首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is generally accepted that as the result of positive thymic selection, CD8-expressing T cells recognize peptide antigens presented in the context of MHC class I molecules and CD4-expressing T cells interact with peptide antigens presented by MHC class II molecules. Here we report the generation of TCRalpha/beta(+), CD3(+), CD4(+), CD8(-), MHC class I-restricted alloreactive T-cell clones which were induced using peripheral blood mononuclear cells from healthy individuals following in vitro stimulation with transporter associated with antigen processing (TAP)-deficient cell lines T2. The CD4(+) T-cell clones showed an HLA-A2.1-specific proliferative response against T2 cells which was inhibited by anti-CD3 and anti-CD4 monoclonal antibodies. These results suggest that interaction of the TCR with peptide-bound HLA class I molecules contributes to antigen-specific activation of these co-receptor-mismatched T-cell clones. Antigen recognition by alloreactive MHC class I-restricted CD4(+) T cells was inhibited by removing peptides bound to HLA molecules on T2 cells suggesting that the alloreactive CD4(+) T cells recognize peptides that bind in a TAP-independent manner to HLA-A2 molecules. The existence of such MHC class I-restricted CD4(+) T cells which can recognize HLA-A2 molecules in the absence of TAP function may provide a basis for the development of immunotherapy against TAP-deficient tumor variants which would be tolerant to immunosurveillance by conventional MHC class I-restricted cytotoxic lymphocytes.  相似文献   

2.
3.
The reduced β-globin synthesis characterizing the β+ thalassemia phenotype has been shown to be caused by anomalous processing within the small Intervening sequence (IVS1) of the β-globin mRNA precursor. The β-globin gene from such patients contains a single base substitution within IVS1, located 22 bp from the 3′ junction between IVS1 and exon 2, creating an alternative splice site within IVS1 and resulting in retention of the 3′-terminal 19 bases of IVS1. We have identified this abnormally spliced mRNA in the reticulocyte RNA of two patients with β+ thalassemia, by S1 nuclease mapping and primer-extension analysis. Moreover, a cloned β+-thalassemic gene preferentially generated the anomalously spliced RNA when expressed In monkey kidney cells. The anomalously spliced RNA constituted approximately 80%–90%, and normal β RNA approximately 10%–20%, of the total β mRNA. In contrast, the small amount of β mRNA present in reticulocytes from such patients consisted predominantly of normal β mRNA. These results suggest that the reduced amount of normally functioning β mRNA present in such patients results from preferential processing at the alternative splice site, with subsequent Instability, reduced nuclear processing and/or inadequate cytoplasmic transport of the abnormal RNA species.  相似文献   

4.
Human IgM+CD27+ B cells: memory B cells or "memory" B cells?   总被引:1,自引:0,他引:1  
Memory B cells are generated in germinal centers (GC) and contribute to serological immunity by rapidly differentiating into plasma cells. Human memory B cells can be identified by the expression of CD27. These cells exhibit more rapid responses than naive (CD27-) B cells following stimulation in vitro, consistent with the heightened kinetics of secondary responses in vivo. CD27+ B cells express mutated Ig V region genes; however a significant proportion continue to express IgM, suggesting the existence of IgM+ memory B cells. The observation that mutated IgM+CD27+ B cells are generated in humans who cannot form GC led to the conclusions that these cells are generated independently of GC and thus are not memory cells and that they mediate responses to T cell-independent Ag. Although some studies support the idea that IgM+CD27+ B cells participate in T cell-independent responses, many others do not. In this review we will provide alternate interpretations of the biology of IgM+CD27+ B cells and propose that they are indeed memory cells.  相似文献   

5.
The field of mesenchymal stromal cell (MSC) biology and clinical cellular therapy has grown exponentially over the last few decades. With discovery of multiple tissue specific sources of stromal cells, invariably being termed MSCs, and their increasing clinical application, there is a need to further delineate the true definition of a mesenchymal stromal cell and to recognise the inherit differences between cell sources; both their potential and limitations.In this review, we discuss the importance of considering every stromal cell source as an independent entity and the need to critically evaluate and appreciate the true phenotype of these cells and their safety when considering their use in novel cell therapies.  相似文献   

