was unchanged. IGF-I enhanced PS and Delta FFI in FVB but not OVE26 myocytes. IGF-I mRNA was increased, but IGF-I receptor mRNA was reduced in OVE26 hearts and livers. These results validate diabetic cardiomyopathy in OVE26 mice due to reduced SERCA2, NCX, IGF-I response, and Akt activation associated with enhanced RhoA level, suggesting a therapeutic potential for Akt and RhoA.  相似文献   

12.
13.
Transgenic animals offer many advantages for physiological study. The mouse is the most extensively utilized mammalian model for gene modification. Isolated ventricular myocytes are pivotal for assessment of cardiac function by allowing direct cellular and environmental manipulation without interference from compensatory mechanisms that may exist in vivo. This study was designed to compare the basic excitation-contraction coupling properties of mouse and rat ventricular myocytes. Cardiac myocytes were isolated from age- and gender-matched mice (FVB and C57BL/6) and rats (Sprague-Dawley (SD) and Wistar). Mechanical and intracellular Ca2+ properties were measured with an IonOptix SoftEdge system, including peak shortening (PS), time-to-PS (TPS), time-to-90% relengthening (TR(90)), maximal velocity of shortening and relengthening (+/-dL/dt), and intracellular Ca2+ fura-2 fluorescence intensity and decay rate (tau). Resting cell length was variable among the different species or strains. PS from FVB group was significantly higher than the SD group. TPS and TR(90) were significantly shorter in mice. +dL/dt was similar among all groups whereas -dL/dt was significantly faster in the C57BL/6 group compared to the rat groups. Resting intracellular Ca2+ was lower in mice than in rats, and Ca2+-induced Ca2+ release was variable among the four groups. Intracellular Ca2+ decay was slower in Wistar compared to all other groups. The myocytes from C57BL/6 did not respond to increases in extracellular Ca2+. Myocytes from the FVB group exhibited a lesser reduction in PS in response to elevated stimulus frequency. These data suggest that inherent differences between strains or species should be taken into consideration when comparing results from these different animal models.  相似文献   

14.
Nitric oxide (NO) and hydrogen peroxide (H(2)O(2)) play key roles in physiological and pathological responses in cardiac myocytes. The mechanisms whereby H(2)O(2)-modulated phosphorylation pathways regulate the endothelial isoform of nitric oxide synthase (eNOS) in these cells are incompletely understood. We show here that H(2)O(2) treatment of adult mouse cardiac myocytes leads to increases in intracellular Ca(2+) ([Ca(2+)](i)), and document that activity of the L-type Ca(2+) channel is necessary for the H(2)O(2)-promoted increase in sarcomere shortening and of [Ca(2+)](i). Using the chemical NO sensor Cu(2)(FL2E), we discovered that the H(2)O(2)-promoted increase in cardiac myocyte NO synthesis requires activation of the L-type Ca(2+) channel, as well as phosphorylation of the AMP-activated protein kinase (AMPK), and mitogen-activated protein kinase kinase 1/2 (MEK1/2). Moreover, H(2)O(2)-stimulated phosphorylations of eNOS, AMPK, MEK1/2, and ERK1/2 all depend on both an increase in [Ca(2+)](i) as well as the activation of protein kinase C (PKC). We also found that H(2)O(2)-promoted cardiac myocyte eNOS translocation from peripheral membranes to internal sites is abrogated by the L-type Ca(2+) channel blocker nifedipine. We have previously shown that kinase Akt is also involved in H(2)O(2)-promoted eNOS phosphorylation. Here we present evidence documenting that H(2)O(2)-promoted Akt phosphorylation is dependent on activation of the L-type Ca(2+) channel, but is independent of PKC. These studies establish key roles for Ca(2+)- and PKC-dependent signaling pathways in the modulation of cardiac myocyte eNOS activation by H(2)O(2).  相似文献   

15.
16.
The significance of 6-8 wk of high-intensity sprint training (HIST) on contractile abnormalities of myocytes isolated from rat hearts with prior myocardial infarction (MI) was investigated. Compared with the sedentary (Sed) condition, HIST attenuated myocyte hypertrophy observed post-MI primarily by reducing cell lengths but not cell widths. At high extracellular Ca(2+) concentration (5 mM) and low pacing frequency (0.1 Hz), conditions that preferentially favored Ca(2+) influx over efflux, MI-Sed myocytes shortened less than Sham-Sed myocytes did. HIST significantly improved contraction amplitudes in MI myocytes. Under conditions that favored Ca(2+) efflux, i.e., low extracellular Ca(2+) concentration (0.6 mM) and high pacing frequency (2 Hz), MI-Sed myocytes contracted more than Sham-Sed myocytes. HIST did not appreciably affect contraction amplitudes of MI myocytes under these conditions. Compared with MI-Sed myocytes, HIST myocytes showed significant improvement in time required to reach one-half maximal contraction amplitude shortening, maximal myocyte shortening and relengthening velocities, and half time of relaxation. Our results indicate that HIST instituted shortly after MI improved cellular contraction in surviving myocytes. Because our previous studies demonstrated that, in post-MI myocytes, HIST improved intracellular Ca(2+) dynamics, enhanced sarcoplasmic reticulum Ca(2+) uptake and Ca(2+) content, and restored Na(+)/Ca(2+) exchange current toward normal, we hypothesized that improvement in MI myocyte contractile function by HIST was likely mediated by normalization of cellular Ca(2+) homeostatic mechanisms.  相似文献   

