首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The theory of feedback control as a possible stabilizing mechanism has already been introduced into ecosystem analysis. One problem in the theory is the identification of the informational links by which such controls operate. Cyclic controls—for example, zero- mean sine functions added to certain exchange flows in the system—might also contribute to system stability. Their advantage is that they operate without need for information from the rest of the system. The theory of ecosystem cyclic control is presented and applied to data from an oyster reef ecosystem.  相似文献   

3.
The analysis of models of evolutionary games requires explicit consideration of both evolutionary game rules and mutants which infinitesimally break these rules. For example, the Scotch Auction is an evolutionary game which lacks both a rule-obeying evolutionarily stable strategy and an asymptotically stable polymorphism of rule-obeying strategies. However, an infinitesimal rule-breaking, or cheating, mutant can be found which is an evolutionarily stable strategy against rule-obeying strategies. Such cheating strategies can spread through populations initially playing the Scotch Auction, effectively changing the rules of the game. Moreover, the extent of such rule-change will then tend to increase. Thus, the Scotch Auction is a transient evolutionary game, being the initial point of a seemingly orthogenetic game evolutionary process. This sort of transience suggests that the “progressive” nature of evolution may be due in part to those game features of evolutionary processes which make the success of adaptations relative to the level of extant adaptation among competitors, predators, etc.  相似文献   

4.
The ratio of dissolved fixed inorganic nitrogen to soluble inorganic phosphate (N:P) in the ocean interior is relatively constant, averaging ~16 : 1 by atoms. In contrast, the ratio of these two elements spans more than six orders of magnitude in lakes and other aquatic environments. To understand the factors influencing N:P ratios in aquatic environments, we analyzed 111 observational datasets derived from 35 water bodies, ranging from small lakes to ocean basins. Our results reveal that N:P ratios are highly correlated with the concentration of dissolved O2 below ~100 µmol L−1. At higher concentrations of O2, N:P ratios are highly variable and not correlated with O2; however, the coefficient of variation in N:P ratios is strongly related to the size of the water body. Hence, classical Redfield ratios observed in the ocean are anomalous; this specific elemental stoichiometry emerges not only as a consequence of the elemental ratio of the sinking flux of organic matter, but also as a result of the size of the basins and their ventilation. We propose that the link between N:P ratios, basin size and oxygen levels, along with the previously determined relationship between sedimentary δ15N and oxygen, can be used to infer historical N:P ratios for any water body.  相似文献   

5.
The dependence of long-term fishery yields on primary productivity, largely based on cross-system comparisons and without reference to the potential dynamic character of this relationship, has long been considered strong evidence for bottom-up control in marine systems. We examined time series of intensive empirical observations from nine heavily exploited regions in the western North Atlantic and find evidence of spatial variance of trophic control. Top-down control dominated in northern areas, the dynamics evolved from bottom-up to top-down in an intermediate region, and bottom-up control governed the southern areas. A simplified, trophic control diagram was developed accounting for top-down and bottom-up forcing within a larger region whose base state dynamics are bottom-up and can accommodate time-varying dynamics. Species diversity and ocean temperature co-varied, being relatively high in southern areas and lower in the north, mirroring the shifting pattern of trophic control. A combination of compensatory population dynamics and accelerated demographic rates in southern areas seems to account for the greater stability of the predator species complex in this region.  相似文献   

6.
Sewers are historically considered the main reservoir for commensal rodents, posing threats to urban ecosystem health. Aboveground rodent signs are often assumed to give clues to high sewer infestation, which can chronically restock surface areas. Thus, current sewer-baiting programmes are mostly reactive, responding to increased surface infestation. Conversely, proactive sewer-baiting (regardless of infestation levels) is often disregarded because cost-effectiveness is not always addressed. We explored the extent to which the surface infestation is related to rodent feeding activity on sewer and surface baits by analysing a set of proactive bait records in Bologna city, Italy. Sewer bait intakes were significantly lower than surface ones, suggesting that proactive sewer-baiting is generally less effective. As surface infestation increased, probability of recording surface bait intake increased significantly but this was not reflected by increased sewer bait intake, suggesting that surface infestation is not always a reliable indicator of sewer infestation. This should discourage the use of reactive sewer-baiting as a routine strategy. Poison-based control programmes by themselves are scarcely predictable and strategically limited, and ideally they should be handled within an ecologically based integrated pest management approach for achieving satisfactory results.  相似文献   