6.
Dendritic cells (DCs) are promising antigen presenting cells for cancer treatment. Previously, we showed that the combination of monophosphoryl lipid A (MPLA) with IFNγ generates mature DCs that produce IL-12 and polarize CD4+ T cells towards a Th1 phenotype. Here, we extended these observations by showing that the DCs generated with the clinical grade maturation cocktail of MPLA/IFNγ induce superior tumour antigen-specific CD8+ CTL responses compared to the cytokine cocktail matured DCs that are currently used in the clinic. MPLA/IFNγ DCs can induce CTL responses in healthy individuals as well as in melanoma patients. The CTL induction was mainly dependent on the IL-12 produced by the MPLA/IFNγ DCs. The high amounts of induced CTLs are functional as they produce IFNγ and lyse target cells and this cytolytic activity is antigen specific and HLA restricted. Furthermore, the CTLs proved to kill tumour cells expressing endogenous tumour antigen in vitro. Therefore, MPLA/IFNγ DCs are very promising for the use in future cancer immunotherapy.  相似文献   

7.
Davies KE  Grounds MD 《Cell》2006,127(7):1304-1306
There is currently no effective treatment for the devastating muscle-wasting disease Duchenne muscular dystrophy (DMD). Cossu and colleagues report in a recent Nature paper that transplantation of mesoangioblast stem cells may hold promise for treating DMD. Further studies are required to fully evaluate the clinical potential of these blood-vessel-associated stem cells.  相似文献   

8.
The autoimmune process in rheumatoid arthritis depends on activation of immune cells, which utilize intracellular kinases to respond to external stimuli such as cytokines, immune complexes, and antigens. CD4+ T cells comprise a large proportion of the inflammatory cells that invade the synovial tissue and may therefore be a cell type of pathogenic importance. Both methotrexate and infliximab are effective in the treatment of inflammatory arthritis; however, the biological effects triggered by these treatments and the biochemical mechanisms underlining the cell response are still not fully understood. Thus, in this study the global metabolic changes associated with methotrexate or infliximab treatment of isolated human CD4+ T cells were examined using gas chromatography/mass spectrometry or liquid chromatography/mass spectrometry. In total 148 metabolites involved in selective pathways were found to be significantly altered. Overall, the changes observed are likely to reflect the effort of CD4+ cells to increase the production of cellular reducing power to offset the cellular stress exerted by treatment. Importantly, analysis of the global metabolic changes associated with MTX or infliximab treatment of isolated human CD4+ T cells suggested that the toxicity associated with these agents is minimal when used at clinically relevant concentrations.  相似文献   

9.
Human peripheral CD4(+)CD25(-) T cells can be induced to express Foxp3 when activated in vitro by TCR stimulation with TGF-β and IL-2. However, these TGF-β-induced Foxp3(+) regulatory T cells (iTregs) lack a regulatory phenotype. From libraries of nuclear receptor ligands and bioactive lipids, we screened three peroxisome proliferator-activated receptor (PPAR)α (bezafibrate, GW7647, and 5,8,11,14-eicosatetraynoic acid) and two PPARγ agonists (ciglitazone and 15-deoxy-Δ-(12,14)-PG J(2)) as molecules that increased Foxp3 expression in human iTregs significantly compared with that in DMSO-treated iTregs (control). These PPARα and PPARγ agonist-treated iTregs maintained a high level of Foxp3 expression and had suppressive properties. There were no significant differences in the suppressive properties of iTregs treated with the three PPARα and two PPARγ agonists, and all of the treated iTregs increased demethylation levels of the Foxp3 promoter and intronic conserved noncoding sequence 3 regions. Furthermore, PPARα and PPARγ agonists, together with TGF-β, more strongly inhibited the expression of all three DNA methyltransferases (DNMTs) (DNMT1, DNMT3a, and DNMT3b) in activated CD4(+) T cells. These results demonstrate that PPARα and PPARγ agonists together with TGF-β elicit Foxp3 DNA demethylation through potent downregulation of DNMTs and induce potent and stable Foxp3 expression, resulting in the generation of functional iTregs. Moreover, trichostatin A and retinoic acid enhanced the generation of iTregs synergistically with PPARα and PPARγ agonists.  相似文献   

