首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
The sodium-calcium exchanger isoform 1 (NCX1) is intimately involved in the regulation of calcium (Ca(2+)) homeostasis in many tissues including excitation-secretion coupling in pancreatic beta-cells. Our group has previously found that intracellular long-chain acyl-coenzyme As (acyl CoAs) are potent regulators of the cardiac NCX1.1 splice variant. Despite this, little is known about the biophysical properties of beta-cell NCX1 splice variants and the effects of intracellular modulators on their important physiological function in health and disease. Here, we show that the forward-mode activity of beta-cell NCX1 splice variants is differentially modulated by acyl-CoAs and is dependent both upon the intrinsic biophysical properties of the particular NCX1 splice variant as well as the side chain length and degree of saturation of the acyl-CoA moiety. Notably, saturated long-chain acyl-CoAs increased both peak and total NCX1 activity, whereas polyunsaturated long-chain acyl-CoAs did not show this effect. Furthermore, we have identified the exon within the alternative splicing region that bestows sensitivity to acyl-CoAs. We conclude that the physiologically relevant forward-mode activity of NCX1 splice variants expressed in the pancreatic beta-cell are sensitive to acyl-CoAs of different saturation and alterations in intracellular acyl-CoA levels may ultimately lead to defects in Ca(2+)-mediated exocytosis and insulin secretion.  相似文献   

3.
Na(+)/Ca(2+) exchange activity in Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger was inhibited by the short chain ceramide analogs N-acetylsphingosine and N-hexanoylsphingosine (5-15 micrometer). The sphingolipids reduced exchange-mediated Ba(2+) influx by 50-70% and also inhibited the Ca(2+) efflux mode of exchange activity. The biologically inactive ceramide analog N-acetylsphinganine had only modest effects on exchange activity. Cells expressing the Delta(241-680) and Delta(680-685) deletion mutants of the Na(+)/Ca(2+) exchanger were not inhibited by ceramide; these mutants show defects in both Na(+)-dependent and Ca(2+)-dependent regulatory behavior. Another mutant, which was defective only in Na(+)-dependent regulation, was as sensitive to ceramide inhibition as the wild-type exchanger. Inhibition of exchange activity by ceramide was time-dependent and was accelerated by depletion of internal Ca(2+) stores. Sphingosine (2.5 micrometer) also inhibited the Ca(2+) influx and efflux modes of exchange activity in cells expressing the wild-type exchanger; sphingosine did not affect Ba(2+) influx in the Delta(241-680) mutant. The effects of the exogenous sphingolipids were reproduced by blocking cellular ceramide utilization pathways, suggesting that exchange activity is inhibited by increased levels of endogenous ceramide and/or sphingosine. We propose that sphingolipids impair Ca(2+)-dependent activation of the exchanger and that in cardiac myocytes, this process serves as a feedback mechanism that links exchange activity to the diastolic concentration of cytosolic Ca(2+).  相似文献   

4.
5.
Calcium efflux from bovine chromaffin cells in tissue culture has been examined after loading them with small amounts of Ca2+ by brief depolarization in media containing 20 mumol/l to 1 mmol/l Ca2+ and 45Ca2+ in trace amounts. In the presence of normal external Na+ and Ca2+ concentrations cells depolarized in media containing up to 200 mumol/l Ca2+ exported nearly 100% of their accumulated Ca2+ loads within 10 min and 20% within the first 5 s. In the absence of external Na+ and Ca2+ the proportion of a small (i.e., depolarization in 20 mumol/l calcium) Ca2+ load exported at any time point in the range to 10 min was approximately two thirds of the total efflux measured in their presence indicating that under these conditions the external Na+/Ca(2+)-dependent and Na+/Ca(2+)-independent mechanisms both contribute significantly to the export of calcium. At higher cellular loads of calcium (i.e., depolarization in 200 mumol/l to 1 mmol/l calcium) the Na+/Ca(2+)-dependent mechanism exported a progressively greater proportion of the accumulated Ca2+. Both sodium and calcium alone promoted a component of Ca2+ efflux; Ca2+ (i.e. calcium-calcium exchange) was as effective as Na+ (i.e. sodium-calcium exchange). The Km for Na+ stimulation of Ca(2+)-efflux (KNa) was approximately 65 mM. Increased external Mg2+ (from 1.2 to 10 mmol/l) increased the apparent KNa to 90 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
7.
Sodium-calcium exchangers have long been considered inert with respect to monovalent cations such as lithium, choline, and N-methyl-d-glucamine. A key question that has remained unsolved is how despite this, Li(+) catalyzes calcium exchange in mammalian tissues. Here we report that a Na(+)/Ca(2+) exchanger, NCLX cloned from human cells (known as FLJ22233), is distinct from both known forms of the exchanger, NCX and NCKX in structure and kinetics. Surprisingly, NCLX catalyzes active Li(+)/Ca(2+) exchange, thereby explaining the exchange of these ions in mammalian tissues. The NCLX protein, detected as both 70- and 55-KDa polypeptides, is highly expressed in rat pancreas, skeletal muscle, and stomach. We demonstrate, moreover, that NCLX is a K(+)-independent exchanger that catalyzes Ca(2+) flux at a rate comparable with NCX1 but without promoting Na(+)/Ba(2+) exchange. The activity of NCLX is strongly inhibited by zinc, although it does not transport this cation. NCLX activity is only partially inhibited by the NCX inhibitor, KB-R7943. Our results provide a cogent explanation for a fundamental question. How can Li(+) promote Ca(2+) exchange whereas the known exchangers are inert to Li(+) ions? Identification of this novel member of the Na(+)/Ca(2+) superfamily, with distinct characteristics, including the ability to transport Li(+), may provide an explanation for this phenomenon.  相似文献   

