首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epidermal growth factor receptor (EGFR), a receptor tyrosine kinase, is commonly altered in different tumor types, leading to abnormally regulated kinase activity and excessive activation of downstream signaling cascades, including cell proliferation, differentiation, and migration. To investigate the EGFR signaling events in real time and in living cells and animals, here we describe a multidomain chimeric reporter whose bioluminescence can be used as a surrogate for EGFR kinase activity. This luciferase-based reporter was developed in squamous cell carcinoma cells (UMSCC1) to generate a cancer therapy model for imaging EGFR. The reporter is designed to act as a phosphorylated substrate of EGFR and reconstitutes luciferase activity when it is not phosphorylated, thereby providing a robust indication of EGFR inhibition. We validated the reporter in vitro and demonstrated that its activity could be differentially modulated by EGFR tyrosine kinase inhibition with erlotonib or receptor activation with epidermal growth factor. Further experiments in vivo demonstrated quantitative and dynamic monitoring of EGFR tyrosine kinase activity in xenograft. Results obtained from these studies provide unique insight into pharmacokinetics and pharmacodynamics of agents that modulate EGFR activity, revealing the usefulness of this reporter in evaluating drug availability and cell targeting in both living cells and mouse models.  相似文献   

2.
Nitric oxide (NO) donors inhibit the epidermal growth factor (EGF)-dependent auto(trans)phosphorylation of the EGF receptor (EGFR) in several cell types in which NO exerts antiproliferative effects. We demonstrate in this report that NO inhibits, whereas NO synthase inhibition potentiates, the EGFR tyrosine kinase activity in NO-producing cells, indicating that physiological concentrations of NO were able to regulate the receptor activity. Depletion of intracellular glutathione enhanced the inhibitory effect of the NO donor 1,1-diethyl-2-hydroxy-2-nitrosohydrazine (DEA/NO) on EGFR tyrosine kinase activity, supporting the notion that such inhibition was a consequence of an S-nitrosylation reaction. Addition of DEA/NO to cell lysates resulted in the S-nitrosylation of a large number of proteins including the EGFR, as confirmed by the chemical detection of nitrosothiol groups in the immunoprecipitated receptor. We prepared a set of seven EGFR(C → S) substitution mutants and demonstrated in transfected cells that the tyrosine kinase activity of the EGFR(C166S) mutant was completely resistant to NO, whereas the EGFR(C305S) mutant was partially resistant. In the presence of EGF, DEA/NO significantly inhibited Akt phosphorylation in cells transfected with wild-type EGFR, but not in those transfected with C166S or C305S mutants. We conclude that the EGFR can be posttranslationally regulated by reversible S-nitrosylation of C166 and C305 in living cells.  相似文献   

3.
Epidermal growth factor (EGF) receptor protein kinase activity, estimated by the use of peptide substrates, was reduced by as much as 70% after the treatment of intact A431 human carcinoma cells with EGF. The apparent decrease in protein kinase activity was observed after immunoprecipitation of the receptor or after purification of the receptor by lectin chromatography. By the use of [35S]methionine, it was determined that the total amount of receptor obtained was the same whether or not cells were treated with EGF. EGF stimulated the purified receptor protein kinase activity in vitro; however, the EGF-stimulated activity of receptor from EGF-treated cells continued to be reduced by as much at 70% compared to the EGF-stimulated activity from untreated cells. The reduction in receptor protein kinase activity induced by EGF may represent a feedback mechanism by which responsiveness to the growth factor is regulated.  相似文献   

