首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Uterine decidualization, characterized by stromal cell proliferation, and differentiation into specialized type of cells (decidual cells) with polyploidy, during implantation is critical to the pregnancy establishment in mice. The mechanisms by which the cell cycle events govern these processes are poorly understood. The cell cycle is tightly regulated at two particular checkpoints, G1-S and G2-M phases. Normal operation of these phases involves a complex interplay of cyclins, cyclin-dependent kinases (cdks) and cdk inhibitors (CKIs). We previously observed that upregulation of uterine cyclin D3 at the implantation site is tightly associated with decidualization in mice. To better understand the role of cyclin D3 in this process, we examined cell-specific expression and associated interactions of several cell cycle regulators (cyclins, cdks and CKIs) specific to different phases of the cell cycle during decidualization in mice. Among the various cell cycle molecules examined, coordinate expression and functional association of cyclin D3 with cdk4 suggest a role for proliferation and, that of cyclin D3 with p21 and cdk6 is consistent with the development of polyploidy during stromal cell decidualization.  相似文献   

2.
3.
Endometrial decidualization is highly important for successful construction and maintenance of embryo implantation and pregnancy. Lefty gene at different menstrual cycle phases has different expressions, indicating its regulatory significance. To study the mechanism of Lefty in decidualization, human endometrial stromal cells (hESCs) were cultured and induced with medroxyprogesterone acetate (MPA) and 8‐bromoadenosine‐cAMP (8‐Br‐cAMP) in vitro as a research model. Our results showed that Lefty1 overexpression inhibited MPA‐ and 8‐Br‐cAMP‐induced hESC decidualization and significantly reduced the secretion of prolactin (PRL) and insulin‐like growth factor‐binding protein 1 (IGFBP‐1). With the inhibition of Lefty1 expression, hESC decidualization induced by MPA and 8‐Br‐cAMP became more remarkable, and the secretions of PRL and IGFBP‐1 were higher too. Further tests indicated that during the process of decidualization, P57 expression increased, whereas cyclin D1 expression decreased. Although Lefty1 overexpression did not significantly change the expressions of P57 and cyclin D1, inhibition of Lefty1 expression resulted in more evident changes in P57 and cyclin D1 expressions. Meanwhile, cell cycle examination showed that Lefty1 overexpression reduced the cell cycle arrest at G1/S phase in the in vitro hESC decidualization model. Therefore, Lefty1 could regulate the cell cycle via modulating the expressions of P57 and cyclin D1 and then inhibit the decidualization in vitro. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
Uterine decidualization, characterized by stromal cell proliferation and differentiation into polyploid decidual cells, is critical to the establishment of pregnancy in mice, although the mechanism underlying this process remains poorly understood. This study is the first to investigate the expression of gamma‐amino butyric acid (GABA) and the GABA A‐type receptor π subunit (GABPR) in the early‐pregnancy mouse uterus and their roles in decidualization. The expression of GABRP was detected from Day 4 to 8 of pregnancy. The effects of GABA and GABA A‐type receptor on cell proliferation and apoptosis were investigated using the Cell Titer 96® AQueous One Solution Cell Proliferation Assay and flow cytometry. The levels of cyclin D3 protein were measured in cultured stromal cells artificially induced to undergo decidualization, and treated with GABA and a GABA A‐type receptor agonist or antagonist, respectively, at the same time. mRNA expression of gabrp in implantation sites was lower than that in inter‐implanted sites. GABA and GABRP protein were localized in the luminal and glandular epithelium, stromal cells, and decidual cells. In vitro, GABPR protein level was decreased in cultured stromal cells during the decidualization process. The addition of GABA and the GABA A‐type receptor agonist Muscimol inhibited stromal cell proliferation, promoted apoptosis, and arrested cells in S‐phase, followed by decreased expression of cyclin D3. These results show that in mice, GABA was actively involved in inhibiting stromal cell proliferation and suppresses decidualization progress through GABA A‐type receptors by down‐regulating cyclin D3 level. Mol. Reprod. Dev. 80: 59–69, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

