首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
2.
3.
The bacterial heat shock response is characterized by the elevated expression of a number of chaperone complexes and proteases, including the DnaK-GrpE-DnaJ and the GroELS chaperone complexes. In order to investigate the importance of the DnaK chaperone complex for growth and heat shock response regulation in Lactococcus lactis, we have constructed two dnaK mutants with C-terminal deletions in dnaK. The minor deletion of 65 amino acids in the dnaKΔ2 mutant resulted in a slight temperature-sensitive phenotype. BK6, containing the larger deletion of 174 amino acids (dnaKΔ1), removing the major part of the inferred substrate binding site of the DnaK protein, exhibited a pronounced temperature-sensitive phenotype and showed altered regulation of the heat shock response. The expression of the heat shock proteins was increased at the normal growth temperature, measured as both protein synthesis rates and mRNA levels, indicating that DnaK could be involved in the regulation of the heat shock response in L. lactis. For Bacillus subtilis, it has been found (A. Mogk, G. Homuth, C. Scholz, L. Kim, F. X. Schmid, and W. Schumann, EMBO J. 16:4579–4590, 1997) that the activity of the heat shock repressor HrcA is dependent on the chaperone function of the GroELS complex and that a dnaK insertion mutant has no effect on the expression of the heat shock proteins. The present data from L. lactis suggest that the DnaK protein could be involved in the maturation of the homologous HrcA protein in this bacterium.  相似文献   

4.
The rhodophyte Gracilariopsis lemaneiformis is one of the most economically important marine algae in China. In order to extend the cultivation period and enlarge the cultivation area, mutagenic breeding was used in this study for screening strains with thermal tolerance. The tetraspores were mutated by UV irradiation, and then thermotolerant strains were screened by exposing developing tetraspores to a range of higher temperatures. Two heat-tolerant mutants, MT-17 and MT-18, were obtained and physiologically compared with cultivar 981 and the wild strains. The results demonstrated that the two mutants grew at significantly higher rates than wild strains and similar to that of cultivar 981 both in the laboratory and the sea. The malondialdehyde contents in MT-17 and MT-18 were all significantly lower than the wild-type after 3-day heat stress, and that in MT-18 was lower than cultivar 981. The superoxide dismutase activities of MT-17 and MT-18 were significantly higher than the wild-type, and those of MT-18 and cultivar 981 were at the same level all through the treatment. The heat shock protein 70 gene expressions of two mutants was higher than the wild-type and that of MT-18 remained at the same level as that of cultivar 981 after 4 h heat shock. All these indicate that the two mutants were more tolerant to high temperature than the wild-type. RSAP (restriction site amplified polymorphism) analysis indicated the genetic background of the two mutants may be changed. The mutagenesis and selection process may help to develop heat-tolerant G. lemaneiformis cultivars in the future.  相似文献   

5.
6.
A random library of Escherichia coli MG1655 genomic fragments fused to a promoterless green fluorescent protein (GFP) gene was constructed and screened by differential fluorescence induction for promoters that are induced after exposure to a sublethal high hydrostatic pressure stress. This screening yielded three promoters of genes belonging to the heat shock regulon (dnaK, lon, clpPX), suggesting a role for heat shock proteins in protection against, and/or repair of, damage caused by high pressure. Several further observations provide additional support for this hypothesis: (i) the expression of rpoH, encoding the heat shock-specific sigma factor σ32, was also induced by high pressure; (ii) heat shock rendered E. coli significantly more resistant to subsequent high-pressure inactivation, and this heat shock-induced pressure resistance followed the same time course as the induction of heat shock genes; (iii) basal expression levels of GFP from heat shock promoters, and expression of several heat shock proteins as determined by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins extracted from pulse-labeled cells, was increased in three previously isolated pressure-resistant mutants of E. coli compared to wild-type levels.  相似文献   

7.
We have constructed an Escherichia coli strain lacking the small heat shock proteins IbpA and IbpB and compared its growth and viability at high temperatures to those of isogenic cells containing null mutations in the clpA, clpB, or htpG gene. All mutants exhibited growth defects at 46°C, but not at lower temperatures. However, the clpA, htpG, and ibp null mutations did not reduce cell viability at 50°C. When cultures were allowed to recover from transient exposure to 50°C, all mutations except Δibp led to suboptimal growth as the recovery temperature was raised. Deletion of the heat shock genes clpB and htpG resulted in growth defects at 42°C when combined with the dnaK756 or groES30 alleles, while the Δibp mutation had a detrimental effect only on the growth of dnaK756 mutants. Neither the overexpression of these heat shock proteins nor that of ClpA could restore the growth of dnaK756 or groES30 cells at high temperatures. Whereas increased levels of host protein aggregation were observed in dnaK756 and groES30 mutants at 46°C compared to wild-type cells, none of the null mutations had a similar effect. These results show that the highly conserved E. coli small heat shock proteins are dispensable and that their deletion results in only modest effects on growth and viability at high temperatures. Our data also suggest that ClpB, HtpG, and IbpA and -B cooperate with the major E. coli chaperone systems in vivo.  相似文献   

