首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
One important limitation for routine production of somatic hybrids in banana (Musa spp.) is the difficulty in protoplast regeneration. To facilitate protoplast regeneration in banana, the crucial step of microcallus production was optimised for the following parameters: nurse culture medium, duration of microcalli on nurse culture, differing nurse cells, and filter composition. A comparative study between two nurse cell media, Ma2 and PCM, significantly affected the number of microcalli produced, which was 90 × 103 per Petri dish on Ma2 with 0.5 μM zeatin and 9.0 μM 2,4 D, and 30 × 103 per Petri dish on PCM. Moreover, continuous production of microcalli was achieved on Ma2 and the frequency of embryogenic cell aggregates was higher among microcalli on Ma2-medium. However, no cell division was observed in protoplasts cultured on Ma2 in which nurse cells were maintained for 2 weeks suggesting a requirement of effective presence of nurse cells for cell division of banana protoplasts. Use of a filter in conjugation with nurse cells resulted in greater than 7-fold increase in the number of microcalli. Flow cytometry analysis of 124 protoplast-derived plants showed the presence of hexaploid plants (mother plant is triploid) at the frequency of 4%. Together, these data are indicative of the complex factors involved in the regulation of plant cell division and growth. Each individual aspect must be optimised for efficient protocol development.  相似文献   

2.
Summary Novel nurse culture methods have been developed for plant regeneration from protoplasts of rice (Oryza sativa). The nurse culture methods use the agarose-bead type culture in combination with actively growing nurse cells that are either in the liquid part of the culture or inside a culture plate insert placed in the centre of the dish. Protoplasts isolated from either primary seed calluses or suspension cultures of various callus origins, divided and formed colonies with a frequency of up to 10% depending on the protoplast source and the genotype. The presence of nurse cells was absolutely required for the induction of protoplast division. Plants were regenerated from protoplast-derived calluses of five tested cultivars with a frequency of 17%–50%. Close examination of the plant regeneration process suggested that plants are regenerated through somatic embryogenesis from protoplast-derived calluses. Over 300 protoplast-derived plants were transferred to either pots or the field and are being examined for karyotypic stability and various plant phenotypes.  相似文献   

3.
Summary Protoplasts were isolated from palisade tissue of tobacco leaves by treatment with pectinase and cellulase under aseptic conditions, and were cultured in a synthetic liquid medium. Calcofluor, a fluorescent brightener, was found to be an excellent stain for plant cell walls and was used to demonstrate regeneration of cell walls in these protoplasts. The cultured protoplasts regenerated cell walls by the 3rd day of culture, giving rise to spherical cells. The majority of the protoplasts regenerating cell walls underwent mitosis and cell division. The cycle of mitosis and cell division was repeated 2–3 times during 2 weeks of culture. Some of the nutritional conditions affecting division in the cultured protoplasts were studied.  相似文献   

4.
《Plant science》1995,106(1):115-120
Barley (Hordeum vulgare L.) protoplasts were isolated from the immature embryo-derived primary calluses. These protoplasts were cultured with nurse cells, and they then divided to form colonies. After transfer of the colonies to regeneration medium, either green or albino shoots were regenerated from these colonies. A high agarose concentration (2.4% w/v) in the protoplast culture medium promoted protoplast division. The plantlets that developed strong root systems were transferred to the soil. These plants flowered and have set seeds.  相似文献   

5.
Fellner  Martin 《Annals of botany》1995,76(3):219-223
A major problem of in vitro plant culture techniques is chroniccontamination by microorganisms. Calli derived from basal partsof leaves of Allium longicuspis Regel (Alliaceae) and culturedin a medium without antibiotic contain most probably latentcontaminating microorganisms. These calli were used as the sourcematerial for isolation and culture of protoplasts. Isolatedprotoplasts were cultured in the presence of the antibioticciprofloxacin, and the protoplast viability, cell wall regenerationand cell division were studied as a function of the antibioticconcentration. Whatever the antibiotic concentration, protoplast-derivedcells kept significantly higher viability for at least 3 weekscompared with those cultured without antibiotic. As to cellwall regeneration after 2 d, it was not affected by the antibioticexcept at the highest concentration tested (100 mg l-1). Sporadicfirst cell division was observed after 2-6 d of culture in thepresence of ciprofloxacin while, in its absence, cell divisionwas never apparent before 10 d of culture.Copyright 1995, 1999Academic Press Allium, bacteria, cell division, cell wall regeneration, ciprofloxacin, contamination, garlic, mycoplasma, protoplast culture, viability  相似文献   