5.
Transforming growth factor (TGF)‐β and activin, members of TGF‐β superfamily, are abundantly expressed in the endometrium and regulate decidualization of endometrial stroma. Smad2 and Smad3 are receptor‐regulated Smads (R‐Smads) that transduce extracellular TGF‐β/activin/Nodal signaling. In situ hybridization results showed that Smad3 was highly expressed in the decidual zone during the peri‐implantation period in mice. By using artificial decidualization, we found that Smad3 null mice showed partially compromised decidualization. We therefore hypothesized that Smad2 might compensate for the function of Smad3 during the process of decidualization. Smad2 was also highly expressed in the decidual zone and phosphorylated Smad2 was much more abundantly increased in the deciduoma of Smad3 null mice than for wild‐type (WT) mice. We further employed an in vitro uterine stromal cell decidualization model, and found that decidual prolactin‐related protein (dPRP) and cyclin D3, which are well‐known markers for decidual cells, were significantly down‐regulated in Smad3 null decidual cells, and were much more significantly reduced when the expression of Smad2 was simultaneously silenced by its siRNA (P < 0.05). However, the expression levels of dPRP and cyclin D3 remained the same when Smad2 was silenced in WT decidual cells. Collectively, these findings provide evidence for an important role of Smad3 in decidualization and suggest that Smad2 and Smad3 may have redundant roles in decidualization. J. Cell. Biochem. 113: 3266–3275, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
长链非编码RNA(long non-coding RNA,lncRNA)是一类长度大于200 nt、不具有蛋白编码潜能的RNA分子.在细胞生长发育、物质代谢以及疾病等的发生发展过程中起关键调控作用,但在蜕膜化相关领域研究报道较少.为了探究lincRNA AC027700.1在早孕小鼠子宫内膜中的表达规律,初步探讨AC0...  相似文献   

7.
In mouse, decidualization is characterized by the proliferation of stromal cells and their differentiation into specialized type of cells (decidual cells) with polyploidy, surrounding the implanting blastocyst. However, the mechanisms involved in these processes remain poorly understood. Using multiple approaches, we have examined the role of Adam12 in decidualization during early pregnancy in mice. Adam12 is spatiotemporally expressed in decidualizing stromal cells in intact pregnant females and in pseudopregnant mice undergoing artificially induced decidualization. In the ovariectomized mouse uterus, the expression of Adam12 is upregulated after progesterone treatment, which is primarily mediated by nuclear progesterone receptor. In a stromal cell culture model, the expression of Adam12 gradually rises with the progression of stromal decidualization, whereas the attenuated expression of Adam12 after siRNA knockdown significantly blocks the progression of decidualization. Our study suggests that Adam12 is involved in promoting uterine decidualization during pregnancy.  相似文献   

8.
Hoxa-10 is an AbdominalB-like homeobox gene that is expressed in the developing genitourinary tract during embryogenesis and in the adult uterus during early pregnancy. Null mutation of Hoxa-10 in the mouse causes both male and female infertility. Defective implantation and decidualization resulting from the loss of maternal Hoxa-10 function in uterine stromal cells is the cause of female infertility. However, the mechanisms by which Hoxa-10 regulates these uterine events are unknown. We have identified two potential mechanisms for these uterine defects in Hoxa-10(-/-) mice. First, two PGE2 receptor subtypes, EP3 and EP4, are aberrantly expressed in the uterine stroma in Hoxa-10(-/-) mice, while expression of several other genes in the stroma (TIMP-2, MMP-2, ER, and PR) and epithelium (LIF, HB-EGF, Ar, and COX-1) are unaffected before implantation. Further, EP3 and EP4 are inappropriately regulated by progesterone (P4) in the absence of Hoxa-10, while PR, Hoxa-11 and c-myc, three other P4-responsive genes respond normally. These results suggest that Hoxa-10 specifically mediates P4 regulation of EP3 and EP4 in the uterine stroma. Second, since Hox genes are implicated in local cell proliferation, we also examined steroid-responsive uterine cell proliferation in Hoxa-10(-/-) mice. Stromal cell proliferation in mutant mice in response to P4 and 17beta-estradiol (E2 was significantly reduced, while epithelial cell proliferation was normal in response to E2. These results suggest that stromal cell responsiveness to P4 with respect to cell proliferation is impaired in Hoxa-10(-/-) mice, and that Hoxa-10 is involved in mediating stromal cell proliferation. Collectively, these results suggest that Hoxa-10 mutation causes specific stromal cell defects that can lead to implantation and decidualization defects apparently without perturbing epithelial cell functions.  相似文献   

