首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transforming growth factor-beta superfamily of receptors   总被引:15,自引:0,他引:15  
The transforming growth factor-beta (TGF-beta) superfamily of receptors comprises two groups of transmembrane serine-threonine kinase receptors, so called type I, and type II receptors, that are activated following engagement by members of the TGF-beta superfamily of ligands. These events specify diverse downstream responses that are differentially regulated by controlling access and activation of the ligands, their receptors and downstream substrates in different cell types. The purpose of this review is to describe the biochemical properties of these receptors, focusing specifically on the mechanisms regulating receptor/ligand interactions and activation in mammalian cells.  相似文献   

2.
3.
A specific growth hormone (GH) binding protein of Mr approx. 100000 has been demonstrated in the cytosolic fraction (200000g supernatant) of pregnant-rabbit liver by gel filtration techniques. This binding species was detectable by a standard charcoal separation procedure but not by the widely used poly(ethylene glycol) precipitation method. The GH binding protein had similar binding characteristics to those of classical membrane-bound GH receptors. The kinetics of association and dissociation, binding affinity (2.56 X 10(9)1/mol) and hormonal specificity have been established. There appears to be equal or greater amounts of GH binding protein in the cytosol than in the membrane fraction. The presence of the GH binding protein in rabbit liver cytosol was substantiated by its selective purification on a GH-Affigel 15 affinity column. This technique has resulted in a 200-300-fold purification with no substantial change in binding affinity. The ability of a concanavalin A-Sepharose affinity column to also bind the cytosolic binding protein indicates that, like the membrane-bound GH receptor, it is a glycoprotein. This is the first report of a cytosolic binding protein for GH and raises important questions regarding its potential physiological role in the mechanism of action of GH.  相似文献   

4.
5.
Thyroid hormone receptors, isolated from rat liver nuclei, bind to purified DNA. By contrast, free triiodothyronine and plasma proteins which bind thyroid hormone do not associate with DNA. Thus, the nuclear localization of thyroid hormone in target tissues may be explained by the association of its receptors with DNA.  相似文献   

6.
We examined in detail the DNA interaction of the nuclear receptors NGFI-B and steroidogenic factor 1 (SF-1) by using a series of gain-of-function domain swaps. NGFI-B bound with high affinity as a monomer to a nearly linear DNA molecule. The prototypic zinc modules interacted with a half-site of the estrogen receptor class, and a distinct protein motif carboxy terminal to the zinc modules (the A box) interacted with two A/T base pairs 5' to the half-site. SF-1 bound in the same manner as NGFI-B, with an overlapping but distinct sequence requirement 5' to the half-site. The key features that distinguished the NGFI-B and SF-1 interactions were an amino group in the minor groove of the SF-1 binding sequence and an asparagine in the SF-1 A box. These results define a common mechanism of NGFI-B and SF-1 DNA binding, which may underlie a competitive mechanism of gene regulation in steroidogenic tissues that express these proteins. This monomer-DNA interaction represents a third paradigm of DNA binding by nuclear receptors in addition to direct and inverted dimerization.  相似文献   

7.
Lymphokine and hematopoietic growth factors control the differentiation and proliferation of diverse cell types by binding to specific cell-surface receptors. Strikingly, the recently elucidated sequences of the interleukin-6 and erythropoietin receptors, and the interleukin-2 receptor beta-chain (p75), display a significant evolutionary resemblance of their extracellular domains. This homology extends to the binding domains of the growth hormone/prolactin class of receptors. Alternatively, little similarity exists between the cytoplasmic extensions of these diverse receptors. I discuss the evolutionary and functional implications of this broad, mosaic receptor relationship, with particular reference to possible structural resemblances between the cognate growth factors.  相似文献   