6.
Factors affecting the division of cells derived from leaf and cotyledon protoplasts from Brassica oleracea L. var. italica (Green Comet hybrid broccoli) were examined to optimize conditions for plant regeneration and to determine whether there was a genetic basis for improved regeneration from protoplasts derived from plants previously regenerated from tissue cultures [15]. When leaf protoplasts from different plants grown from hybrid seed were isolated and cultured simultaneously, division efficiencies of 1–95% were obtained. Cells from some plants showed high division efficiencies in consecutive experiments while cells from other plants had consistently low division rates. More plants from hybrid seed gave high division efficiencies when cotyledon protoplasts were used. However, cotyledon or leaf protoplasts from selfed progeny of regenerated plants produced more vigorous calli and more shoots than protoplasts from hybrid seed. These results suggest that there may be a genetic component to the increased totipotency of Brassica oleracea protoplasts.  相似文献   

7.
A protocol for rapid and efficient plant regeneration from protoplasts of red cabbage was developed by a novel nurse culture method. When the protoplasts of red cabbage were cultured in modified MS medium containing various combinations of BA, NAA and 2,4-D, they did not continue dividing due to browning. However, they successfully divided and formed micro-calli at a high efficiency when they were mixed and co-cultured with those of tuber mustard at a 1:1 ratio. The presence of tuber mustard protoplasts used as nurse cells was essential for sustainable divisions and colony formation of red cabbage protoplasts. Red cabbage-like plantlets were regenerated from these protoplast-derived calli at a frequency ranging from 33 to 56% in all the experiments where three cultivars of red cabbage were tested. Over 120 protoplast-derived cabbage plants were transferred to the greenhouse, and they showed no noticeable abnormalities in morphological features. Chromosome observation revealed that all of the plants examined had the normal chromosome number of cabbage (2n = 18), suggesting that no spontaneous fusion between the two species had occurred during protoplast culture.  相似文献   

8.
水稻原生质体培养及植株再生的研究   总被引:18,自引:0,他引:18  
由粳稻77-170品系及籼稻品种IR-50的细胞悬浮培养物游离的原生质体,用琼脂糖包埋于RY-2培养基中,发生了持续分裂。前者植板率达2.5%以上,二者最后都再生出植株。对游离和培养方法做了如下改进:1)采用两步法,即先用果胶酶,再用果胶酶和纤维素酶的混合酶进行游离,可避免原生质体发生融合并获得高质量的原生质体;2)悬浮细胞培养基中加入ABA有利于原生质体的存活和分裂;3)琼脂糖包埋培养可大大提高植板率;4)用较高渗透压的培养基培养原生质体再生的细胞团及愈伤组织,可提高植株再生频率。由于这两个品种(系)的培养物都已继代一年半之久,再生植株均为白化苗。这是迄今第一个由籼稻原生质体再生植株的报道。  相似文献   

9.
Tang  K.  Sun  X.  An  D.  Power  J.B.  Cocking  E.C.  Davey  M.R. 《Plant Cell, Tissue and Organ Culture》2000,60(1):79-82
A reproducible plant regeneration system has been developed for protoplasts from embryogenic cell suspension cultures of the commercial Asian long-grain javanica rice, Oryza sativa cv. Azucena. Protoplasts were isolated routinely from cell suspensions with yields of 5.5–12.0 × 106 g-1 fresh weight. A membrane filter nurse-culture method was adopted and was essential to support sustained mitotic division of protoplast-derived cells, leading to cell colony formation. The protoplast plating efficiency was higher when suspension cells of Lolium multiflorum, rather than those of the japonica rice O. sativa L. cv. Taipei 309, were employed as nurse cells. A two-step shoot regeneration procedure, in which protoplast-derived calli were cultured initially on medium semi-solidified with 1% (w/v) agarose followed by culture on medium containing 0.4% (w/v) agarose, induced plant regeneration from protoplast-derived calli. Fifteen percent of protoplast-derived tissues regenerated shoots; tissues not subjected to this treatment failed to develop shoots.  相似文献   

10.
An efficient procedure for plantlet regeneration from chicory mesophyll protoplasts has been developed in order to perform protoplast fusion experiments. Protoplasts were isolated from a genotype of Italian red chicory (CH 363) and purified by centrifugation in a solution containing 13% (w/v) sucrose to collect uniform protoplasts in size. After 2 days culture at a density of 2×104 protoplasts ml−1 of liquid medium, protoplasts were cultured following three different procedures: in liquid medium, stratified in semi-solid medium, and embedded in Ca-alginate droplets. Four different media were used and culture procedures were evaluated recording the protoplast viability, protoplast division frequency and plating efficiency for each experiment. The embedding of protoplasts in Ca-alginate droplets enhanced both division frequency and plating efficiency for chicory mesophyll cells. Furthermore, this procedure shortened the cycle of plant regeneration from protoplasts, which could be completed in eight weeks. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