8.
Myxococcus xanthus is a gram-negative soil bacterium which exhibits a complex life cycle and social behavior. In this study, two developmental mutants of M. xanthus were isolated through Tn5 transposon mutagenesis. The mutants were found to be defective in cellular aggregation as well as in sporulation. Further phenotypic characterization indicated that the mutants were defective in social motility but normal in directed cell movements. Both mutations were cloned by a transposon-tagging method. Sequence analysis indicated that both insertions occurred in the same gene, which encodes a homolog of DnaK. Unlike the dnaK genes in other bacteria, this M. xanthus homolog appears not to be regulated by temperature or heat shock and is constitutively expressed during vegetative growth and under starvation. The defects of the mutants indicate that this DnaK homolog is important for the social motility and development of M. xanthus.  相似文献   

9.
10.
Our previous study has shown that MAIGO2 (MAG2) is a subunit of the Golgi/endoplasmic reticulum (ER) multi-subunit tethering complex, and is required for tolerance to general osmotic stresses and abscisic acid and response to ER stress during seed germination and early growth. MAG2 is crucial for multi-environmental stress responses. To verify this hypothesis, the response of mag2 mutants to gibberellic acid (GA), sugar, and heat shock was described in this study. The mag2 mutants showed defects during seed germination and early seedling development under treatments with the GA biosynthesis inhibitor paclobutrazol, sucrose, and glucose. MAG2 is also essential for basal thermotolerance. However, the MAG2 homolog (MAG2L) is not necessary for these responses. MAG2 is an important regulator in the response to multi-environmental stimuli, supposedly through its roles in Golgi/ER retrograde trafficking and ER stress response.  相似文献   

11.

Background

The multiple endocrine neoplasia type I gene functions as a tumor suppressor gene in humans and mouse models. In Drosophila melanogaster, mutants of the menin gene (Mnn1) are hypersensitive to mutagens or gamma irradiation and have profound defects in the response to several stresses including heat shock, hypoxia, hyperosmolarity and oxidative stress. However, it is not known if the function of menin in the stress response contributes to genome stability. The objective of this study was to examine the role of menin in the control of the stress response and genome stability.

Methodology/Principal Findings

Using a test of loss-of-heterozygosity, we show that Drosophila strains lacking a functional Mnn1 gene or expressing a Mnn1 dsRNA display increased genome instability in response to non-lethal heat shock or hypoxia treatments. This is also true for strains lacking all Hsp70 genes, implying that a precise control of the stress response is required for genome stability. While menin is required for Hsp70 expression, the results of epistatic studies indicate that the increase in genome instability observed in Mnn1 lack-of-function mutants cannot be accounted for by mis-expression of Hsp70. Therefore, menin may promote genome stability by controlling the expression of other stress-responsive genes. In agreement with this notion, gene profiling reveals that Mnn1 is required for sustained expression of all heat shock protein genes but is dispensable for early induction of the heat shock response.

Conclusions/Significance

Mutants of the Mnn1 gene are hypersensitive to several stresses and display increased genome instability when subjected to conditions, such as heat shock, generally regarded as non-genotoxic. In this report, we describe a role for menin as a global regulator of heat shock gene expression and critical factor in the maintenance of genome integrity. Therefore, menin links the stress response to the control of genome stability in Drosophila melanogaster.  相似文献   

12.
13.
Environmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90. However, the biological role of STI-1 in vivo is poorly understood in metazoans. Here, we report the characterization of the Caenorhabditis elegans homolog of Sti1/Hop, which is approximately 56% identical with human STI-1. C. elegans STI-1 (CeSTI-1) is expressed in the pharynx, intestine, nervous system, and muscle from larvae to adults. Analysis of proteins immunoprecipitated with anti-STI-1 antibody by mass spectrometry revealed that CeSTI-1 can bind with both Hsp70 and Hsp90 homologs like its mammalian counterpart. sti-1 expression is elevated by heat stress, and an sti-1(jh125) null mutant shows decreased fertility under heat stress conditions. These mutants also show abnormally high lethality in extreme heat and may be functioning with DAF-16 in thermotolerance. In addition, sti-1(jh125) mutants have a shortened life span. Our results confirm that CeSTI-1 is a cochaperone protein that may maintain homeostatic functions during episodes of stress and can regulate longevity in nematodes.  相似文献   