7.
A microbial ecosystem represents a delicately balanced population of microorganisms each interacting with and influencing the other members of the population. An understanding of the nature and effects of these interactions is essential to improving the performance of these ecologies, which are important, in such diverse processes as biological waste treatment procedures, water pollution abatement, industrial fermentations, human or animal digestives processes and in soil. There are several types of mocrobial interactions, such as commensalism, inhibition, food competition, predation, parasitism, and synergism, which either singly or in combination may influence the functioning of the microbial ecology. To understand interactions, it is necessary to perform a detailed study of the physiology of the individual predominating microorganisms to establish their requirements with respect to such environmental factors as nutrients, temperature, pH, oxidation-reduction potential, removal of waste products, or toxic materials which may be involved in control processes and to determine how these factors affect their capabilities. The sum total of this information will indicate the possible interactions between the microorganisms and will form the basis for conducting experiments either in the laboratory or with mathematical models. Such experiments will lead to an understanding of microbial activities and to the formulation of control measures, often using an alteration of the environmental factors for regulation of the microbial ecologies. Extensive research remains to be done on the microbial interact inns in obtain the desired, precise control of these ecological processes.  相似文献   

8.
A key question in ecology is under which conditions ecosystem structure tends to be controlled by resource availability vs. consumer pressure. Several hypotheses derived from theory, experiments and observational field studies have been advanced, yet a unified explanation remains elusive. Here, we identify common predictors of trophic control in a synthetic analysis of 52 observational field studies conducted within marine ecosystems across the Northern Hemisphere and published between 1951 and 2014. Spatial regression analysis of 45 candidate variables revealed temperature to be the dominant predictor, with unimodal effects on trophic control operating both directly (r2 = 0.32; P < 0.0001) and indirectly through influences on turnover rate and quality of primary production, biodiversity and omnivory. These findings indicate that temperature is an overarching determinant of the trophic dynamics of marine ecosystems, and that variation in ocean temperature will affect the trophic structure of marine ecosystems through both direct and indirect mechanisms.  相似文献   

9.
Invasive bivalves may cause great ecological, evolutionary, and economic impacts in freshwater ecosystems. Species such as Corbicula fluminea, Dreissena bugensis, Dreissena polymorpha, Limnoperna fortunei, and Sinanodonta woodiana are widely distributed hyper-successful invaders, but several others not yet invasive (or at least not considered as such) may become so in the near future. These species can affect hydrology, biogeochemical cycling, and biotic interactions through several mechanisms, with impacts ranging from individuals to ecosystems. Freshwater invasive bivalves can create no-analog ecosystems, posing serious difficulties for management, but new techniques are becoming available which may enhance options to detect early introductions and mitigate impacts. Although knowledge about the biology of these bivalves has increased considerably in the last two decades, several fundamental gaps still persist; we suggest new research directions that are worth exploring in the near future.  相似文献   

10.
As a rule, N-supply of mature Ardenne forest ecosystems is satisfactory. Mineralization rates of soil organic matter are generally high and nitrogen is not a frequent nor an important growth limiting factor. Light N-deficiency is likely to depend on unsatisfactory root absorbing power in very acid soils with dysmoder humus. For other major elements, especially for Mg, Ca and P, near optimal nutrition is rarely observed.During the late sixties, fertilizer experiments have shown that nutrition equilibrium of stands growing on acid soils, poor in exchangeable Mg, is very sensitive to artificial NH4-addition. Mg-deficiency symptoms have been induced. The present continuing atmospheric NH4 input is believed to produce similar but lasting nutritional stress which might be accentuated by additional acidity generated during nitrification of excess NH4. Evolving Mg deficiency leads to trees' death and developing forest decline is likely to enhance N-output under NO3-form.Awaiting adequate air purification, fertilizing should restore nutrition equilibrium in order to save damaged stands, to slow down soil acidification and to incorporate excess atmospheric N-input into improved biomass production.  相似文献   

