首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing soybean seeds contain phosphoenolpyruvate (PEP) carboxylase,pyruvic kinase, malate dehydrogenase, aspartate aminotransferase,alanine aminotransferase and malic enzyme activities. PEP carboxylasemay be important in competing with pyruvic kinase and directinga portion of glycolytic carbon towards oxaloacetate synthesis.The oxaloacetate can then be converted to aspartate and malate.Malic enzyme produces pyruvate and NADPH from malate, and thismay be an important additional source of reducing power forlipid biosynthesis. In the presence of high levels of PEP carboxylaseit is possible to demonstrate PEP formation by pyruvic kinase.PEP carboxylase and pyruvic kinase independently compete forPEP in a mixed system. Soybean seed extracts readily convertedradioactive PEP into alanine and aspartate when supplementedwith ADP, Mg2+, K+, HCO3– and glutamate. Under varyingconditions of pH, metal ions, PEP, enzyme concentration andtime both alanine and aspartate were always produced. Possiblythe final products of glycolysis should be considered as pyruvateand oxaloacetate in plants. (Received April 22, 1981; Accepted June 26, 1981)  相似文献   

2.
Phosphoenolpyruvate phosphatase from Brassica nigra leaf petiole suspension cells has been purified 1700-fold to apparent homogeneity and a final specific activity of 380 micromole pyruvate produced per minute per milligram protein. Purification steps included: ammonium sulfate fractionation, S-Sepharose, chelating Sepharose, concanavalin A Sepharose, and Superose 12 chromatography. The native protein was monomeric with a molecular mass of 56 kilodaltons as estimated by analytical gel filtration. The enzyme displayed a broad pH optimum of about pH 5.6 and was relatively heat stable. Western blots of microgram quantities of the final preparation showed no cross-reactivity when probed with rabbit polyclonal antibodies prepared against either castor bean endosperm cytosolic pyruvate kinase, or sorghum leaf phosphoenolpyruvate carboxylase. The final preparation exhibited a broad substrate selectivity, showing high activity toward p-nitrophenyl phosphate, adenosine diphosphate, adenosine triphosphate, gluconate 6-phosphate, and phosphoenolpyruvate, and moderate activity toward several other organic phosphates. Phosphoenolpyruvate phosphatase possessed at least a fivefold and sixfold greater affinity and specificity constant, respectively, for phosphoenolpyruvate (apparent Michaelis constant = 50 micromolar) than for any other nonartificial substrate. The enzyme was activated 1.7-fold by 4 millimolar magnesium, but was strongly inhibited by molybdate, fluoride, zinc, copper, iron, and lead ions, as well as by orthophosphate, ascorbate, glutamate, aspartate, and various organic phosphate compounds. It is postulated that phosphoenolpyruvate phosphatase functions to bypass the adenosine diphosphate dependent pyruvate kinase reaction during extended periods of orthophosphate starvation.  相似文献   

3.
Phosphoenolpyruvate (PEP) carboxylase (PEPCase, EC 4.1.1.31 [EC] )was purified to apparent electrophoretic homogeneity from photomixotrophicallycultured tobacco cells by ammonium sulfate fractionation, DEAE-Sephacel-,hydroxylapatite-, Phenyl-Sepharose CL-4B-, and Sepharose CL-6B-chromatography,and fast protein liquid chromatography on Mono Q. The purifiedenzyme had a specific activity of 32 units per mg protein, andits purity was determined by denaturing polyacrylamide gel electrophoresis.The native enzyme, with a molecular weight of about 440,000,was a tetramer of four identical subunits and showed maximumactivity at pH 8.5–9.0. Non-denaturing isoelectric focusingshowed a single band at pl 5.4. Substrate-saturation kineticsof the purified enzyme for PEP, bicarbonate, and Mg2$ were typicalMichaelis-Menten type, with Km-values of 60, 200, and 80µM,respectively. Most effectors which are known to influence theactivity of C4- or bacterial PEPCase had only small effectson the activity of the purified enzyme at optimum pH, whilesome inhibitory effects by organic acids (malate, citrate andoxaloacetate) and.an activating effect by glucose-6-phosphatewere observed at a suboptimal pH of 7.5. (Received September 30, 1987; Accepted December 14, 1987)  相似文献   