4.
Dimerization of epidermal growth factor receptor (EGFR) leads to the activation of its tyrosine kinase. To elucidate whether dimerization is responsible for activation of the intracellular tyrosine kinase domain or just plays a role in the stabilization of the active form, the activated status of wild-type EGFR moiety in the heterodimer with kinase activity-deficient mutant receptors was investigated. The kinase activity of the wild-type EGFR was partially activated by EGF in the heterodimer with intracellular domain deletion (sEGFR) or ATP binding-deficient mutant (K721A) EGFRs, while the wild-type EGFR in the heterodimer of wild-type and phosphate transfer activity-deficient mutant receptor D813N could be fully activated. After treatment with EGF, the ATP binding affinity and the V(max) of the wild-type EGFR increased. In the presence of sEGFR, a similar increase in the affinity for ATP was observed, but V(max) did not change. A two-step activation mechanism for EGFR was proposed: upon binding of EGF, the affinity for ATP increased and then, as a result of interaction between the neighboring tyrosine kinase domain, V(max) increased.  相似文献   

5.
Aim: We have reported the in vitro and in vivo anticancer activities of 6-(methylsulfinyl)hexyl isothiocyanate (6-MITC) derived from a Japanese spice, wasabi. In order to obtain some clues about the mechanism of the anticancer activity, we have studied the effect of alkyl isothiocyanates (MITCs) on protein kinase activities. Methods: The anti-autophosphorylation activity of MITCs with respect to the epidermal growth factor (EGF)-stimulated receptor kinase of A431 epidermoid carcinoma cells was examined by incorporation of radioactive ATP into an acid-insoluble fraction. Their anti-phosphorylation activity with respect to the non-receptor protein kinase was analyzed by a standard SDS-PAGE method. Results: All the tested MITCs interfered with the EGF-stimulated receptor kinase activity in a dose-dependent manner, although their effects were less than 1/10 of that of erbstatin in μg/ml. On the other hand, the MITCs did not interfere with non-receptor kinases (kinase A, kinase C, tyrosine kinase and calmodulin dependent kinase III), but enhanced non-receptor tyrosine kinase. Discussion: A possible anticancer mechanism of MITCs may involve the suppression of EGF receptor kinase activity and augmentation of non-receptor PTK.  相似文献   

6.
The effect of self-phosphorylation on the protein-tyrosine kinase activity of the epidermal growth factor receptor has been investigated using immunoaffinity-purified protein. Enzyme was first incubated for various times with excess ATP to phosphorylate it to differing extents; the ability of the enzyme to phosphorylate exogenous peptide substrates was then measured as a function of its self-phosphorylation state. Increasing self-phosphorylation to 1.3-1.8 mol of phosphate mol-1 of epidermal growth factor receptor enhanced protein-tyrosine kinase activity 2-3-fold. Comparison of the kinetics of protein-tyrosine kinase activity at different ATP concentrations revealed significant differences between unphosphorylated and phosphorylated enzyme. At low levels of ATP, a double reciprocal plot of the protein-tyrosine kinase activity of the unphosphorylated enzyme was hyperbolic, suggesting that ATP may act as an activator of the enzyme. At higher ATP concentrations, where greater levels of self-phosphorylation occurred during the reaction, the kinetics appeared linear and similar to those of the phosphorylated enzyme. Dose-response studies using three different peptide substrates (angiotensin II, gastrin, and a synthetic peptide corresponding to the self-phosphorylation site in p60v-src) showed that exogenous substrates inhibit receptor self-phosphorylation. In each case, half-maximal inhibition was observed at a peptide concentration approximately equal to the substrate's Km. A kinetic analysis comparing peptide phosphorylation using unphosphorylated and prephosphorylated enzyme indicated that the self-phosphorylation site can act as a competitive inhibitor (alternate substrate) versus peptide substrates. These results suggest that self-phosphorylation of the epidermal growth factor receptor removes a competitive constraint so that exogenous substrates can be more readily phosphorylated.  相似文献   