8.
The relationship between the structure of human growth hormone (hGH) and the hormone-receptor interaction was investigated by studying the effects of specific monoclonal antibodies (MAbs) to hGH on the binding of [125I]hGH to rabbit liver and mouse liver microsomes. Receptor binding assays were carried out using a constant dose (1 ng) of [125I]hGH and varying concentrations of MAbs. The assay was carried out in the presence of either excess ovine prolactin for the measurement of somatogenic (SOM) binding sites, or excess bovine growth hormone for the determination of lactogenic (LAC) binding sites. Anti-hGH MAbs were found to have a whole spectrum of effects on hGH binding, including inhibitory, non-effect and enhancing activities. Enhancement of the binding of [125I]hGH to both SOM and LAC receptors was observed in liver membranes of rabbit or mouse. The observed amplified signal of [125I]hGH binding to various receptors in the presence of MAb no. 8 may be due to conformational changes which occur following MAb binding to hGH. On the other hand, most of the other MAbs caused inhibition of [125I]hGH binding. A negative correlation exists between the cross-reaction of various MAbs with the N-terminus truncated forms of hGH (Met14-hGH or Met8Leu-hGH) and their respective KD/IC50 values enabled the evaluation of the crucial role of the N-terminus region in hGH binding to both LAC and SOM receptors. MAb nos 1 and 19, which are directed towards acid residues 95-134 and the C-terminus, inhibited SOM binding more potently than LAC binding. Thus, it seems that these mid-molecule and C-terminus regions are also important in hGH binding, and that they play a role in the partial overlap of SOM and LAC binding.  相似文献   

9.
The EF-hand calcium-binding protein from Saccharopolyspora erythraea has been shown, using 113Cd NMR, to possess three Cd(2+)-ion binding sites. This indicates that of the four EF-hand motifs in the molecule, one (probably site 2) is unable to bind Cd(2+)-ions. Data from the titration of the protein with Ca2+, in the presence of Quin2, were fitted to a curve calculated on the assumption that the protein contains three high affinity Ca2+ binding sites, two of which (pK1 = 8.0, pK2 = 9.0) are strongly cooperative, and one single site (pK3 = 7.5). Preliminary 1H NMR experiments indicate marked structural changes upon Ca(2+)-binding.  相似文献   

10.
The remarkable structural unity among the different members of the nuclear hormone receptor superfamily stands in striking contrast to the diversity of the chemical structures of their ligands. Of the three currently known classes of ligands, steroids, retinoids, and thyroid hormones, the first two share a common biosynthetic pathway. Both are terpenes, which are derived by assembly of isoprene units. This biosynthetic link suggests that the receptors for three other classes of terpenoid hormones, the insect juvenile hormones and the plant hormones gibberellic acid and abscissic acid, may also be members of the superfamily. A number of putative nuclear hormone receptors that do not have known ligands have been isolated. At least some of the ligands for these orphan members of the receptor superfamily may be found on the list of biologically active terpenes. Finally, the terpenoid connection raises interesting issues for the evolution of the receptor superfamily.  相似文献   

11.
12.
The binding of thyroid hormone receptors to DNA   总被引:1,自引:0,他引:1  
The behaviour of tri-iodothyronine (T3)- and thyroxine (T4)-receptor complexes when bound to native DNA-cellulose is reported. Equal and large proportions of both T3- and T4-receptor complexes bind to DNA but although T3-receptor complexes are 99% recoverable by 0.5 M NaCl buffer elution, only 60-70% of the T4-receptor complexes are regained. The balance appears as free T4, apparently released as the T4-receptor complexes bind to the DNA whilst the corresponding receptor remains bound. This effect is independent of T4-receptor complex/DNA ratio up to ca. 4 fmol/micrograms DNA, of the presence of an equal amount of unoccupied receptor and of an eight-fold concentration range of both T4-receptor complex and DNA at a fixed ratio, in the cellulose matrix. Pre-formed receptor-DNA material, likewise, only accepts some 60% of the expected quantity of T4 whereas the capacity for T3 appears to be similar to that of free receptors.  相似文献   