4.
A procedure is described for the purification of phosphoenolpyruvatecarboxylase (EC 4.1.1.31 [EC] ) and NADP-dependent malic enzyme (EC1.1.1.40 [EC] ) from sugar cane leaves. Each enzyme was purified tohomogeneity as judged by sodium dodecyl sulfate-polyacrylamidegel electro-phoresis, with about 30% yield. Phosphoenolpyruvatecarboxylase was purified 54-fold. A molecular weight of 400,000and a homotetrameric structure were determined for the nativeenzyme. The purified carboxylase had a specific activity of20.0 {diaeresis}mol (mg protein)–1 min–1, and wasactivated by glucose-6-phosphate and inhibited by L-malate.Km values at pH 8.0 for phosphoenolpyruvate and bicarbonatewere 0.25 and O.l0 mM, respectively. NADP-malic enzyme, 356-foldpurified, exhibited a specific activity of 71.2 {diaeresis}mol(mg protein)–1 min–1 and was characterized as ahomotetramer with native molecular weight of 250,000. Purifiedmalic enzyme showed an absolute specificity for NADP+ and requireda divalent metal ion for activity. Km values of 0.33 and 0.008mM for L-malate and NADP+, respectively, were determined. Thisenzyme was inhibited by several organic acids, including ketoand amino acids; while succinate and citrate increased the enzymeactivity when assayed with 10{diaeresis}M L-malate. The effectsshown by amino acids and by citrate were dependent on pH, beinghigher at pH 8.0 than at pH 7.0. (Received October 26, 1988; Accepted February 3, 1989)  相似文献   

5.
白菜型油菜种子胰蛋白酶抑制剂纯化及部分性质研究   总被引:3,自引:0,他引:3  
采用热变性、硫酸铵分步盐析及离子交换层析和分子筛层析等方法,从白菜型油菜种子中得到胰蛋白酶抑制剂(BNTI)。SDS-PAGE检测为单一条带,表明纯化的胰蛋白酶抑制剂电泳均一。SDS-PAGE测定其分子量约为14.4kD,等电聚焦测定其等电点约为4.7。BNTI具有较高的热稳定性。本文还考察了温度对溶液中BCH蛋白构象的影响,荧光光谱和测定抑制活力结果表明BNTI中的色氨酸和酪氨酸残基位于疏水部位。  相似文献   

6.
Phosphoenolpyruvate carboxylase (PEPC) activity was detected in the aleurone endosperm of wheat (Triticum aestivum cv Chinese Spring) seeds, and specific anti-Sorghum C4 PEPC polyclonal anti-bodies cross-reacted with 103- and 100-kD polypeptides present in dry seeds and seeds that had imbibed; in addition, a new, 108-kD polypeptide was detected 6 h after imbibition. The use of specific anti-phosphorylation-site immunoglobulin G (APS-IgG) identified the presence of a phosphorylation motif equivalent to that found in other plant PEPCs studied so far. The binding of this APS-IgG to the target protein promoted changes in the properties of seed PEPC similar to those produced by phosphorylation, as previously shown for the recombinant Sorghum leaf C4 PEPC. In desalted seed extracts, an endogenous PEPC kinase activity catalyzed a bona fide phosphorylation of the target protein, as deduced from the immunoinhibition of the in vitro phosphorylation reaction by the APS- IgG. In addition, the major, 103-kD PEPC polypeptide was also shown to be radiolabeled in situ 48 h after imbibition in [32P]orthophosphate. The ratio between optimal (pH 8) and suboptimal (pH 7.3 or 7.1) PEPC activity decreased during germination, thereby suggesting a change in catalytic rate related to an in vivo phosphorylation process. These collective data document that the components needed for the regulatory phosphorylation of PEPC are present and functional during germination of wheat seeds.  相似文献   