11.
《Plant science》1988,58(2):203-210
Protoplasts of two species, lucerne and tobacco, were cultured in semi-solid droplets of calcium alginate as a means of nurse culturing very low numbers of protoplasts. It was shown that increasing autoclave times decreased the gelling capacity of the alginic acid. A convenient measure of viscosity is described to allow appropriate adjustment of the alginate solution. Tobacco protoplasts are shown to be more sensitive to higher alginate concentrations than lucerne, however beads with a final alginate concentration of approximately 1.5% were suitable for both species. Agitation of the beads in liquid medium was needed for optimum division frequencies. The volume of liquid medium affected the culture response. Interestingly, the local cell density (bead cell density) was shown to be more influential than the total cell density. Nurse beads with higher densities of protoplasts of the same species were visually marked with activated charcoal. Experiments were performed to determine whether nursing was effective with calcium alginate encapsulation and to what extent the cell densities could be lowered. When there were no nurse beads, divisions effectively ceased at 104 per ml with lucerne and 103 per ml with tobacco. In the presence of nurse beads, protoplasts in the test beads grew at high frequency down to the lowest densities tested, namely 50 per ml for tobacco. With these methods transformed lucerne protoplasts from electroporation experiments and somatic hybrids have been recovered and plants regenerated with much greater efficiency that was hitherto possible.  相似文献   

12.
Many applications of cereal protoplast culture systems are still limited by the difficulties of regeneration from suspension cells which are the usual protoplast source. The objective of the present study therefore was to investigate the conditions for the development of a culture system for protoplasts capable of plant regeneration isolated directly from immmature scutella of barley. The procedure developed involves a two-stage pre-culture of scutellar tissue, followed by vacuum infiltration with cell wall degrading enzymes and the culture of alginate-embedded protoplasts. The pre-culture of the scutella and the co-cultivation of protoplasts with nurse cells were the most important factors for the success of the culture system, but several other parameters affecting protoplast yield, viability and sustained division were identified, including the developmental stage of the embryo, the use of cold conditioning periods during pre-culture, the composition of the pre-culture and protoplast culture medium, and the embedding matrix. Protoplasts isolated from scutellar tissues of barley cvs Dissa, Clipper, Derkado and Puffin were capable of sustained division in culture. Macroscopic protoplast-derived tissues were obtained in all cultivars, except ev. Puffin, and fertile plants were regenerated from cvs Dissa and Clipper 3–4 months after protoplast isolation. The procedure described provides a novel approach for the isolation of totipotent protoplasts in barley which avoids the need for suspension cultures.  相似文献   

13.
Electric pulses applied to Colt cherry protoplasts enhanced the long-term growth and plant regeneration of protoplast-derived tissues. Protoplasts isolated from long-term cultured tissues derived from electroporated protoplasts retained the ability to enter division in culture earlier and with a higher frequency of plant regeneration than untreated cell suspension protoplasts.Abbreviations BAP 6-benzylaminopurine - GA3 gibberellic acid - IBA 4-indole-3yl-butyric acid - MES 2-N-morpholinoethane sulphonic acid - MS Murashige and Skoog (1962) - NAA -naphthaleneacetic acid - PE plating efficiency - Z zeatin  相似文献   

14.
We have isolated a cytokinin up-regulated cDNA clone, H13, froman early stage of cultured tobacco mesophyll protoplasts bya differential display method. The expression of this gene wasspecifically induced by natural and synthetic cytokinins includingN-(2-chloro-4-pyridyl)-N'-phenylurea (4PU30), a diphenylurea-typecytokinin, although the simultaneous presence of auxin was alsorequired. It seems that the preceding treatment of the tobaccomesophyll protoplasts by auxin is necessary for the gene torespond to cytokinin. The addition of a cytokinin antagonist,compound 182, which suppressed the induction of cell divisionin tobacco mesophyll protoplasts, completely abolished the expressionof this gene. Though the predicted gene product of H13 did notsuggest us any sequences of defined functions, two domains ofthe predicted sequence had significant homology to several reportedsequences in the data base. The gene product of H13 is proposedto have a role in regenerating cell wall in cultured protoplasts,since a cDNA clone E6, from cotton fiber cells, which has themost closely related structure to H13, has been isolated fromcells which showed active cellulose synthesis. This suppositionis supported by the evidence that in the absence of cytokinin,cell wall regeneration was significantly suppressed, resultingin failure of the induction of cell division. Thus, the geneproduct of H13 is supposed to have a role in regenerating cellwalls and facilitating the progression of the cell cycle, resultingin the sustained cell division of tobacco mesophyll protoplasts. 1These authors are equally contributed to this work.  相似文献   

