首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Drosophila melanogaster flies were transformed with a yp1-Adh fusion gene with 890 bp of yp1 5 flanking sequence. In an Adh - background these flies show a stage, tissue and sex-specific pattern of alcohol dehydrogenase (ADH) activity characteristic of yolk protein genes. ADH activity is not present in dsx D/dsx pseudomales indicating that this fragment contains sites where the dsx gene product exerts its effect. Transformed male flies do not exhibit ADH activity when injected with 20-hydroxyecdysone while synthesis of native yolk proteins is induced. Thus the hormone inducibility and sex regulation have been separated in this construct.  相似文献   

2.
昆虫分子生物学的一些进展—性别决定,生殖及激素   总被引:4,自引:0,他引:4  
翟启慧 《昆虫学报》1993,36(1):113-125
  相似文献   

3.
4.
A partial cDNA clone for the 48,000 dalton yolk polypeptide gene from Anastrepha suspensa was isolated from a cDNA expression library using a yolk polypeptide antibody probe and hybridization to the Drosophila melanogaster yolk protein 1 gene. The sequenced DNA has greatest homology to the yolk protein genes from Ceratitis capitata, D. Melanogaster, and Calliphora erythrocephala and, similar to these genes, shares amino acid sequence domains with those from lipases. RNA hybridization studies indicated that the yolk protein gene expression is completely female-specific and limited to the ovaries, without apparent regulation by 20-hydroxyecdysone or juvenile hormone. This is in contrast to an earlier study which suggested, based on immunological probes, that a very low level of yolk protein synthesis occurred in fat body and was not sex-specific. Arch. Insect Biochem. Physiol. 36:25–35, 1997.Published 1997 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    5.
    6.
    7.
    昆虫卵黄原蛋白(Vitellogenins, Vg)是一种多功能的生殖发育关键调控蛋白,在不同昆虫体内的结构、合成调控及功能不尽相同。随着基因编辑技术的成熟,运用分子手段调控Vg的合成,可减少卵黄发生,降低昆虫的繁殖力,成为有效防治害虫的优势方法之一。因此,Vg及其合成调控的研究受到广泛关注。半翅目害虫是农林业的重点防治对象之一,除直接刺吸为害寄主外,其常传播植物病原体,对农业生产造成了严重危害。半翅目昆虫Vg除在生殖发育中的关键作用外,还与病原菌的传播、寄主免疫等密切相关,可成为分子水平防治半翅目害虫及其继发病害的优势靶标。因此,本文总结了半翅目昆虫Vg的合成方式、合成场所,指明了其结构上蛋白亚基数目的差异,概述了其与昆虫免疫反应、植物防御、病毒传播等有关的研究进展,总结了其合成的保幼激素(包括保幼激素受体Methoprene-tolerant和转录因子Krüppel homolog 1等关键调控因子等)、蜕皮激素和胰岛素信号通路等主要的内分泌激素调控通路,以及以营养信号调控为主的非激素调控通路,为探索半翅目害虫的分子防控手段提供理论依据。  相似文献   