8.
RNA polymerase from Escherichia coli was inhibited by long chain fatty acyl CoAs, such as myristoyl CoA (Ki = 17.2 microM), palmitoyl CoA (Ki = 8.9 microM), oleoyl CoA (Ki = 5.5 microM), and stearoyl CoA (Ki = 0.94 microM). The inhibition by these CoA thioesters was non-competitive against nucleoside triphosphates. Short chain fatty acyl CoAs, such as acetyl CoA, propionyl CoA, acetoacetyl CoA, butyryl CoA, and decanoyl CoA, failed to inhibit RNA polymerase. CoA, Na-myristate, Na-palmitate, Na-oleate, Na-stearate, palmitoyl carnitine, and carnitine did not inhibit the enzyme. The inhibition of RNA polymerase by long chain fatty acyl CoAs was competitive against template DNA.  相似文献   

9.
The aim of this work was to determine the relationship between peak twitch amplitude and sarcoplasmic reticulum (SR) Ca2+ content during changes of stimulation frequency in isolated canine ventricle, and to estimate the extent to which these changes were dependent upon sarcolemmal Na(+)-Ca2+ exchange. In physiological [Na+]o, increased stimulation frequency in the 0.2-2-Hz range resulted in a positive inotropic effect characterized by an increase in peak twitch amplitude and a decrease in the duration of contraction, measured as changes in isometric force development or unloaded cell shortening in intact muscle and isolated single cells, respectively. Action potentials recorded from single cells indicated that the inotropic effect was associated with a progressive decrease of action potential duration and a marked reduction in average time spent by the cell near the resting potential during the stimulus train. The frequency-dependent increase of peak twitch force was correlated with an increase of Ca2+ uptake into and release from the SR. This was estimated indirectly using the phasic contractile response to rapid (less than 1 s) lowering of perfusate temperature from 37 degrees C to 0-2 degrees C and changes of twitch amplitude resulting from perturbations in the pattern of electrical stimulation. Lowering [Na+]o from 140 to 70 mM resulted in an increase of contractile strength, which was accompanied by a similar increase of apparent SR Ca2+ content, both of which could be abolished by exposure to ryanodine (1 x 10(-8) M), caffeine (3 x 10(-3) M), or nifedipine (2 x 10(-6) M). Increased stimulation frequency in 70 mM [Na+]o resulted in a negative contractile staircase, characterized by a graded decrease of peak isometric force development or unloaded cell shortening. SR Ca2+ content estimated under identical conditions remained unaltered. Rate constants derived from mechanical restitution studies implied that the depressant effect of increased stimulation frequency in 70 mM [Na+]o was not a consequence of a decreased rate of refilling of a releasable pool of Ca2+ within the cell. These results demonstrate that frequency-dependent changes of contractile strength and intracellular Ca2+ loading in 140 mM [Na+]o require the presence of a functional sarcolemmal Na(+)-Ca2+ exchange process. The possibility that the negative staircase in 70 mM [Na+]o is related to inhibition of Ca(2+)-induced release of Ca2+ from the SR by various cellular mechanisms is discussed.  相似文献   