7.
Sorghum (Sorghum bicolor (L.) Moench) is a species of great socio-economic and ecological importance for countries in arid and semi-arid climate. In C4 plants like sorghum, phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) plays a key role in seed development and germination. In this work, the PEPC activity shows an increase followed by a decrease at the early and later stages of maturation, respectively. In germinating seeds, the PEPC activity quickly increases after soaking. The L-malate test and the ratio of PEPC activity determined at pH 8.0 and 7.1, indicates, that PEPC is phosphorylated at the early stages of maturation then becomes dephosphorylated at the later stages and during seed germination, PEPC takes back its phosphorylated form. The determination of the affinity constant showed different KM depending on the seed developmental stage. As there is no PEPC-C4 isoform in developing sorghum seeds, this result indicates that the different KM observed during seed maturation could be a result of a post-translational regulation such as phosphorylation or ubiquitination of a pre-existing isoform. This regulation enhances the PEPC activity at early stages of seed development.  相似文献   

8.
The hysteretic behavior of phosphoenolpyruvate (PEP) carboxylase from Crassula argentea has been investigated. Incubation of the purified enzyme with the inhibitor malate prior to starting the reaction by the addition of PEP resulted in a kinetic lag of several minutes duration. The length of the lag was inversely proportional to the enzyme concentration, suggesting subunit association-dissociation as the hysteretic mechanism, rather than a mechanism based on a slow conformational change in the enzyme. Dynamic laser light scattering measurements also support this conclusion, showing that the diffusion coefficient of malate-incubated enzyme slowly decreased after the reaction was started by the addition of PEP. Lags were observed only at pH values of 7.5 or lower. Maximum lags were observed after 10 min of preincubation with malate. Fumarate and succinate, which like malate caused mixed inhibition, also caused lags. In contrast, no lag was induced by malate in the presence of PEP or by the competitive inhibitor phosphoglycolate. The activators glucose 6-phosphate and malonate decreased the malate-induced lag.  相似文献   

9.
Phosphoenolpyruvate carboxylase (ortho-phosphate: oxaloacetate carboxylase, EC 4.11.31, PEPCase), an enzyme widely occurringin bacteria, algae and plants, is an importantcarboxylating enzyme serving a variety of func-tions ranging from photosynthetic carbon dioxidefixation to nitrogen assimilation (Latzko andKelly 1983, O'Leary 1982). It is a key regula-tory enzyme in both C_4 and CAM photosyn-thesis. In C_4 plants, PEPCase is localized inthe mesophyll-cell cytoplasm and catalyzesthe conversion of PEP and bicarbonate to  相似文献   

10.
Vance CP  Stade S 《Plant physiology》1984,75(1):261-264
A nonphotosynthetic phosphoenolpyruvate carboxylase (EC 4.1.1.31) was partially purified from the cytosol of root nodules of alfalfa. The enzyme was purified 86-fold by ammonium sulfate fractionation, DEAE-cellulose, hydroxylapatite chromatography, and reactive agarose with a final yield of 32%. The enzyme exhibited a pH optimum of 7.5 with apparent Km values for phosphoenolpyruvate and magnesium of 210 and 100 micromolar, respectively. Two isozymes were resolved by nondenaturing polyacrylamide disc gel electrophoresis. Subsequent electrophoresis of these isozymes in a second dimension by sodium dodecyl sulfate slab gel electrophoresis yielded identical protein patterns for the isozymes with one major protein band at molecular weight 97,000. Malate and AMP were slightly inhibitory (about 20%) to the partially purified enzyme. Phosphoenolpyruvate carboxylase comprised approximately 1 to 2% of the total soluble protein in actively N2-fixing alfalfa nodules.  相似文献   