7.
Three site-directed mutants of human epidermal growth factor, Leu-26----Gly, Leu-47----Ala, and Ile-23----Thr, were examined for their ability to stimulate the protein-tyrosine kinase activity of the epidermal growth factor receptor. The receptor binding affinities of the mutant growth factors were 20- to 50-fold lower, as compared to wild-type growth factor. At saturating concentrations of growth factor, the velocities of the phosphorylation of exogenously added substrate and receptor autophosphorylation were significantly lower with the mutant analogs, suggesting a partial 'uncoupling' of signal transduction. The mutant analogs were shown to compete directly with the binding of wild-type, resulting in a decrease in growth factor-stimulated kinase activity.  相似文献   

8.
Calphostin-C with perylenequinone structure is known to bind the regulatory domain of protein kinase C (PKC) and to inhibit kinase activity in vitro in a light-dependent fashion. We have found that calphostin-C induces substantial serine and threonine phosphorylation of the epidermal growth factor (EGF) receptor in a light-dependent fashion in the EGF receptor-hyperproducing squamous carcinoma cell line NA. Tryptic phospho-peptide mapping and phospho-amino acid analysis revealed that calphostin-C–-enhanced phosphorylation was on threonine 669, serine 671, serine 1046/1047, and serine 1166. However, caiphostin-C did not inhibit phosphorylation of the 80 K protein, a cytosolic major substrate of PKC (MARCKS). Staurosporine, a potent PKC inhibitor with affinity for the catalytic domain of PKC, inhibited phosphorylation of the 80 K protein and 12-O-tetradecanoyl-13-phorbol acetate induction of EGF receptor phosphorylation but did not inhibit the calphostin-C induction of the EGF receptor phosphorylation. These results suggest that the target of calphostin-C in vivo is different from that of staurosporine and thus calphostin-C in vivo does not inhibit PKC. Furthermore, calphostin-C enhanced the internalization of phosphorylated EGF receptor. Thus, calphostin-C apparently activates a novel signal transduction pathway which involves phosphorylation and internalization of the EGF receptor via light-dependent mechanism. © 1994 Wiley-Liss, Inc.  相似文献   

9.
The Ca2+- and phospholipid-dependent protein kinase (C-kinase) binds tightly in the presence of Ca2+ to purified membranes of A431 human epidermoid carcinoma cells. The major membrane substrate for C-kinase is the epidermal growth factor (EGF) receptor. Phosphorylation of the EGF receptor is Ca2+-dependent and occurs at threonine and serine residues. After tryptic digestion of the receptor, three major phosphothreonine-containing peptides were identified. These are identical with three new phosphopeptides present in the EGF receptor isolated from A431 cells treated with either of the tumor promoters 12-O-tetradecanoylphorbol 13-acetate or teleocidin. C-kinase catalyzes phosphorylation at these same sites in purified EGF receptor protein. These results indicate that, in A431 cells exposed to tumor promoters, C-kinase catalyzes phosphorylation of a significant population of EGF receptor molecules. This phosphorylation of EGF receptors results in decreased self-phosphorylation of the EGF receptor at tyrosine residues both in vivo and in vitro and in decreased EGF-stimulated tyrosine kinase activity in vivo.  相似文献   

10.
Zhang X  Gureasko J  Shen K  Cole PA  Kuriyan J 《Cell》2006,125(6):1137-1149
The mechanism by which the epidermal growth factor receptor (EGFR) is activated upon dimerization has eluded definition. We find that the EGFR kinase domain can be activated by increasing its local concentration or by mutating a leucine (L834R) in the activation loop, the phosphorylation of which is not required for activation. This suggests that the kinase domain is intrinsically autoinhibited, and an intermolecular interaction promotes its activation. Using further mutational analysis and crystallography we demonstrate that the autoinhibited conformation of the EGFR kinase domain resembles that of Src and cyclin-dependent kinases (CDKs). EGFR activation results from the formation of an asymmetric dimer in which the C-terminal lobe of one kinase domain plays a role analogous to that of cyclin in activated CDK/cyclin complexes. The CDK/cyclin-like complex formed by two kinase domains thus explains the activation of EGFR-family receptors by homo- or heterodimerization.  相似文献   