    8.
    In adult female Drosophila melanogaster an increase in the synthesis and secretion of three yolk polypeptides (YPs) occurs during the first 24 hr after eclosion. During organ culture, these same polypeptides are synthesized and secreted into the medium by both fat body and ovaries. Two hormones, 20-hydroxyecdysone (20-HE) and a juvenile hormone analog (ZR-515) stimulate synthesis and secretion of YPs into the hemolymph of isolated female abdomens. The present experiments were undertaken to compare synthesis of YPs in normal females with YP synthesis in preparations deprived of anterior endocrine glands, and to find which hormone stimulates synthesis in the different organs. Separation of hemolymph proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed that at eclosion incorporation of [35S]methionine into YP1 and YP2 was low and was barely detectable in YP3. Over the next 24 hr the rate of label incorporation increased for all the YPs. Isolation of female abdomens at eclosion prevented this increase in label incorporation but did not entirely abolish YP synthesis. Application of either ZR-515 or 20-HE to isolated abdomens stimulated up to ninefold label incorporation into three polypeptides which comigrated with YPs from normal vitellogenic females. The response of isolated abdomens to ZR-515 or 20-HE was first detectable between 90 and 135 min after hormone application. The stimulated bands were confirmed to be YPs by a comparison of peptide digests of each of the three labeled polypeptides with those of the yolk polypeptides from intact vitellogenic females. The hypothesis that the two hormones might act on different organs was tested by treating isolated female abdomens with various concentrations of either ZR-515 or 20-HE and then culturing the stimulated organ in vitro with [35S]methionine. The fat body responded to both hormones by synthesizing and secreting into the culture medium polypeptides which comigrated with the YPs found in hemolymph, whereas the ovary produced similar polypeptides only after ZR-515. These secreted polypeptides were confirmed to be YPs by repeating the experiment using organs from heterozygotes for both YP2 and YP3 electrophoretic variants. Such organs synthesized five polypeptides which comigrated with the corresponding yolk polypeptides. These findings are discussed in relation to a hypothesis for the action of the two hormones.  相似文献   

    9.
    The entire sequence of the Drosophila melanogaster yolk protein 3 (YP3) gene (yp3), including 1822 nucleotides (nt) of 5'- and 834 nt of 3'-flanking DNA, has been determined. In addition, the 5' and 3' ends of the mRNA and the two introns have been mapped. The predicted amino acid sequence of YP3 has considerable homology (43%) to the other two yolk proteins of D. melanogaster. The nucleotide sequence of yp3 was compared to the other two yolk protein genes which have the same developmental pattern of expression. In addition to extensive homology between the protein coding regions, we found two small regions of homology between yp3 flanking sequences and a segment of DNA required for normal expression of the yolk protein 1 gene in adult female fat bodies.  相似文献   

    10.
    In many sexually mature insects egg production and oviposition are tightly coupled to copulation. Sex-Peptide is a 36-amino-acid peptide synthesized in the accessory glands of Drosophila melanogaster males and transferred to the female during copulation. Sex-Peptide stimulates vitellogenic oocyte progression through a putative control point at about stage 9 of oogenesis. Here we show that application of the juvenile hormone analogue methoprene mimics the Sex-Peptide-mediated stimulation of vitellogenic oocyte progression in sexually mature virgin females. Apoptosis is induced by 20-hydroxyecdysone in nurse cells of stage 9 egg chambers at physiological concentrations (10(-7) M). 20-Hydroxyecdysone thus acts as an antagonist of early vitellogenic oocyte development. Simultaneous application of juvenile hormone analogue, however, protects early vitellogenic oocytes from 20-hydroxyecdysone-induced resorption. These results suggest that the balance of these hormones in the hemolymph regulates whether oocytes will progress through the control point at stage 9 or undergo apoptosis. These data are further supported by a molecular analysis of the regulation of yolk protein synthesis and uptake into the ovary by the two hormones. We conclude that juvenile hormone is a downstream component in the Sex-Peptide response cascade and acts by stimulating vitellogenic oocyte progression and inhibiting apoptosis. Since juvenile hormone analogue does not elicit increased oviposition and reduced receptivity, Sex-Peptide must have an additional, separate effect on these two postmating responses.  相似文献   

    11.
    The regulation of the Drosophila melanogaster yolk protein genes 1 and 2 have been well characterised. Cis-acting DNA elements and trans-acting factors regulating ovarian fat body and sex-specific expression have been identified. In this paper we have analysed the regulation of yolk protein 3, which is separated from the other two genes on the X-chromosome. We have separated sex-specific control from fat body control in some constructs in transgenic flies. We propose that the organisation of the regulatory elements in yp3 differs from yp1 and yp2 for control of fat body expression and that it closely resembles the regulation of a reporter gene using Musca and Calliphora yp promoter enhancer sequences in transgenic Drosophila.  相似文献   