11.
According to the conventional glycolytic sequence [3,4-14C]glucoseyields phosphoenolpyruvate (PEP) labeled in position C-1. Thisyields pyruvate through pyruvate kinase reaction also labeledin C-1. Subsequent metabolism of pyruvate to acetyl CoA releasesradioactive carbon dioxide. Alternatively PEP may be convertedto oxalacetate by PEP carboxylase and then into organic andamino acids which retain the label. The procedure adopted wasto trap carbon dioxide evolved and isolate organic acids producedafter feeding [3,4-14C]glucose to developing soybean cotyledons.Under conditions of 27?C and pH of 7.5 and 8.5 about 60% ofthe glycolytic carbon was processed by pyruvate kinase and 40%by PEP carboxylase. At lower temperature (15?C) 60% of the carbonwas directed through the PEP carboxylase reaction. This maybe caused by cold lability of pyruvate kinase which was demonstratedin in vitro assays. Low pH, down to 5.5, reduced organic acidproduction by inhibition of PEP carboxylase activity. Pyruvatekinase was not affected and carbon dioxide evolution remainedconstant at varying pH. PEP carboxyiase and pyruvate kinaseindependently feed their products into two separate metabolicpools. Possibly they should jointly be considered as final enzymesin the glycolytic pathway of plants. (Received April 3, 1982; Accepted June 12, 1982)  相似文献   

12.
Phosphoenolpyruvate carboxylase (EC 4.1.1.31) was purified to homogeneity with about 29% recovery from immature pods of chickpea using ammonium sulfate fractionation, DEAE-cellulose chromatography, and gel filtration through Sephadex G-200. The purified enzyme with molecular weight of about 200,000 daltons was a tetramer of four identical subunits and exhibited maximum activity at pH 8.1. Mg2+ ions were specifically required for the enzyme activity. The enzyme showed typical hyperbolic kinetics with phosphoenolpyruvate with a Km of 0.74 millimolar, whereas sigmoidal response was observed with increasing concentrations of HCO3 with S0.5 value as 7.6 millimolar. The enzyme was activated by inorganic phosphate and phosphate esters like glucose-6-phosphate, α-glycerophosphate, 3-phosphoglyceric acid, and fructose-1,6-bisphosphate, and inhibited by nucleotide triphosphates, organic acids, and divalent cations Ca2+ and Mn2+. Oxaloacetate and malate inhibited the enzyme noncompetitively. Glucose-6-phosphate reversed the inhibitory effects of oxaloacetate and malate.  相似文献   

13.
Maximum activity of phosphoenolpyruvate carboxylase (PEPC, EC4.1.1.31) was detected at the stationary phase of growth ofCatharanthus roseus cells in a heterotrophic culture. The activityof PEPC, after partial purification by fractionation with ammoniumsulphate and chromatography on Q-Sepharose, was greatly influencedby pH. The Km of phosphoenolpyruvate (PEP) was 23 µM atpH 8·0 and 45 µM at pH 7·4. Malate, aspartate,citrate, ATP, pyrophosphate and Pi acted as inhibitors of PEPC,but the extent of inhibition varied in each case with the pHof the reaction mixture. By contrast, glucose-6-phosphate, fructose-1,6-bisphosphateand acetyl-CoA, known as stimulators of the activity of PEPCfrom other sources, had little or no effect on the activityof the partially purified PEPC. The possible role and mechanismof regulation of PEPC in C. roseus cells are discussed.Copyright1994, 1999 Academic Press Catharanthus roseus, Apocynaceae, Madagascar periwinkle, suspension culture, phosphoenolpyruvate carboxylase, enzyme kinetics, glycolysis  相似文献   