11.
Allosteric regulation of the epidermal growth factor receptor kinase   总被引:20,自引:6,他引:14       下载免费PDF全文
《The Journal of cell biology》1986,103(6):2067-2072
  相似文献   

12.
A study was made of the functional state of the epidermal growth factor (EGF)--receptor complexes in A-431 cells. Conditions of surface bound EGF extraction were selected which allow to consider the intracellular EGF--receptor complexes only. A procedure of high efficient and specific immunoprecipitation of tyrosyl-phosphorylated EGF receptors was developed. It is shown that the dissociation of EGF--receptor complexes leads to receptor dephosphorylation due to a rapid and reversible inactivation of EGF receptor tyrosine kinase. The internalized receptor is found to be tyrosyl-phosphorylated and to retain tyrosine kinase for at least an hour after the internalization. The dynamics of dissociation, degradation and dephosphorylation of EGF--receptor complexes has been estimated. The rates of these processes prove to be almost negligible for the first 2.5 hours after internalization.  相似文献   

13.
Epidermal growth factor receptor (EGFR) was functionally reconstituted into liposome membrane. Triton X-100 was removed by Bio-beads SM-2. More than 80% of the reconstituted EGFR possessed right-side-out orientation with the EGF binding side facing the medium. The tyrosine kinase assay of the EGFR was carried out in the presence of the antibiotic alamethicin. The reconstituted EGFR tyrosine kinase was well activated by EGF. The influence of lipid composition on tyrosine kinase activity was investigated. Introduction of cholesterol into the dioleoylphophatidylcholine (DOPC) liposome membrane resulted in the decrease of tyrosine kinase activity. The tyrosine kinase activity of EGFR in distearylphosphatidylcholine liposome was much lower than that of EGFR-DOPC proteoliposome. Results indicated the importance of membrane fluidity on the apparent tyrosine kinase activity of reconstituted EGFR.  相似文献   

14.
In response to cutaneous injury, expression of collagenase-1 is induced in keratinocytes via alpha2beta1 contact with native type I collagen, and enzyme activity is essential for cell migration over this substratum. However, the cellular mechanism(s) mediating integrin signaling remain poorly understood. We demonstrate here that treatment of keratinocytes cultured on type I collagen with epidermal growth factor receptor (EGFR) blocking antibodies or a specific receptor antagonist inhibited cell migration across type I collagen and the matrix-directed stimulation of collagenase-1 production. Additionally, stimulation of collagenase-1 expression by hepatocyte growth factor, transforming growth factor-beta1, and interferon-gamma was blocked by EGFR inhibitors, suggesting a required EGFR autocrine signaling step for enzyme expression. Collagenase-1 mRNA was not detectable in keratinocytes isolated immediately from normal skin, but increased progressively following 2 h of contact with collagen. In contrast, EGFR mRNA was expressed at high steady-state levels in keratinocytes isolated immediately from intact skin but was absent following 2 h cell contact with collagen, suggesting down-regulation following receptor activation. Indeed, tyrosine phosphorylation of the EGFR was evident as early as 10 min following cell contact with collagen. Treatment of keratinocytes cultured on collagen with EGFR antagonist or heparin-binding (HB)-EGF neutralizing antibodies dramatically inhibited the sustained expression (6-24 h) of collagenase-1 mRNA, whereas initial induction by collagen alone (2 h) was unaffected. Finally, expression of collagenase-1 in ex vivo wounded skin and re-epithelialization of partial thickness porcine burn wounds was blocked following treatment with EGFR inhibitors. These results demonstrate that keratinocyte contact with type I collagen is sufficient to induce collagenase-1 expression, whereas sustained enzyme production requires autocrine EGFR activation by HB-EGF as an obligatory intermediate step, thereby maintaining collagenase-1-dependent migration during the re-epithelialization of epidermal wounds.  相似文献   