10.
Figuring out what is wrong in Fanconi anemia (FA) patient cells is critical to understanding the contributions of the FA pathway to DNA repair and tumor suppression. Although FA patients exhibit a wide range of disease manifestation as well as severity (asymptomatic to congenital abnormalities, bone marrow failure, and cancer), cells from FA patients share underlying defects in their ability to process DNA lesions that interfere with DNA replication. In particular, FA cells are very sensitive to agents that induce DNA interstrand crosslinks (ICLs). The cause of this pronounced ICL sensitivity is not fully understood, but has been linked to the aberrant activation of DNA damage repair proteins, checkpoints and pathways. Thus, regulation of these responses through coordination of repair processing at stalled replication forks is an essential function of the FA pathway. Here, we briefly summarize some of the aberrant DNA damage responses contributing to defects in FA cells, and detail the newly-identified relationship between FA and the mismatch repair protein, MSH2. Understanding the contribution of MSH2 and/or other proteins to the replication problem in FA cells will be key to assessing therapeutic options to improve the health of FA patients. Moreover, loss of these factors, if linked to improved replication, could be a key event in the progression of FA cells to cancer cells. Likewise, loss of these factors could synergize to enhance tumorigenesis or confer chemoresistance in tumors defective in FA-BRCA pathway proteins and provide a basis for biomarkers for disease progression and response.  相似文献   

11.
Human Vγ9Vδ2 T cells are a unique T-cell type, and data from recent studies of Vγ9Vδ2 T cells emphasize their potential relevance to cancer immunotherapy. Vγ9Vδ2 T cells exhibit dual properties since they are both antigen-presenting cells and cytotoxic toward cancer cells. The majority of Vγ9Vδ2 T cells are double-negative for the co-receptors CD4 and CD8, and only 20–30% express CD8. Even though they are mostly neglected, a small fraction of Vγ9Vδ2 T cells also express the co-receptor CD4. Here the authors show that CD4+ Vγ9Vδ2 T cells comprise 0.1–7% of peripheral blood Vγ9Vδ2 T cells. These cells can be expanded in vitro using zoledronic acid, pamidronic acid or CD3 antibodies combined with IL-2 and feeder cells. Unlike most conventional CD4+ αβ T cells, CD4+ Vγ9Vδ2 T cells are potently cytotoxic and can kill cancer cells, which is here shown by the killing of cancer cell lines of different histological origins, including breast cancer, prostate cancer and melanoma cell lines, upon treatment with zoledronic acid. Notably, the killing capacity of CD4+ Vγ9Vδ2 T cells correlates with co-expression of CD56.  相似文献   

12.

Introduction  

Our previous study has reported that, in patients with untreated new-onset lupus (UNOL), there was an abnormal increase in the number of CD4+CD25-Foxp3+ T cells that correlated with disease activity and significantly decreased after treatment. However, little is known about the nature of this cell entity. The aim of this study was to explore the nature of abnormally increased CD4+CD25-Foxp3+ T cells in UNOL patients.  相似文献   

13.
T cells bearing γδ antigen receptors have been investigated as potential treatments for several diseases, including malignant tumours. However, the clinical application of γδT cells has been hampered by their relatively low abundance in vivo and the technical difficulty of inducing their differentiation from hematopoietic stem cells (HSCs) in vitro. Here, we describe a novel method for generating mouse γδT cells by co-culturing HSC-enriched bone marrow cells (HSC-eBMCs) with induced thymic epithelial cells (iTECs) derived from induced pluripotent stem cells (iPSCs). We used BMCs from CD45.1 congenic C57BL/6 mice to distinguish them from iPSCs, which expressed CD45.2. We showed that HSC-eBMCs and iTECs cultured with IL-2 + IL-7 for up to 21 days induced CD45.1+ γδT cells that expressed a broad repertoire of Vγ and Vδ T-cell receptors. Notably, the induced lymphocytes contained few or no αβT cells, NK1.1+ natural killer cells, or B220+ B cells. Adoptive transfer of the induced γδT cells to leukemia-bearing mice significantly reduced tumour growth and prolonged mouse survival with no obvious side effects, such as tumorigenesis and autoimmune diseases. This new method suggests that it could also be used to produce human γδT cells for clinical applications.  相似文献   

14.
Zhang QB  Ji XY  Huang Q  Dong J  Zhu YD  Lan Q 《Cell research》2006,16(12):909-915
Understanding of the differentiation profile of brain tumor stem cells (BTSCs), the key ones among tumor cell population, through comparison with neural stem cells (NSCs) would lend insight into the origin of glioma and ultimately yield new approaches to fight this intractable disease. Here, we cultured and purified BTSCs from surgical glioma specimens and NSCs from human fetal brain tissue, and further analyzed their cellular biological behaviors, especially their differentiation property. As expected, NSCs differentiated into mature neural phenotypes. In the same differentiation condition, however, BTSCs exhibited distinguished differences. Morphologically, cells grew flattened and attached for the first week, but gradually aggregated and reformed floating tumor sphere thereafter. During the corresponding period, the expression rate of undifferentiated cell marker CD 133 and nestin in BTSCs kept decreasing, but 1 week later, they regained ascending tendency. Interestingly, the differentiated cell markers GFAP and β-tubulinlII showed an expression change inverse to that of undifferentiated cell markers. Taken together, BTSCs were revealed to possess a capacity to resist differentiation, which actually represents the malignant behaviors of glioma.  相似文献   