9.
Stathmin, a cytosolic phosphoprotein that regulates microtubule dynamics during cell-cycle progression, is abundantly expressed at embryo implantation sites in rats. Here, we characterized the expression of stathmin and its family genes in the murine uterus during the peri-implantation period. Stathmin protein was expressed in the glandular and luminal epithelium, blood vessels, and stromal cells on day 3 of pregnancy. On the day of implantation (day 5), stathmin was mainly localized in blood vessels in the endometrium. On day 7, intense stathmin expression was limited to capillary vessels and secondary decidual cells. Stathmin expression was higher at implantation sites than at uterine segments between implantation sites and increased during oil-induced decidualization. Although the artificially-induced deciduoma weights and number of implantation sites were similar between stathmin-knockout (KO) and wild-type (WT) mice, the stathmin-KO mice had fewer newborn pups (reduced by 30%). The expression of alkaline phosphatase, desmin, and cyclin D3 was attenuated in decidual zones of stathmin-KO mice. Messenger RNA level of the stathmin family gene, SCG10, was high at the time of decidualization in WT and stathmin-KO mice. In contrast, the others of stathmin family members, SCLIP and RB3 were highly expressed in stathmin-KO mice compared to WT mice. These results suggest that stathmin and stathmin family genes are expressed in the murine endometrium with enhanced expression in the implantation or the decidualization process.  相似文献   

10.
子宫内膜向蜕膜的转化是正常着床和妊娠的一个重要特征,对于胚泡着床是必不可少的。在蜕膜化过程中,子宫内膜基质细胞在形态和生理等方面都发生了很大的变化。蜕膜化过程受多种因素的调节,包括cAMP、胰岛素样生长因子结合蛋白-1(IGFBP-1)、自然杀伤细胞、同源盒基因-10(HOXA10)、激活素等。但对蜕膜化的机制及调节等仍不清楚。  相似文献   

11.
D-type Gl cyclins are the primary cell cycle regulators of G1/S transition in eukaryotic cells, and are differentially expressed in a variety of cell lines in vitro. Little is known, however, about the expression patterns of D-type G1 cyclins in normal mouse in vivo. Thus, in the present study, tissue-specific expressions of cyclin D1 and D3 genes were examined in several tissues derived from adult male mice, and stage-specific expression of cyclin genes was studied in brain, liver, and kidney of developing mice from embryonic day 13 to postnatal day 11. Cell cycle-dependent expression of cyclins was also examined in regenerating livers following partial hepatectomy. Our results indicate that (l) cyclins Dl and D3 are expressed in a tissue-specific manner, with cyclin Dl being highly expressed in kidney and D3 in thymus; (2) cyclin D3 mRNA is abundantly expressed in young proliferating tissues and is gradually reduced during development, whereas cyclin Dl mRNA fluctuates during development; and (3) compensatory regeneration of liver induces cyclin Dl gene expression 12 hr after partial hepatectomy, and cyclin D3 gene expression from 36 to 42 hr (at the time of G1/S transition). In conclusion, this study indicates that cyclin D1 and D3 genes are differentially expressed in vivo in a tissue-specific, developmental stage-dependent, and cell cycle-dependent manner. © 1996 Wiley-Liss, Inc.  相似文献   

12.
Interleukin 11 receptor alpha (Il11ra) null mice are infertile due to defective decidualization and abnormal trophoblast invasion. We have previously shown in these mice that downregulation of decidual proteinase inhibitors plays a role in uncontrolled trophoblast invasion. However, the decidua is abnormally smaller in pseudopregnant Il11ra null mice, where trophoblast invasion is not a factor. Here, we examined whether defective decidualization is due to dysregulation of key molecules involved in decidual cell growth and differentiation. We found a dramatic downregulation of cyclin D3 in Il11ra null mice. We also found that IL11 robustly stimulates the expression of cyclin D3 in cell culture. CDK4 and CDK6, known partners of cyclin D3, are not affected. Immunolocalization studies show absence of cyclin D3 in the mesometrial site and absence of differentiated polyploid cells in the antimesometrial site of Il11ra null mice. We also examined the expression of cell differentiation factors CDKN1A (p21) and CDKN1B (p27), and found that in both in vivo and cell culture the expression of CDKN1A (p21) but not CDKN1B (p27) is under the control of IL11. Another clear target of IL11 in the decidua is BIRC5 (Survivin), whose expression is repressed in the decidua of Il11ra null mice and stimulated by IL11 in cell culture. Taken together, these results provide, at least in part, an explanation for the defective small decidua of mice lacking the Il11ra gene, and reveal for the first time that cyclin D3, CDKN1A (p21), and BIRC5 (Survivin) are targets of IL11 in the decidua.  相似文献   