11.
The ups and downs of trophic control in continental shelf ecosystems   总被引:1,自引:0,他引:1  
Traditionally, marine ecosystem structure was thought to be determined by phytoplankton dynamics. However, an integrated view on the relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in large-scale, exploited marine ecosystems is emerging. Long time series of scientific survey data, underpinning the management of commercially exploited species such as cod, are being used to diagnose mechanisms that could affect the composition and relative abundance of species in marine food webs. By assembling published data from studies in exploited North Atlantic ecosystems, we found pronounced geographical variation in top-down and bottom-up trophic forcing. The data suggest that ecosystem susceptibility to top-down control and their resiliency to exploitation are related to species richness and oceanic temperature conditions. Such knowledge could be used to produce ecosystem guidelines to regulate and manage fisheries in a sustainable fashion.  相似文献   

12.
We tested the hypothesis that large herbivores manipulate their own food supply by modifying soil nutrient availability. This was investigated experimentally the impact of faeces on grasses, mosses and soil biological properties in tundra ecosystems. For this, we increased the density of reindeer Rangifer tarandus platyrhynchus faeces and studied the response of a tundra system on Spitsbergen to this single faecal addition treatment for four subsequent years. From the third year onwards faecal addition had unambiguously enhanced the standing crop of grasses, as evidenced by an increase in both shoot density and mass per shoot. Although reindeer grazing across experimental plots was positively related to the abundance of grasses in anyone year, the increase in grass abundance in fouled plots failed to result in greater grazing pressure in those plots. Faecal addition enhanced soil microbial biomass C and N, particularly under wet conditions where faecal decay rates were greatest, whilst grasses appeared to benefit from faeces under dry conditions. Whilst growth of grasses and soil microbial biomass were stimulated by faecal addition, the depth of the extensive moss layer that is typical of tundra ecosystems was significantly reduced in fouled plots four years after faecal addition. The greatest reduction in moss depth occurred where fouling increased soil microbial biomass most, suggesting that enhanced decomposition of moss by a more abundant microbial community may have caused the reduced moss layer depth in fouled plots. Our field experiment demonstrates that by the production of faeces alone, vertebrate herbivores greatly impact on both above‐ and belowground components of tundra ecosystems and in doing so manipulate their own food supply. Our findings verify the assertion that grazing is of fundamental importance to tundra ecosystem productivity, and support the hypothesis that herbivory is instrumental in promoting grasses whilst suppressing mosses. The widely observed inverse relationship between grass and moss abundance in the field may therefore reflect the long history of plant‐herbivore interactions in tundra ecosystems.  相似文献   

13.
ECA, the enterobacterial common antigen   总被引:26,自引:0,他引:26  
Enterobacterial common antigen (ECA) is a family-specific surface antigen shared by all members of the Enterobacteriaceae and is restricted to this family. It is found in freshly isolated wild-type strains as well as in laboratory strains like Escherichia coli K-12. The family specificity of ECA can be used for taxonomic and diagnostic purposes. ECA is located in the outer leaflet of the outer membrane. It is a glycophospholipid built up by an aminosugar heteropolymer linked to an L-glycerophosphatidyl residue. In a few rough mutants, in addition, the sugar chain can be bound to the complete lipopolysaccharide (LPS) core. Recently, for Shigella sonnei a lipid-free cyclic form of ECA was reported. The genetical determination of ECA is closely related to that of lipopolysaccharide. For biosynthesis of ECA and LPS partly the same sugar precursors and the same carrier lipid is used.  相似文献   