15.
That HIV-specific cytotoxic T-lymphocytes (CTLs) might be defective in some way has stimulated much controversy and research. We use mathematical models to explore the predictions of two competing CTL-defect theories: "defective memory" and "defective activation". We discuss whether these models are consistent with adoptive-transfer experiments in HIV-infected patients and vaccine trials in simian immunodeficiency virus (SIV)-infected monkeys. Finally, we describe experimental tests that could decide among these two theories and a competitor: CTL exhaustion.  相似文献   

16.
 Daudi Burkitt’s lymphoma cells, unlike other tumor cell lines, stimulate human T cells coexpressing the variable (V) region genes TCRG-V9 and V TCRD-V2 to proliferate and secrete lymphokines. Hybrids, derived by the fusion of Daudi cells with the human melanoma cell line MZ2-MEL 2.2, retain the morphology of melanoma cells. Unlike the parental melanoma cell line, these Daudi × MZ2-MEL 2.2 hybrids stimulate secretion of tumor necrosis factor (TNF) and granulocyte/macrophage colony stimulating factor (GM-CSF) by CD4-positive Vγ9/Vδ2 T-cell clones. Whereas the stimulator phenotype of Daudi cells behaves as a dominant trait in Daudi × melanoma hybrids, the expression of B-cell differentiation markers is suppressed. Thus, the γ/δ T-cell ligand expressed by Daudi cells behaves as a dominant tumor antigen in Daudi × melanoma hybrids and is unrelated to the differentiated B-cell phenotype. Dominant expression of the Daudi ligand for human Vγ9/Vδ2 T cells in these hybrids may provide a basis for defining the stimulatory principle at the molecular level. Received: 2 May 1996 / Revised: 15 July 1996  相似文献   

17.
Protection against P. berghei malaria can successfully be induced in mice by immunization with both radiation attenuated sporozoites (RAS) arresting early during liver stage development, or sporozoites combined with chloroquine chemoprophylaxis (CPS), resulting in complete intra-hepatic parasite development before killing of blood-stages by chloroquine takes place. We assessed the longevity of protective cellular immune responses by RAS and CPS P. berghei immunization of C57BL/6j mice. Strong effector and memory (T(EM)) CD8+ T cell responses were induced predominantly in the liver of both RAS and CPS immunized mice while CD4+ T cells with memory phenotype remained at base line levels. Compared to unprotected na?ve mice, we found high sporozoite-specific IFNγ ex vivo responses that associated with induced levels of in vivo CD8+ T(EM) cells in the liver but not spleen. Long term evaluation over a period of 9 months showed a decline of malaria-specific IFNγ responses in RAS and CPS mice that significantly correlated with loss of protection (r(2)?=?0.60, p<0.0001). The reducing IFNγ response by hepatic memory CD8+ T cells could be boosted by re-exposure to wild-type sporozoites. Our data show that sustainable protection against malaria associates with distinct intra-hepatic immune responses characterized by strong IFNγ producing CD8+ memory T cells.  相似文献   

18.
Due to their potent ability to activate the immune system, dendritic cells (DC) are showing promise as potential adjuvants for tumour immunotherapy of cancer patients. However, little is known about the effect tumour cells can have on DC function. Indeed, the discovery of different DC subsets with different immunological functions indicates that the relationship between tumour cells and tumour-infiltrating DC subtypes is likely to be complex. There remains a lot to be understood about the effects of tumours on DC before we can expect to benefit from DC-based tumour immunotherapy of cancer patients. Here we review the recent advances being made in understanding DC phenotype and function in relation to interactions with different types of tumours.  相似文献   

19.
Following in vitro sensitization with HSV-infected cells, Tγ cells comprise most of the cytotoxic effector cell population. However, whereas freshly obtained Tγ cells exhibit theophylline sensitivity in the sheep erythrocyte rosette assay, presensitized Tγ cells are theophylline resistant. Similarly, when T cells are fractionated according to their theophylline sensitivity before the sensitization culture, theophylline-resistant Tμ cells appear as the precursors of Tγ cytotoxic effector cells, the Tμ-Tγ switch occurring with a transitory eclipse of Fc receptors, and maintenance of theophylline resistance.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号