13.
Embryo implantation into the maternal uterus is a crucial step for the successful establishment of mammalian pregnancy. Following the attachment of embryo to the uterine luminal epithelium, uterine stromal cells undergo steroid hormone-dependent decidualization, which is characterized by stromal cell proliferation and differentiation. The mechanisms underlying steroid hormone-induced stromal cell proliferation and differentiation during decidualization are still poorly understood. Ribonucleotide reductase, consisting of two subunits (RRM1 and RRM2), is a rate-limiting enzyme in deoxynucleotide production for DNA synthesis and plays an important role in cell proliferation and tumorgenicity. Based on our microarray analysis, Rrm2 expression was significantly higher at implantation sites compared with interimplantation sites in mouse uterus. However, the expression, regulation, and function of RRM2 in mouse uterus during embryo implantation and decidualization are still unknown. Here we show that although both RRM1 and RRM2 expression are markedly induced in mouse uterine stromal cells undergoing decidualization, only RRM2 is regulated by progesterone, a key regulator of decidualization. Further studies showed that the induction of progesterone on RRM2 expression in stromal cells is mediated by the AKT/c-MYC pathway. RRM2 can also be induced by replication stress and DNA damage during decidualization through the ATR/ATM-CHK1-E2F1 pathway. The weight of implantation sites and deciduoma was effectively reduced by specific inhibitors for RRM2. The expression of decidual/trophoblast prolactin-related protein (Dtprp), a reliable marker for decidualization in mice, was significantly reduced in deciduoma and steroid-induced decidual cells after HU treatment. Therefore, RRM2 may be an important effector of progesterone signaling to induce cell proliferation and decidualization in mouse uterus.  相似文献   

14.
The mechanisms that regulate the transition between the initial priming phase and DNA replication in liver regeneration are poorly understood. To study this transition, we compared events occurring after standard two-thirds partial hepatectomy, which elicits full regeneration, with response to a reduced hepatectomy, one-third partial hepatectomy (1/3PH), which leads to little DNA replication. Although the initial response to partial hepatectomy at the priming phase appeared to be similar between the two procedures, cell cycle progression was significantly blunted in 1/3PH mice. Among the main defects observed in 1/3PH mice were an almost complete deficiency in retinoblastoma phosphorylation and the lack of increase in kinase activity associated with cyclin E. We report that, in two-thirds partial hepatectomy mice, the expression of heparin-binding epidermal growth factor-like growth factor (HB-EGF) preceded the start of DNA replication and was not detectable in 1/3PH animals. Injection of HB-EGF into 1/3PH mice resulted in a >15-fold increase in DNA replication. Moreover, we show that hepatocyte DNA replication was delayed in HB-EGF knock-out mice. In summary, we show that HB-EGF is a key factor for hepatocyte progression through G(1)/S transition during liver regeneration.  相似文献   

15.
16.
Ubiquitin-specific protease 7 (USP7), a member of the deubiquitinating (DUB) enzyme family, regulates protein stability and has a well-characterized function in tumorigenesis. Given its critical role in growth and development, it was speculated to be involved in modulating processes in the female reproductive system but its exact role has not been elucidated. Decidualization is one of the key processes in pregnancy and aberrant decidualization is a cause of pregnancy failure. The uterine endometrium layer undergoes significant structural and functional changes during decidualization in preparation for and after embryo implantation. Here, we hypothesized that USP7 could be involved in mediating endometrial stromal cell (ESC) decidualization and set out to determine its function with a primary stromal cell culture. Using in situ hybridization and immunohistochemical techniques, we observed increased USP7 expression during uterine decidualization and found that it was predominantly localized to the decidual zone in the post-implantation uterus. Since the ovarian hormones, progesterone (P4) and estrogen (E2), function in promoting stroma decidualization, we investigated their relationship with USP7 expression and found that they exert minimal influence. Moreover, increased USP7 expression observed during deciduoma development was found to be independent of blastocyst attachment. Using a specific USP7 inhibitor, HBX19818, we demonstrated an additional novel role for USP7 in endometrial stroma decidualization in mice during early pregnancy. Our findings could potentially be applied towards future research and development in female infertility.  相似文献   