    12.
    13.
    14.
    Summary The regulatory sequences leading to the ovarian and fat body expression of yolk proteins 1 and 2 (YP1 and 2) of Drosophila melanogaster have been characterised in some detail. These genes (yp1 and yp2) share many enhancer elements, and some important regulatory sequences lie within the coding regions. We have begun to investigate the cis-regulation of the gene encoding yolk protein 3 (yp3). We describe a system for P element transformation using the complete and unaltered yp3 gene rather than reporter genes and describe sequences conferring correct expression in the ovary and carcass.  相似文献   

    15.
    Steroid hormones mediate a wide variety of developmental and physiological events in insects, yet little is known about the genetics of insect steroid hormone biosynthesis. Here we describe the Drosophila dare gene, which encodes adrenodoxin reductase (AR). In mammals, AR plays a key role in the synthesis of all steroid hormones. Null mutants of dare undergo developmental arrest during the second larval instar or at the second larval molt, and dare mutants of intermediate severity are delayed in pupariation. These defects are rescued to a high degree by feeding mutant larvae the insect steroid hormone 20-hydroxyecdysone. These data, together with the abundant expression of dare in the two principal steroid biosynthetic tissues, the ring gland and the ovary, argue strongly for a role of dare in steroid hormone production. dare is the first Drosophila gene shown to encode a defined component of the steroid hormone biosynthetic cascade and therefore provides a new tool for the analysis of steroid hormone function. We have explored its role in the adult nervous system and found two striking phenotypes not previously described in mutants affected in steroid hormone signaling. First, we show that mild reductions of dare expression cause abnormal behavioral responses to olfactory stimuli, indicating a requirement for dare in sensory behavior. Then we show that dare mutations of intermediate strength result in rapid, widespread degeneration of the adult nervous system.  相似文献   

    16.
    17.
    18.
    Invertebrates show a wide variety of behaviors that are influenced by hormones. In insects the involvement of hormones at a particular life stage is directly correlated with the complexity of the behavioral repertoire at that stage. In larval stages, the steroid hormone, ecdysone, when present with juvenile hormone, apparently causes the behaviors observed during the periodic molts. At the end of larval life, ecdysone in the absence of juvenile hormone triggers the onset of premetamorphic behaviors such as wandering behavior and cocoon-spinning behavior. In insects having complete metamorphosis, the emergence (eclosion) of the adult from the pupal case is accomplished by a stereotyped program of movements that are triggered by a peptide hormone. In moths, injection of this “eclosion hormone” into competent recipients will cause the release of the eclosion program. Also this program can be elicited by the hormone from the isolated abdominal central nervous system (CNS). The onset of reproductive behavior in females of various species requires juvenile hormone. In addition, certain peptides are then involved in the transition from virgin to mated behaviors. Also, pupatitive peptide factors trigger specific stereotyped behaviors such as those involved in mate attraction and in oviposition. In males, the control is simpler. Juvenile hormone is required for the maturation of sexual behavior in only a few species. But in at least one insect group, the cockroaches, a neurosecretory hormone serves to release directly copulatory behavior. Social behavior and migratory behavior in certain insects are also under hormonal influence. Hormones play a prominent role in regulating the behavior of gastropod mollusks. The best studied examples involve the hormonal stimulation of egg-laying behavior by CNS peptides. Also, peptide hormones cause stereotyped changes in specific identified neurons in the CNS of various gastropods. In at least some cases, these latter changes are related to arousal from aestivation.With their simple nervous systems, invertebrates are especially suited for studies on the mode of action of hormones on the nervous system. In most cases the behavioral effects of these hormones appear to be due to their direct action on the CNS. Indeed, the isolated moth CNS will respond to the eclosion hormone by generating the motor program that gives rise to the emergence behavior, and various isolated molluscan preparations will respond to hormones with stereotyped neural responses. By the direct application of hormone to the surface of identified nerve cells in mollusks it has been possible to localize target cells for specific hormones. Little is known of the mode of action of ecdysone or juvenile hormone in altering behavior. Peptide hormones appear to have effects which long outlast the actual presence of the hormone. In at least two cases, cyclic AMP has been implicated as a mediator of the hormonal response.  相似文献   

    19.
    20.
    Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号