13.
Growth hormone receptor (GHR)-mediated activity of ruminant placental lactogens (PLs) and ovine (o) GH was compared, using cells transfected with full size human (h), rabbit (rb), and oGHRs. All three PLs acted as agonists in heterologous bioassays, whereas in homologous bioassays in cells transfected with oGHRs they antagonized the oGH activity. Despite these differences, oGH and PLs bound with similar affinity to the oGHR extracellular domain (oGHR-ECD), indicating that the binding occurs through hormone site I. Gel filtration of complexes between oPL and oGHR-ECD showed a 1:1 stoichiometry, confirming this conclusion. The oPL T185D and bPL T188D, which exhibited weak biological activity mediated through GHRs, behaved as site I antagonists, whereas oPL G130R and bPL G133R formed a 1:1 complex with GHR-ECDs and bound to h/rb/oGHR-ECDs with affinity similar to that of wild-type oPL. They had no agonistic activity in all models transfected with h/rb and oGHRs, but were antagonistic to all of them. In conclusion, ruminant PLs antagonize the activity of oGH in homologous systems, because they cannot homodimerize oGHRs, whereas in heterologous systems they act as agonists. The structural analysis hints that minor differences in the sequence of the GHR-ECDs may account for this difference. Since the initial step in the activity transduced through cytokine/hemapoietic receptors family is receptor homodimerization or heterodimerization, we suggest that the question of homologous versus heterologous interactions should be reexamined.  相似文献   

14.
Despite a growing appreciation of functional analogies between visual and hormonal signalling systems in the early 1980s, the discovery of the close structural relationship between rhodopsin and the beta2-adrenergic receptor, and of the existence of a larger 'superfamily' of such receptors, came as a total surprise. Here I provide a personal perspective on events leading up to and flowing from this exciting discovery that opened up a vast field of research.  相似文献   

15.
The diversity of biological function, ligand binding, conformational changes and structural adaptability of the periplasmic binding protein superfamily have been exploited to engineer biosensors, allosteric control elements, biologically active receptors and enzymes using a combination of techniques, including computational design. Extensively redesigned periplasmic binding proteins have been re-introduced into bacteria to function in synthetic signal transduction pathways that respond to extracellular ligands and as biologically active enzymes.  相似文献   

16.
17.
Protein-free media are gaining more and more interest in mammalian cell culture technology. However, the range of commercially available protein-free media is wide, but lack of serum causes the lack of various substances (Keenan et al. in Cytotechnology, 50(1–3):49–56, 2006) which must be substituted case by case. Details on the composition of protein-free media are often unavailable or inaccessible in some cases, and as a consequence, there is an obvious need for testing procedures in order to evaluate the various commercialised products for their performance. Additionally, negative effects of tryptic meat digests on product quality have been reported in the literature (Gu et al. in Biotech Bioeng 56 (4):353–341, 1997). In the present studies of comparing various protein-free media for their suitability in propagation of recombinant CHO cells expressing human growth hormone (hGH), we have found somatotropin to be an excellent candidate for detection of protease activity. Somatotropin contains protease recognition sites for numerous proteases located around amino-acid residues 134–150. In this study, we demonstrate highly specific cleavage of recombinant hGH during batch cultivation. Analysis of the digested molecule was then performed by convergent methods like SDS-PAGE, HPLC and mass spectroscopy, and the results indicate hGH to be an ideal candidate for media and component screening in mammalian cell culture.  相似文献   

18.
19.
20.
A generalized model is presented of agonist binding to ligand-gated ion channels (LGICs). Broad similarity in the structure of agonists suggests that the binding sites of LGICs may have evolved from a protobinding site. Aligned sequence data identified as a candidate for such a site a highly conserved 15 residue stretch of primary structure in the N-terminal extracellular region of all known LGIC subunits. We modeled this subregion, termed the cys-loop, as a rigid, amphiphilic beta-hairpin and propose that it may form a major determinant of a conserved structural binding cleft. In the model of the binding complex (1) an invariant aspartate residue at position 11 of the cys-loop is the anionic site interacting with the positively charged amine group of agonists, (2) a local dipole within the pi-electron system of agonists is favorably oriented in the electrostatic field of the invariant aspartate, (3) the epsilon ring-proton of a conserved aromatic residue at the turn of the cys-loop interacts orthogonally with the agonist pi-electron density at its electronegative center, and (4) selective recognition is partly a result of the type of amino acid residue at position 6 of the cys-loop. Additionally, formation of a hydrogen bond between the electronegative atom of the pi-electron system of agonist and a complementary group in the receptor may be important in the high-affinity binding of agonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号