15.
The possible role of epidermal growth factor (EGF) receptor phosphorylation at threonine 654 in modulating the protein-tyrosine kinase activity of EGF-treated A431 cells has been studied. It has been suggested that EGF could indirectly activate a protein-serine/threonine kinase, protein kinase C, that can phosphorylate the EGF receptor at threonine 654. Protein kinase C is known to be activated, and threonine 654 is phosphorylated, when A431 cells are exposed to 12-O-tetradecanoylphorbol-13-acetate (TPA). The protein-tyrosine kinase activity of EGF receptors is normally evidenced in EGF-treated cells by phosphorylation of the receptor at tyrosine. This is inhibited when TPA-treated cells are exposed to EGF. We now show that receptor phosphorylation at threonine 654 can also be detected in EGF-treated A431 cells, presumably due to indirect stimulation of protein kinase C or a similar kinase. Some receptor molecules are phosphorylated both at threonine 654 and at tyrosine. Since prior phosphorylation at threonine 654 inhibits autophosphorylation, we propose that protein kinase C can phosphorylate the threonine 654 of autophosphorylated receptors. This provides evidence for models in which protein kinase C activation, consequent upon EGF binding, could reduce the protein-tyrosine kinase activity of the EGF receptor. Indeed, we find that 12-O-tetradecanoylphorbol-13-acetate, added 10 min after EGF, further increases threonine 654 phosphorylation and induces the loss of tyrosine phosphate from A431 cell EGF receptors.  相似文献   

16.
Activation of cells is frequently followed by tyrosine phosphorylation of proteins. To quantify this process, we developed a ratiometric enzyme-linked immunosorbent assay (ELISA) using epidermal growth factor receptors (EGFR) as a model. Microtiter dishes were coated with anti-EGFR monoclonal antibodies to capture the receptor followed by parallel detection of receptor and phosphotyrosine content with secondary antibodies. The ratio of these two parameters was found to directly reflect EGFR activation and was insensitive to the effect of receptor downregulation. Our assay could resolve differences in EGFR activation due to small changes (less than 1 ng/ml) in ligand. We found that phosphotyrosine detection by ELISA was 8- to 32-fold more sensitive than Western blot detection and could be reliably detected using as little as 4 ng of cellular lysate. Detection of EGFR levels by ELISA was 30 times more sensitive than Western blot analysis and was reliable for as low as 8 ng of cellular lysate per well. Because of the wide linear range of the ELISA, we could directly compare receptor activation in cell types with different EGFR expression levels. Our assay provides a rapid and sensitive method of determining EGFR activation status and could be easily modified to evaluate any tyrosine-phosphorylated protein.  相似文献   

17.
Protamine sulfate blocked 125I-PDGF binding to its specific physiological receptor on Swiss mouse 3T3 cells. Reduced 125I-PDGF binding in the presence of protamine sulfate correlated directly with a protamine sulfate dose-dependent decrease in the PDGF-dependent incorporation of [3H]-thymidine into 3T3 cells and a decreased PDGF-stimulated tyrosine-specific protein kinase activity in isolated membrane preparations of 3T3 cells. Protamine sulfate blocked 125I-PDGF binding to simian sarcoma virus transformed cells (SSV-NIH 3T3 and SSV-NP1 cells) and to nontransformed cells in a manner qualitatively identical to unlabelled PDGF. In contrast, protamine sulfate enhanced the specific binding of 125I-EGF by increasing the apparent number of EGF receptors on the cell surface. The increase in 125I-EGF receptor binding was not prevented by cycloheximide nor by actinomycin D. Protamine sulfate did not affect 125I-EGF binding to membranes from 3T3 cells or the EGF-stimulated 3T3 cell membrane tyrosine specific protein kinase activity, suggesting that protamine sulfate may have exposed a population of cryptic EGF receptors otherwise not accessible. Protamine sulfate was fractionated into four active fractions by Sephadex G-50 gel filtration columns; the half maximum inhibition concentration of 125I-PDGF binding to 3T3 cells of protamines I and II (MW approximately 11,000 daltons and 7,000 daltons, respectively) is approximately 0.4 microM. Protamine II (MW approximately 4,800 daltons) was equally active (half maximum inhibition concentration approximately 0.4 microM); protamine IV (MW approximately 3,300 daltons) was substantially less active (half maximum inhibition concentration approximately 2.8 microM). These investigations have extended previous observations that protamine sulfate is a potent inhibitor of PDGF binding and establish that protamine sulfate blocks PDGF binding at the physiological receptor, preventing PDGF initiated biological activities. Protamine sulfate can be used as a reagent to separate the influence of PDGF and EGF on cells with high specificity and has been used to demonstrate that the receptors on simian sarcoma virus transformed 3T3 cells qualitatively respond identically to protamine sulfate as to unlabelled PDGF and are likely identical to those on nontransformed 3T3 cells.  相似文献   