17.
There has been a spectacular rise in the global prevalence of type 2 diabetes mellitus and cardiovascular complications are the major cause of morbidity and mortality in diabetic patients. The objective of the study was to investigate ventricular myocyte shortening, intracellular Ca(2+) signalling and expression of genes encoding cardiac muscle proteins in the aged Zucker diabetic fatty (ZDF) rat. There was a fourfold elevation in non-fasting blood glucose in ZDF rats (478.43 ± 29.22 mg/dl) compared to controls (108.22 ± 2.52 mg/dl). Amplitude of shortening, time to peak (TPK) and time to half (THALF) relaxation of shortening were unaltered in ZDF myocytes compared to age-matched controls. Amplitude and THALF decay of the Ca(2+) transient were unaltered; however, TPK Ca(2+) transient was prolonged in ZDF myocytes (70.0 ± 3.2 ms) compared to controls (58.4 ± 2.3 ms). Amplitude of the L-type Ca(2+) current was reduced across a wide range of test potentials (-30 to +40 mV) in ZDF myocytes compared to controls. Sarcoplasmic reticulum Ca(2+) content was unaltered in ZDF myocytes compared to controls. Expression of genes encoding cardiac muscle proteins, membrane Ca(2+) channels, and cell membrane ion transport and intracellular Ca(2+) transport proteins were variously altered. Myh6, Tnnt2, Cacna2d3, Slc9a1, and Atp2a2 were downregulated while Myl2, Cacna1g, Cacna1h, and Atp2a1 were upregulated in ZDF ventricle compared to controls. The results of this study have demonstrated that preserved ventricular myocyte shortening is associated with altered mechanisms of Ca(2+) transport and a changing pattern of genes encoding a variety of Ca(2+) signalling and cardiac muscle proteins in aged ZDF rat.  相似文献   

18.
Acetaldehyde (ACA), the major metabolite of ethanol, exerts both stimulatory and depressive actions on myocardial tissue. We have recently shown that ACA depresses myocardial contraction, cardiac myocyte shortening and intracellular Ca2+ transients in normal rat heart. The purpose of the present study was to determine the influence of hypertension on ACA-induced myocardial actions. Mechanical properties of left ventricular papillary muscles and ventricular myocytes isolated from both 25-week-old normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR) were evaluated using force-transducer and video edge-detection, respectively. Papillary muscles and cardiac myocytes were electrically stimulated to contract at 0.5 Hz. Contractile properties analyzed include: peak tension development (PTD), peak twitch amplitude (PTA), time-to-PTD/PTA (TPT/TPS), time-to-90% relaxation/relengthening (RT90/TR90) and maximal velocities of contraction/shortening and relaxation/relengthening (+/-VT/+/-dL/dt). Intracellular Ca2+ transients were measured as fura-2 fluorescence intensity (FFI) changes. ACA (1-30 mM) depressed PTD without affecting other mechanical indices in both WKY and SHR myocardium, with maximal inhibition of 64 and 69%, respectively. SHR myocytes exhibited increased cell dimension, baseline PTA and resting intracellular Ca2+ levels, compared to WKY counterparts. ACA (0.03-30 mM) depressed PTA without affecting TPT, TR90 and +/-dL/dt. The maximal inhibitions were 31 and 36% in WKY and SHR groups, respectively. Interestingly, ACA exerted a biphasic effect on FFI, displaying potentiation at lower doses (<3 mM) and inhibition at higher doses (>3 mM). The maximal increase in FFI changes were 19 and 22% at 0.3 mM and the maximal decreases were 37 and 29% at 30 mM ACA, in WKY and SHR myocytes, respectively. Neither resting intracellular Ca2+ levels (FFI) nor fluorescence decay time (FDT) were affected by ACA. The increase in FFI was attenuated by propranolol (1 microM), whereas the decrease in FFI was reversed by BayK 8644 (1 microM). These results suggest that hypertension does not appear to alter ACA-induced myocardial depression. The mechanism underlying ACA-induced myocardial actions may involve increased beta-adrenergic activity at low doses and reduced Ca2+ entry and/or release at high doses.  相似文献   

19.

Objectives

Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH).

Methods

ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined.

Results

Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O2 •−. Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-α, Fas receptor, Fas L and cytosolic AIF.

Conclusions

Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.  相似文献   

20.
We have studied the roles of c-Jun N-terminal protein kinase (JNK) and extracellular signal-regulated protein kinase (ERK) cascade in both the cisplatin-resistant Caov-3 and the cisplatin-sensitive A2780 human ovarian cancer cell lines. Treatment of both cells with cisplatin but not transplatin isomer activates JNK and ERK. Activation of JNK by cisplatin occurred at 30 min, reached a plateau at 3 h, and declined thereafter, whereas activation of ERK by cisplatin showed a biphasic pattern, indicating the different time frame. Activation of JNK by cisplatin was maximal at 1000 microM, whereas activation of ERK was maximal at 100 microM and was less at higher concentrations, indicating the different dose dependence. Cisplatin-induced JNK activation was neither extracellular and intracellular Ca(2+)- nor protein kinase C-dependent, whereas cisplatin-induced ERK activation was extracellular and intracellular Ca(2+)- dependent and protein kinase C-dependent. A mitogen-activated protein kinase/extracellular signal-regulated kinase kinase inhibitor, PD98059, had no effect on the cisplatin-induced JNK activity, suggesting an absence of cross-talk between the ERK and JNK cascades. We further examined the effect of each cascade on the viability following cisplatin treatment. Either exogenous expression of dominant negative c-Jun or the treatment by PD98059 induced sensitivity to cisplatin in both cells. Our findings suggest that cisplatin-induced DNA damage differentially activates JNK and ERK cascades and that inhibition of either of these cascades sensitizes ovarian cancer cells to cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号