10.
11.
The Na(+)-Ca(2+) exchanger (NCX) links transmembrane movements of Ca(2+) ions to the reciprocal movement of Na(+) ions. It normally functions primarily as a Ca(2+) efflux mechanism in excitable tissues such as the heart, but it can also mediate Ca(2+) influx under certain conditions. Na(+) and Ca(2+) ions exert complex regulatory effects on NCX activity. Ca(2+) binds to two regulatory sites in the exchanger's central hydrophilic domain, and this interaction is normally essential for activation of exchange activity. High cytosolic Na(+) concentrations, however, can induce a constitutive activity that by-passes the need for allosteric Ca(2+) activation. Constitutive NCX activity can also be induced by high levels of phopshotidylinositol-4,5-bisphosphate (PIP?) and by mutations affecting the regulatory calcium binding domains. In addition to promoting constitutive activity, high cytosolic Na(+) concentrations also induce an inactivated state of the exchanger (Na(+)-dependent inactivation) that becomes dominant when cytosolic pH and PIP? levels fall. Na(+)-dependent inactivation may provide a means of protecting cells from Ca(2+) overload due to NCX-mediated Ca(2+) influx during ischemia.  相似文献   

12.
The Na+-Ca2+ exchanger (NCX) links transmembrane movements of Ca2+ ions to the reciprocal movement of Na+ ions. It normally functions primarily as a Ca2+ efflux mechanism in excitable tissues such as the heart, but it can also mediate Ca2+ influx under certain conditions. Na+ and Ca2+ ions exert complex regulatory effects on NCX activity. Ca2+ binds to two regulatory sites in the exchanger's central hydrophilic domain, and this interaction is normally essential for activation of exchange activity. High cytosolic Na+ concentrations, however, can induce a constitutive activity that by-passes the need for allosteric Ca2+ activation. Constitutive NCX activity can also be induced by high levels of phopshotidylinositol-4,5-bisphosphate (PIP2) and by mutations affecting the regulatory calcium binding domains. In addition to promoting constitutive activity, high cytosolic Na+ concentrations also induce an inactivated state of the exchanger (Na+-dependent inactivation) that becomes dominant when cytosolic pH and PIP2 levels fall. Na+-dependent inactivation may provide a means of protecting cells from Ca2+ overload due to NCX-mediated Ca2+ influx during ischemia.  相似文献   

13.
Modification of the cholesterol content of highly purified cardiac sarcolemma from dog ventricles was accomplished by incubation with phosphatidylcholine liposomes containing various amounts of cholesterol. The degree of cholesterol enrichment could be varied by changing the liposomal cholesterol/phospholipid ratio or varying the liposome-membrane incubation time. Na+-Ca2+ exchange measured in cholesterol-enriched sarcolemmal vesicles was increased up to 48% over control values. The stimulation of Na+-Ca2+ exchange was associated with an increased affinity of the exchanger for Ca2+ (Km = 17 microM compared with Km = 22 microM for control preparations). Na+-Ca2+ exchange measured in cholesterol-depleted membrane preparations was decreased by 15%. This depressed activity was associated with a decreased affinity of the exchanger for Ca2+ (Km = 27 microM). These changes were not due to either a change in membrane permeability to Ca2+ or an increase in the amount of Ca2+ bound to sarcolemmal vesicles. The stimulating effect of cholesterol enrichment was specific to the Na+-Ca2+ exchange process since sarcolemmal Ca2+-Mg2+ ATPase activity was depressed 40% by cholesterol enrichment. Further, K+-p-nitrophenylphosphatase and Na+-K+ ATPase activities were depressed in both cholesterol-depleted and cholesterol-enriched sarcolemmal vesicles. In situ oxidation of membrane cholesterol completely eliminated Na+-Ca2+ exchange. These results suggest that cholesterol is intimately associated with Na+-Ca2+ exchange and may interact with the exchange protein and modulate its activity.  相似文献   

14.
The fatty acid of acyl dihydroxyacetone phosphate can be exchanged enzymatically for another fatty acid. It has been shown that this reaction proceeds by cleavage of the oxygen bound to C-1 of the dihydroxyacetone phosphate (DHAP) moiety rather than by the more common cleavage at the acyl to oxygen bond. In the present study, the stereochemistry of this reaction was defined further; using deuterated substrates and fast atom bombardment-mass spectrometry, it was shown that the fatty acid exchange involves the stereospecific labilization of the pro-R hydrogen at C-1 of the DHAP moiety of acyl DHAP. The mechanism of ether bond formation, in which acyl DHAP is converted to O-alkyl DHAP, also proceeds via labilization of the pro-R hydrogen and cleavage of the fatty acid at the C-1 to oxygen bond. In addition, other workers have provided evidence that the enzyme responsible for the exchange reaction is O-alkyl DHAP synthetase. Therefore, the present results support the hypothesis that the acyl exchange is the reverse reaction of the first step in O-alkyl DHAP synthesis; in both of these reactions the pro-R hydrogen of C-1 of the DHAP moiety of acyl DHAP and the fatty acid moiety are labilized with cleavage of the fatty acid at the DHAP C-1 to oxygen bond.  相似文献   