14.
Acetyl-CoA carboxylase from the diatom Cyclotella cryptica has been purified to near homogeneity by the use of ammonium sulfate fractionation, gel filtration chromatography, and affinity chromatography with monomeric avidin-agarose. The specific activity of the final preparation was as high as 14.6 micromoles malonyl-CoA formed per milligram protein per minute, indicating a 600-fold purification. Native acetyl-CoA carboxylase has a molecular weight of approximately 740 kilodaltons and appears to be composed of four identical biotin-containing subunits. The enzyme has maximal activity at pH 8.2, but enzyme stability is greater at pH 6.5. Km values for MgATP, acetyl-CoA, and HCO3- were determined to be 65, 233, and 750 micromolar, respectively. The purified enzyme is strongly inhibited by palmitoyl-CoA, and is inhibited to a lesser extent by malonyl-CoA, ADP, and phosphate. Pyruvate stimulates enzymatic activity to a slight extent. Acetyl-CoA carboxylase from Cyclotella cryptica is not inhibited by cyclohexanedione or aryloxyphenoxypropionic acid herbicides as strongly as monocot acetyl-CoA carboxylases; 50% and 0% inhibition was observed in the presence of 23 micromolar clethodim and 100 micromolar haloxyfop, respectively.  相似文献   

15.
Seeds of apple cv. Golden Delicious were germinated and cultivatedin the greenhouse until the third leaf emerged. Respirationofgerminating seeds or photosynthesis of the first leaves wasmeasured by infra-red gas analysis and porometry, respectively.To study the role of phosphoenolpyruvate carboxylase (PEPC),the dominant carboxylase in the carbon economy, its CO2 refixationpotentialwas related to the amount of CO2 lost in respiration. With arange of 0.2 (dry seeds) to 18 (cotyledons) µmol CO2 h–1g–1 PEPC activity resembled or exceeded the amount ofC02 lost in respiration before the third leaf developed. Itis concludedthat PEPC largely contributes to economize the carbonmetabolism of apple seedlings before they become photosyntheticallycompetent. Key words: Apple (Malus pumila Mill.) seedling, carbon economy, phosphoenolpyruvate carboxylase, photosynthesis, respiration  相似文献   

16.
Ulf St?hl  Bo Ek    Sten Stymne 《Plant physiology》1998,117(1):197-205
Phospholipase A2 (PLA2) was purified about 180,000 times compared with the starting soluble-protein extract from developing elm (Ulmus glabra) seeds. On sodium dodecyl sulfate-polyacrylamide gel electrophoresis the purified fraction showed a single protein band with a mobility that corresponded to 15 kD, from which activity could be recovered. When analyzed by matrix-assisted laser-desorption ionization-time-of-flight mass spectrometry, the enzyme had a deduced mass of 13,900 D. A 53-amino acid-long N-terminal sequence was determined and aligned with other sequences, giving 62% identity to the deduced amino acid sequence of some rice (Oryza sativa) expressed sequence tag clones. The purified enzyme had an alkaline pH optimum and required Ca2+ for activity. It was unusually stable with regard to heat, acidity, and organic solvents but was sensitive to disulfide bond-reducing agents. The enzyme is a true PLA2, neither hydrolyzing the sn-1 position of phosphatidylcholine nor having any activity toward lysophosphatidylcholine or diacylglycerol. The biochemical data and amino acid sequence alignments indicate that the enzyme is related to the well-characterized family of animal secretory PLA2s and, to our knowledge, is the first plant enzyme of this type to be described.  相似文献   

17.
The inhibition of glucocorticoid induction and tryptophan activation of phosphoenolpyruvate carboxyfcinase (PEPCK) by bacterial endotoxin may be explained either by decreased synthesis or by inactivation of the enzyme. To differentiate between the two possibilities, mouse hepatic PEPCK was purified using a modification of a method used for securing the enzyme from livers of other species. The techniques included high speed centrifugation of whole liver homogenates, ammonium sulfate fractionation, Sephadex G-100 filtration, DEAE-cellulose ion exchange, hydroxylapatite chromatography, and isoelectric focusing. Antibodies prepared against the purified enzyme gave a single precipitin line in gel diffusion and in Immunoelectrophoresis. The antibodies were used for enzyme titrations in whole liver homogenates of normal and endotoxin poisoned mice, as reported elsewhere.  相似文献   