14.
In order to explore the function of heat shock proteins during thermal stress in rice weevil, Sitophilus oryzae, four heat shock protein genes were cloned and characterized. These heat shock protein genes (hsps) were named as Sohsp70–1, Sohsp70–2, Sohsc70, and Sohsp90, respectively. These hsps showed high sequence conservation with the maximum identity with hsps of Tribolium castaneum and other insects. All the four genes showed the highest mRNA expression in pupal stage and the lowest levels in larval stage. The induced expression of the two Sohsp70s (Sohsp70–1 and Sohsp70–2) were reached to the highest levels (15.59-fold and 12.66-fold) after 2?h of incubation at 37?°C, respectively. Expression of Sohsp90 not only was significantly elevated by heat stress but also by cold stress. Whereas, expression level of Sohsc70 was not induced either by heat or cold stress. Furthermore, for rapid heat hardening, the expression levels of Sohsp70–1, Sohsp70–2, Sohsc70 and Sohsp90 were observed as 2.57, 2.53, 3.33 and 2.33-fold higher than control, respectively; for rapid cold hardening, the expression levels of Sohsp70–1, Sohsp70–2, Sohsc70 and Sohsp90 were reported as 2.27, 3.02, 3.37 and 2.23-fold higher than control, respectively. Hence, our results revealed that the four Sohsps were associated with temperature adaption under rapid heat or cold hardening.  相似文献   

15.
16.
The activation of genetic constructs including the Drosophila hsp70 promoter with four and eight HSE sequences in the regulatory region has been described in human cells. The promoter was shown to be induced at lower temperatures compared to the human hsp70 promoter. The promoter activity increased after a 60-min heat shock already at 38°C in human cells. The promoter activation was observed 24 h after heat shock for the constructs with eight HSEs, while those with four HSEs required 48 h. After transplantation of in vitro heat-shocked transfected cells, the promoter activity could be maintained for 3 days with a gradual decline. The promoter activation was confirmed in vivo without preliminary heat shock in mouse ischemic brain foci. Controlled expression of the Gdnf gene under a Drosophila hsp70 promoter was demonstrated. This promoter with four and eight HSE sequences in the regulatory region can be proposed as a regulated promoter in genetic therapeutic systems.  相似文献   

17.
18.
Induction ofHSP70 heat shock genes by light has been demonstrated inChlamydomonas. Our aim was to establish whether this induction by light is mediated by the heat stress sensing pathway or by an independent signal chain. Inhibitors of cytoplasmic protein synthesis revealed an initial difference. Cycloheximide and other inhibitors of protein synthesis preventedHSP70A induction upon illumination but not during heat stress. Analysis ofHSP70A induction in cells that had differentiated into gametes revealed a second difference. While heat shock resulted in elevatedHSP70A mRNA levels, light was no longer able to serve as an inducer in gametes. To identify the regulatory sequences that mediate the response of theHSP70A gene to either heat stress or light we introduced a series of progressive 5′ truncations into its promoter sequence. Analyses of the levels of mRNA transcribed from these deletion constructs showed that in most of them the responses to heat shock and light were similar, suggesting that light induction is mediated by a light-activated heat shock factor. However, we show that theHSP70A promoter also containscis-acting sequences involved in light induction that do not participate in induction by heat stress. Together, these results provide evidence for a regulation ofHSP70A gene expression by light through a heat shock-independent signal pathway.  相似文献   

19.
20.
A symbiotic mutant of Rhizobium meliloti Rmd438 (sxf C:: Tn5) which was phage resistant against RMP64, failed to utilize galactose as carbon source as reported earlier (21). The Bg/ll gene bank of wild type R. meliloti was mobilized into Rmd438 and a clone pSP676 which complemented for phage sensitivity was isolated. In order to characterize this clone, a Bg/ll and EcoRI map was constructed. The insert of 13.2 kb had three Bg/ll fragments of 4.0, 3.6 and 5.6 kb in this order. All three fragments were subcloned on the vector pRK290 and mobilized into Sxf-mutants. The complementation for phage sensitivity, symbiosis and galactose utilization properties are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号