17.
BACKGROUND: Cellular Ras and cyclin D1 are required at similar times of the cell cycle in quiescent NIH3T3 cells that have been induced to proliferate, but not in the case of cycling NIH3T3 cells. In asynchronous cultures, Ras activity has been found to be required only during G2 phase to promote passage through the entire upcoming cell cycle, whereas cyclin D1 is required through G1 phase until DNA synthesis begins. To explain these results in molecular terms, we propose a model whereby continuous cell cycle progression in NIH3T3 cells requires cellular Ras activity to promote the synthesis of cyclin D1 during G2 phase. Cyclin D1 expression then continues through G1 phase independently of Ras activity, and drives the G1-S phase transition. RESULTS: We found high levels of cyclin D1 expression during the G2, M and G1 phases of the cell cycle in cycling NIH3T3 cells, using quantitative fluorescent antibody measurements of individual cells. By microinjecting anti-Ras antibody, we found that the induction of cyclin D1 expression beginning in G2 phase was dependent on Ras activity. Consistent with our model, cyclin D1 expression during G1 phase was particularly stable following neutralization of cellular Ras. Finally, ectopic expression of cyclin D1 largely overcame the requirement for cellular Ras activity during the continuous proliferation of cycling NIH3T3 cells. CONCLUSIONS: Ras-dependent induction of cyclin D1 expression beginning in G2 phase is critical for continuous cell cycle progression in NIH3T3 cells.  相似文献   

18.
Mukherji A  Janbandhu VC  Kumar V 《FEBS letters》2008,582(7):1111-1116
Chemotherapeutic agents are well known to induce growth arrest of cancerous cells by inducing DNA damage/replicational stress and engaging cellular apoptotic machinery. Our studies on hydroxyurea (HU) recognized cyclin D1 destabilization as the initiator of growth arrest at G(1)/S-phase independent of other cell cycle regulators. Cyclin D1 degradation was associated with its phosphorylation at Thr286 by glycogen synthase kinase-3beta and inactivation of Akt kinase. Overexpression of the cyclin D1(T286A) mutant, or constitutively active Akt, conferred stability to cyclin D1 and helped bypass cell cycle arrest. Thus, growth arrest by HU seems to involve destabilization of cyclin D1 in addition to its well-established role as ribonucleotide reductase inhibitor.  相似文献   

19.

Background

Plasma kisspeptin levels dramatically increased during the first trimester of human pregnancy, which is similar to pregnancy specific glycoprotein-human chorionic gonadotropin. However, its particular role in the implantation and decidualization has not been fully unraveled. Here, the study was conducted to investigate the expression and function of kisspeptin in mouse uterus during early pregnancy and decidualization.

Methodology/Principal Findings

Quantitative PCR results demonstrated that Kiss1 and GPR54 mRNA levels showed dynamic increase in the mouse uterus during early pregnancy and artificially induced decidualization in vivo. KISS-1 and GPR54 proteins were spatiotemporally expressed in decidualizing stromal cells in intact pregnant females, as well as in pseudopregnant mice undergoing artificially induced decidualization. In the ovariectomized mouse uterus, the expression of Kiss1 mRNA was upregulated after progesterone or/and estradiol treatment. Moreover, in a stromal cell culture model, the expression of Kiss1 and GPR54 mRNA gradually rise with the progression of stromal cell decidualization, whereas the attenuated expression of Kiss1 using small interfering RNA approaches significantly blocked the progression of stromal cell decidualization.

Conclusion

our results demonstrated that Kiss1/GPR54 system was involved in promoting uterine decidualization during early pregnancy in mice.  相似文献   

20.
Embryo implantation is an essential step for a successful pregnancy, and any defect in this process can lead to a range of pregnancy pathologies. The objective of this study was to explore the role of N‐myc downregulated gene 1 (NDRG1) in embryo implantation. It was found that uterine NDRG1 expression has a dynamic pattern during the estrous cycle in nonpregnant mice and that uterine NDRG1 expression was elevated during the implantation process in pregnant mice. The distinct accumulation of NDRG1 protein signals was observed in the primary decidual zone adjacent to the implanting embryo during early pregnancy. Furthermore, uterine NDRG1 expression could be induced by activated implantation or artificial decidualization in mice. Decreased uterine NDRG1 expression was associated with pregnancy loss in mice and was associated with recurrent miscarriages in humans. The in vitro decidualization of both mouse and human endometrial stromal cells (ESCs) was accompanied by increased NDRG1 expression and downregulated NDRG1 expression in ESCs effectively inhibited decidualization. Collectively, these data suggest that NDRG1 plays an important role in decidualization during the implantation process, and the abnormal expression of NDRG1 may be involved in pregnancy loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号