18.
The relationship between epidermal growth factor receptor (EGF-R) protein tyrosine kinase activation and ligand-induced receptor dimerization was investigated using several bivalent anti-EGF-R antibodies directed against various receptor epitopes. In A431 membrane preparations and permeabilized cells, all antibodies were able to activate the EGF-R tyrosine kinase, as measured by EGF-R autophosphorylation and phosphorylation of other substrates on tyrosine residues. EGF-R tyrosine kinase activation correlated strongly with the induction of EGF-R dimerization. (i) Both processes specifically occurred in a narrow antibody concentration range; (ii) both processes required the presence of detergent; and (iii) both processes depended on antibody bivalence since monovalent Fab fragments were inactive yet regained full activity after cross-linking by a second bivalent antibody. These data demonstrate that antibody bivalence is essential and sufficient for EGF-R activation and that activation occurs regardless of the EGF-R epitope recognized. Finally, EGF-R dimerization was shown not to depend on receptor autophosphorylation since it still occurred in the absence of ATP. Also, partial inhibition of the tyrosine kinase activity by the specific EGF-R tyrosine kinase inhibitor tyrphostin AG 213 did not affect formation of EGF-R dimers. Taken together these results demonstrate that induction of EGF-R dimerization is sufficient and in case of antibody action, essential, for activation of the EGF-R tyrosine kinase and thus provide strong support for an intermolecular mechanism of EGF-R tyrosine kinase activation.  相似文献   

19.
Oncoprotein 18 or stathmin was isolated from bovine brain, characterized and novel features of its function as a microtubule depolymerizing factor were tested.The effect of phosphorylation of stathmin on its function as a microtubule depolymerizing factor has been tested in vitro. Five different protein kinases, protein kinase A, MAP kinase, cdc2 kinase, glycogen synthase kinase 3 and casein kinase 2, were used to modify stathmin, since it is known that these kinases could phosphorylate several residues that are modified in vivo and could have important roles in stathmin function. The residues phosphorylated in vitro by the different protein kinases were identified and in some cases they correspond to those modified in vivo.Recombinant unphosphorylated stathmin and native stathmin, which was previously dephosphorylated with alkaline phosphatase, showed similar microtubule depolymerizing activity. This activity is higher than that of stathmin phosphorylated by protein kinase A, MAP kinase or cdc 2 kinase, whereas phosphorylation of the protein with casein kinase 2 or glycogen synthase kinase 3 resulted in a slight increase of the depolymerizing activity.  相似文献   

20.
The acoustic membrane micro particle (AMMP) technology has been used to quantify single analytes out of multiple sample types. In this study the technology is used to reveal molecular interactions of components of kinase pathways. Specifically, the downstream kinase activity of the EGFR receptor in the presence or absence of EGFR inhibitors is investigated. These experiments substantiate that EGFR stimulation predominantly activates the MEK/ERK pathway. The EGFR inhibitors tested had varying effectiveness at preventing phosphorylation at the EGFR or downstream kinase activity. These experiments reveal the use of the AMMP technology for observing multiple signaling pathways in a single experiment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号