14.
Of the 70 cases of classical biological control for the protection of nature found in our review, there were fewer projects against insect targets (21) than against invasive plants (49), in part, because many insect biological control projects were carried out against agricultural pests, while nearly all projects against plants targeted invasive plants in natural ecosystems. Of 21 insect projects, 81% (17) provided benefits to protection of biodiversity, while 48% (10) protected products harvested from natural systems, and 5% (1) preserved ecosystem services, with many projects contributing to more than one goal. In contrast, of the 49 projects against invasive plants, 98% (48) provided benefits to protection of biodiversity, while 47% (23) protected products, and 25% (12) preserved ecosystem services, again with many projects contributing to several goals. We classified projects into complete control (pest generally no longer important), partial control (control in some areas but not others), and “in progress,” for projects in development for which outcomes do not yet exist. For insects, of the 21 projects discussed, 62% (13) achieved complete control of the target pest, 19% (4) provided partial control, and 43% (9) are still in progress. By comparison, of the 49 invasive plant projects considered, 27% (13) achieved complete control, while 33% (16) provided partial control, and 49% (24) are still in progress. For both categories of pests, some projects’ success ratings were scored twice when results varied by region. We found approximately twice as many projects directed against invasive plants than insects and that protection of biodiversity was the most frequent benefit of both insect and plant projects. Ecosystem service protection was provided in the fewest cases by either insect or plant biological control agents, but was more likely to be provided by projects directed against invasive plants, likely because of the strong effects plants exert on landscapes. Rates of complete success appeared to be higher for insect than plant targets (62% vs 27%), perhaps because most often herbivores gradually weaken, rather than outright kill, their hosts, which is not the case for natural enemies directed against pest insects. For both insect and plant biological control, nearly half of all projects reviewed were listed as currently in progress, suggesting that the use of biological control for the protection of wildlands is currently very active.  相似文献   

15.
Hydraulic lift (HL) is the passive movement of water through the roots from deep wet to dry shallow soil layers when stomata are closed. HL has been shown in different ecosystems and species, and it depends on plant physiology and soil properties. In this study we explored HL patterns in several arid land shrubs, and developed a simple model to simulate the temporal evolution and magnitude of HL during a soil drying cycle under relatively stable climatic conditions. This model was then used to evaluate the influence of soil texture on the quantity of water lifted by shrubs in different soil types. We conducted transpiration suppression experiments during spring 2005 in Chile and spring 2008 in Spain on five shrub species that performed HL, Flourensia thurifera, Senna cumingii and Pleocarphus revolutus (Chile), Retama sphaerocarpa and Artemisia barrelieri (Spain). Shrubs were covered with a black, opaque plastic fabric for a period of 48–72 h, and soil water potential was recorded at different depths under the shrubs. While the shrubs remained covered, water potential continuously increased in shallow soil layers until the cover was removed. The model output indicated that the amount of water lifted by shrubs is heavily dependent on soil texture, as shrubs growing in loamy soils redistributed up to 3.6 times more water than shrubs growing on sandy soils. This could be an important consideration for species growing in soils with different textures, as their ability to perform HL would be context dependent.  相似文献   

16.
17.
18.
The underground part of a tree is an important carbon sink in forest ecosystems. Understanding biomass allocation between the below‐ and aboveground parts (root:shoot ratios) is necessary for estimation of the underground biomass and carbon pool. Nevertheless, large‐scale biomass allocation patterns and their control mechanisms are not well identified. In this study, a large database of global forests at the community level was compiled to investigate the root:shoot ratios and their responses to environmental factors. The results indicated that both the aboveground biomass (AGB) and belowground biomass (BGB) of the forests in China (medians 73.0 Mg/ha and 17.0 Mg/ha, respectively) were lower than those worldwide (medians 120.3 Mg/ha and 27.7 Mg/ha, respectively). The root:shoot ratios of the forests in China (median = 0.23), however, were not significantly different from other forests worldwide (median = 0.24). In general, the allocation of biomass between the belowground and aboveground parts was determined mainly by the inherent allometry of the plant but also by environmental factors. In this study, most correlations between root:shoot ratios and environmental factors (development parameter, climate, altitude, and soil) were weak but significant (< .01). The allometric model agreed with the trends observed in this study and effectively estimated BGB based on AGB across the entire database.  相似文献   