15.
Protoplasts isolated from cotyledons of a number of cultivars of Brassica napus, B. campestris and B. oleracea were cultured in different media to study the characteristics of cell wall regeneration and cell division at early stages of culture. Time course analysis using Calcolfluor White staining indicated that cell wall regeneration began in some protoplasts 2–4 h following isolation in all cultivars. 30–70% of cultured cotyledon protoplasts exhibited cell wall regeneration at 24 h and about 60–90% at 72 h after the initiation of culture. Results also indicated that a low percentage (0.4–5.4%) of cultured cotyledon protoplasts entered their first cell division one day after initial culture in all twelve cultivars. The percentage of dividing cells increased linearly up to 40% from 1 to 7 day, indicating that cotyledon protoplasts of Brassica had a high capacity for cell division. Factors that influence the level of cell wall regeneration and cell division during cotyledon protoplast culture have been investigated in this study. Cotyledons from seedlings germinated in a dark/dim light regime provided a satisfactory tissue source for protoplast isolation and culture for all Brassica cultivars used. The percentages of protoplasts exhibiting cell wall regeneration and division were significantly influenced by cultivar and species examined, with protoplasts from all five cultivars of B. campestris showing much lower rates of cell wall regeneration than those of B. napus and B. oleracea over 24–120 h, and with the levels of cell division in B. napus cultivars being much higher than those in B. campestris and B. oleracea over 1–9 days. The capacity of cell wall regeneration and cell division in cotyledon protoplast culture of the Brassica species appears under strong genetic control. Cell wall regeneration in protoplast culture was not affected by the culture medium used. In contrast, the composition of the culture medium played an important role in determining the level of cell division, and the interaction between medium type and cultivars was very significant.Abbreviations BA benzylaminopurine - CPW Composition of Protoplast Washing-solution - CW Calcolfluor White - EDTA ethylenediamine-tetraacetic acid - KT Kinetin - Md MS modified Murashige and Skoog medium - 2,4-d 2,4-dichlorophenoxyacetic acid - NAA -naphthaleneacetic acid - IAA indole-3-acetic acid - PAR photosynthetically active radiation - SDS sodium dodecyl sulfate  相似文献   

16.
Summary The regeneration of lily protoplasts isolated from suspension cells of Lilium japonicum was achieved by using the nurse culture method. The protoplasts divided only under the nurse culture application. The divided protoplasts grew into colonies and developed into visible calluses on a medium containing picloram. After the calluses were transferred to a hormone-free medium, plantlets formed from them. The highest frequency of plant regeneration was obtained on a medium containing 1 μM gibberellin 4 (GA4). The cleaved amplified polymorphie sequences (CAPS) method was used to confirm that the regenerants were not plants that had escaped from nurse cells. We were able to transplant the plantlets to soil in pots without acclimatization, and they showed normal growth.  相似文献   

17.
A protocol for plant regeneration from protoplasts has been developed, and then successfully applied to different genotypes of Cyclamen persicum Mill. Protoplasts were isolated from embryogenic suspension cultures by enzymatic digestion in 2% cellulase R10 and 0.5% macerozyme R10. Yields obtained varied between 1 and 5 × 105 protoplasts per gram fresh mass depending on the genotype. Protoplasts were immobilized in alginate films, which promoted proper cell wall regeneration. The highest cell division frequencies were found in modified Kao and Michayluk (1975, Planta 126:105–110) medium containing the same types and concentrations of plant growth regulators that were applied for suspension culture (2.0 mg l−1 2,4-dichlorophenoxyacetic acid and 0.8 mg l−1 6-(γ,γ-dimethylallylamino)purine). Cell division was recorded for all 11 tested genotypes in frequencies of up to 12% and 18% after 7 and 14 days, respectively. However, cell division frequency varied strongly between different genotypes. After 4–6 weeks calluses were released from the alginate films and further cultured on hormone-containing medium for continued growth or transferred to hormone-free medium for regeneration of somatic embryos. Plant regeneration via somatic embryogenesis succeeded in 9 out of the 11 genotypes under investigation. Up to now protoplast-derived plants from four genotypes have been successfully transferred to soil.  相似文献   