18.
鹰嘴豆种子胰蛋白酶抑制剂的分离纯化与鉴定   总被引:2,自引:0,他引:2  
为了寻找具有药物作用的天然胰蛋白酶抑制物,采用硫酸铵分级沉淀、离子交换层析(DEAE-纤维素52)及Sephadex G-100凝胶层析等方法, 从鹰嘴豆种子中分离出一种鹰嘴豆胰蛋白酶抑制剂(CPTI). 研究表明:CPTI对胰蛋白酶有较强的抑制作用,抑制率达80%,而对胰凝乳蛋白酶抑制作用较弱,抑制率为32%, 对胃蛋白酶、木瓜蛋白酶及枯草杆菌蛋白酶均无抑制作用; 用SDS-PAGE测得CPTI近似分子质量为25.7 kD; CPTI具有较高的热稳定性,在100 ℃下加热60 min,对胰蛋白酶活性仍保持78%抑制率; Lineveaer-Burk作图得知该抑制剂属竞争性抑制类型. 动力学测定显示,来自鹰嘴豆中的CPTI对胰蛋白酶的抑制作用常数(Ki)为3.99×10-7 mol/L.  相似文献   

19.
3-Methylcrotonyl-coenzyme A (CoA) carboxylase was purified to homogeneity from pea (Pisum sativum L.) leaf and potato (Solanum tuberosum L.) tuber mitochondria. The native enzyme has an apparent molecular weight of 530,000 in pea leaf and 500,000 in potato tuber as measured by gel filtration. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate disclosed two nonidentical subunits. The larger subunit (B subunit) is biotinylated and has an apparent molecular weight of 76,000 in pea leaf and 74,000 in potato tuber. The smaller subunit (A subunit) is biotin free and has an apparent molecular weight of 54,000 in pea leaf and 53,000 in potato tuber. The biotin content of the enzyme is 1 mol/133,000 g of protein and 1 mol/128,000 g of protein in pea leaf and potato tuber, respectively. These values are consistent with an A4B4 tetrameric structure for the native enzyme. Maximal 3-methylcrotonyl-CoA carboxylase activity was found at pH 8 to 8.3 and at 35 to 38[deg]C in the presence of Mg2+. Kinetic constants (apparent Km values) for the enzyme substrates 3-methylcrotonyl-CoA, ATP, and HCO3- were: 0.1 mM, 0.1 mM, and 0.9 mM, respectively, for pea leaf 3-methylcrotonyl-CoA carboxylase and 0.1 mM, 0.07 mM, and 0.34 mM, respectively, for potato tuber 3-methylcrotonyl-CoA carboxylase. A steady-state kinetic analysis of the carboxylase-catalyzed carboxylation of 3-methylcrotonyl-CoA gave rise to parallel line patterns in double reciprocal plots of initial velocity with the substrate pairs 3-methylcrotonyl-CoA plus ATP and 3-methylcrotonyl-CoA plus HCO3- and an intersecting line pattern with the substrate pair HCO3- plus ATP. It was concluded that the kinetic mechanism involves a double displacement. Purified 3-methylcrotonyl-CoA carboxylase was inhibited by end products of the reaction catalyzed, namely ADP and orthophosphate, and by 3-hydroxy-3-methylglutaryl-CoA. Finally, as for the 3-methylcrotonyl-CoA carboxylases from mammalian and bacterial sources, plant 3-methylcrotonyl-CoA carboxylase was sensitive to sulfhydryl and arginyl reagents.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号