19.
The role of animals in modulating nutrient cycling [hereafter, consumer‐driven nutrient dynamics (CND)] has been accepted as an important influence on both community structure and ecosystem function in aquatic systems. Yet there is great variability in the influence of CND across species and ecosystems, and the causes of this variation are not well understood. Here, we review and synthesize the mechanisms behind CND in fresh waters. We reviewed 131 articles on CND published between 1973 and 1 June 2015. The rate of new publications in CND has increased from 1.4 papers per year during 1973–2002 to 7.3 per year during 2003–2015. The majority of investigations are in North America with many concentrating on fish. More recent studies have focused on animal‐mediated nutrient excretion rates relative to nutrient demand and indirect impacts (e.g. decomposition). We identified several mechanisms that influence CND across levels of biological organization. Factors affecting the stoichiometric plasticity of consumers, including body size, feeding history and ontogeny, play an important role in determining the impact of individual consumers on nutrient dynamics and underlie the stoichiometry of CND across time and space. The abiotic characteristics of an ecosystem affect the net impact of consumers on ecosystem processes by influencing consumer metabolic processes (e.g. consumption and excretion/egestion rates), non‐CND supply of nutrients and ecosystem nutrient demand. Furthermore, the transformation and transport of elements by populations and communities of consumers also influences the flow of energy and nutrients across ecosystem boundaries. This review highlights that shifts in community composition or biomass of consumers and eco‐evolutionary underpinnings can have strong effects on the functional role of consumers in ecosystem processes, yet these are relatively unexplored aspects of CND. Future research should evaluate the value of using species traits and abiotic conditions to predict and understand the effects of consumers on ecosystem‐level nutrient dynamics across temporal and spatial scales. Moreover, new work in CND should strive to integrate knowledge from disparate fields of ecology and environmental science, such as physiology and ecosystem ecology, to develop a comprehensive and mechanistic understanding of the functional role of consumers. Comparative and experimental studies that develop testable hypotheses to challenge the current assumptions of CND, including consumer stoichiometric homeostasis, are needed to assess the significance of CND among species and across freshwater ecosystems.  相似文献   

20.
The emergent wetland and littoral components of the land-water zone are functionally coupled by the amounts and types of dissolved organic matter that are released, processed, transported to, and then further processed within the recipient waters. Operational couplings and integrations in freshwater ecosystems occur along physical and metabolic gradients of a number of scales from micrometer to kilometer dimensions. The operation and turnover of the microbial communities, largely associated with surfaces, generate the metabolic foundations for material fluxes along larger-scale gradients. Because of the predominance of small, shallow freshwater bodies, most dissolved organic carbon (DOC) of lacustrine and riverine ecosystems is derived from photosynthesis of higher plants and microflora associated with detritus, including sediments, and is only augmented by photosynthesis of phytoplankton. As the dissolved organic compounds generated in the wetland and littoral interface regions move toward the open-water regions of the ecosystems, partial utilization effects a selective increase in organic recalcitrance. Even though DOC from allochthonous and from interface sources is more recalcitrant than that produced by planktonic microflora, decomposition of the much larger interface quantities imported to the pelagic zone dominates ecosystem decomposition. The observed high sustained productivity of the land-water interface zone results from extensive recycling of essential resources (nutrients, inorganic carbon) and conservation mechanisms. On the average in lakes and streams, greater than 90 percent of the decomposition in the ecosystem is by bacteria utilizing DOM from non-pelagic sources of primary productivity. In addition to direct mineralization of DOC from non-pelagic sources, many of the organic compounds function indirectly to influence metabolism. New evidence is presented to demonstrate formation of complexes between humic and fulvic organic acids and extracellular enzymes. These complexes inhibit enzyme activity and can be transported within the ecosystem. The complex can be decoupled by mild ultraviolet photolysis with regeneration of enzyme activity in displaced locations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号