18.
A simple method for the isolation of plant protoplasts   总被引:1,自引:0,他引:1  
A simple protoplast isolation protocol that was designed to recover totipotent plant protoplasts with relative ease has been described. The key elements of the protocol are, tissue digestion at slightly elevated temperatures and use of protoplast-releasing enzymes that are stable and efficient at higher temperatures. Besides enzymes, the protoplast isolation cocktail consisted of an osmoticum (mannitol or MgSO4), and a protectant (CaCl2 2H2O), all dissolved in distilled water. The protocol has ensured reproducibility, higher yields and is gentle on protoplasts as the protoplasts obtained were amenable to cell wall regeneration and cell division. Plant regeneration was demonstrated forNicotiana tabacum cv. Thompson from protoplasts isolated by this method. Wall regeneration and cell division were obtained in other species. The merits of the protocol are, simple and easy-to-handle procedure, non-requirement of preconditioning of donor plant and explants, incubation without agitation, satisfactory yields, culturability of the protoplasts isolated and applicability of the protocol to a large number of species including mucilage-containing plants.  相似文献   

19.
A simple and efficient protocol for plant regeneration from protoplasts of the potted plant Kalanchoe blossfeldiana Poelln. is reported. Mesophyll protoplasts were isolated from axenic leaves after a preculture. The enzymatic digestion of the tissue with a solution containing 0.4% Cellulase Onozuka R-10 and 0.2% Driselase yielded 6.0 × 105 protoplasts per gram fresh weight after density gradient purification. Protoplasts were cultured in the dark at an initial density of 1 × 105 protoplasts per milliliter in a liquid medium with 320 mM mannitol, 130 mM sucrose, 2.3 μM 2,4-dichlorophenoxy acetic acid (2,4-D), 5.4 μM 1-naphthaleneacetic acid (NAA) and 2.2 μM 6-benzyladenine (BA). Cell wall regeneration was observed within 4 days of culture and cell division began after 5–7 days. When cultured in a liquid medium with 5.4 μM NAA and 8.9 μM BA, protoplast-derived colonies proliferated until small visible calli, and adventitious buds appeared after transfer to photoperiod conditions. Developed shoots were rooted on a solid medium supplemented with 0.6 μM indole-3-acetic acid (IAA) and successfully established under greenhouse conditions. The process required 4 months from isolation to rooted plants and the best conditions found gave a plant regeneration efficiency of 6.4 plants per 1 × 105 protoplasts. This is the first protocol reported for plant regeneration from protoplasts for a Crassulaceae family species.  相似文献   

20.
Rice (Oryza sativa L.) plants of the indica cultivar IR54 were regenerated from protoplasts. Conditions were developed for isolating and purifying protoplasts from suspension cultures with protoplast yields ranging from 1·106 to 15·106 viable protoplasts/1 g fresh weight. Protoplast viability after purification was generally over 90%. Protoplasts were cultured in a slightly modified Kao medium in a Petri plate by placing them onto a Millipore filter positioned on top of a feeder (nurse) culture containing cells from a suspension culture of the japonica rice, Calrose 76. Plating efficiencies of protoplasts ranged from 0.5 to 3.0%; it was zero in the absence of the nurse culture. Protoplast preparations usually contained no contaminating cells, and when present, the number of cells never exceeded 0.1% of the protoplasts. After three weeks the Millipore filter with callus colonies were transferred off feeder cells and onto a Linsmaier and Skoog-type medium for an additional three weeks. Selected callus colonies that had embryo-like structures were then transferred to regeneration medium containing cytokinins, and regeneration frequencies up to 80% were obtained. Small shoots emerged and were transferred to jars for root development prior to transferring to pots of soil and growing the plants to maturity in growth chambers. Of the cytokinins evaluated, N6-benzylaminopurine was the most effective in promoting shoot formation; however, kinetin was also somewhat effective. Regeneration medium could be either an N6 or Murashige and Skoog basal medium. Of 76 plants grown to maturity, 62 were fertile, and the plant heights averaged about three-fourths the height of seed-grown plants.Two other suspension cultures of IR54, one developed from the protoplast callus of the initial IR54 line, and the other developed from callus produced by mature seeds, have yielded protoplasts capable of regenerating plants when using cells of the Calrose 76 suspension as a nurse culture. In addition, protoplasts obtained from three-week-old primary callus of immature embryos of IR54 were capable of regenerating plants when using the same culture conditions.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - pcy packed cell volume - BAP N6-benzylaminopurine - FDA fluorescein diacetate - FW fresh weight - IAA indole-3-acetic acid Media AA Muller and Grafe (1978) - CPW Frearson et al. (1973) - Kao* Kao (1977) - LS Linsmaier and Skoog (1965) - MS Murashige and Skoog (1962) - N6 Chu et al. (1975) - PCM Ludwig et al. (1985)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号