15.
1. Sodium-free contractures were studied in myocardial strips from R. pipiens when extracellular sodium (Na+o) was replaced by choline chloride and extracellular free calcium (Ca2+o) was defined with EGTA-buffer. 2. Resting membrane potentials (RMP) were normal in sodium-free solutions with Ca2+o calculated below 1.0 x 10(-9) mol/l. 3. When Ca2+o was subsequently increased from zero to 1.0 x 10(-3) mol/l Na+-free contractures developed slowly with unchanged RMP even at maximum contracture, at which the intracellular ultrastructure is grossly altered. 4. The contractures developed significantly faster in the presence of 3 x 10(-6) mol/l ouabain. 5. In sodium-free solutions La3+ did not influence Ca2+-dependent contractures, apart from causing an increase in time to maximum contracture. 6. It is concluded that sarcolemmal integrity is maintained in frog myocardium treated initially with Na+/Ca2+-free solutions and then with Na+-free medium containing 1 mmol/l Ca2+. 7. Our experiments indicate that sodium-free, Ca2+o-dependent contractures are mediated by the Na+/Ca2+-exchange, operation at higher rates when Na+i is increased. La3+ (1 mmol/l) probably does not compete with Ca2+ at extracellular binding sites of the exchanger. 8. The Na+/Ca2+-exchange may under certain experimental conditions be able to increase Ca2+i to cytotoxic concentrations.  相似文献   

16.
17.
Sola-Penna M 《IUBMB life》2008,60(9):605-608
For more than a century, the metabolic role of lactate has intrigued physiologists and biochemists. Yet, for the first half of the last century lactate had been designated as a waste product, and assigned no additional significance besides its controversial role in muscle fatigue. The decline of the lactate hypothesis for the onset of muscle fatigue and the defining of some modulatory properties attributed to lactate have increased the interest on this molecule. The present critical review aimed at evaluating some recent publications concerned with unveiling the regulatory actions of lactate in cellular function. Lactate has been described to modulate enzymes catalytic properties to affect hormonal release and responsiveness, and to control body homeostasis. Moreover, these properties are directly related to the genesis and the sustainability of pathological conditions, such as diabetes and cancer. In the end, we concluded that lactate should not be regarded as simply an anaerobic metabolite, but should be considered as a regulatory molecule that modulates the integration of metabolism.  相似文献   

18.
The effects of the protein phosphatase inhibitors calyculin A and okadaic acid on Na(+)/Ca(2+) exchange activity were examined in transfected Chinese hamster ovary cells expressing the bovine cardiac Na(+)/Ca(2+) exchanger. Incubating the cells for 5-10 min with 100 nM calyculin A reduced exchange-mediated (45)Ca(2+) uptake or Ba(2+) influx by 50-75%. Half-maximal inhibition of (45)Ca(2+) uptake was observed at 15 nM calyculin A. The nonselective protein kinase inhibitors K252a and staurosporine provided partial protection against the effects of calyculin A. Okadaic acid, another protein phosphatase inhibitor, nearly completely blocked exchange-mediated Ba(2+) influx. Chinese hamster ovary cells expressing a mutant exchanger in which 420 out of 520 amino acid residues were deleted from the central hydrophilic domain of the exchanger remained sensitive to the inhibitory effects of calyculin A and okadaic acid. Surprisingly, Na(o)(+)-dependent Ca(2+) efflux appeared to be only modestly inhibited, if at all, by calyculin A or okadaic acid. We conclude that protein hyperphosphorylation during protein phosphatase blockade selectively inhibits the Ca(2+) influx mode of Na(+)/Ca(2+) exchange, probably by an indirect mechanism that does not involve phosphorylation of the exchanger itself.  相似文献   

19.
The purpose of this investigation was to study the effects of a distinct type of phospholipase C on sarcolemmal Na+-Ca2+ exchange. With this phospholipase C (Staphylococcus aureus), treatment of cardiac sarcolemmal vesicles resulted in a specific hydrolysis of membrane phosphatidylinositol. This hydrolysis of phosphatidylinositol also released two proteins (110 and 36 kDa) from the sarcolemmal membrane. Phospholipase C pretreatment of the sarcolemma resulted in an unexpected stimulation of Na+-Ca2+ exchange. The Vmax of Na+-Ca2+ exchange was increased but the Km for Ca2+ was not altered. This stimulation was specific to the Na+-Ca2+ exchange pathway. ATP-dependent Ca2+ uptake was depressed after phospholipase C treatment, but passive membrane permeability to Ca2+ was unaffected. Sarcolemmal Na+,K+-ATPase activity was not altered, whereas passive Ca2+ binding was modestly decreased after phospholipase C pretreatment. The stimulation of Na+-Ca2+ exchange after phosphatidylinositol hydrolysis was greater in inside-out vesicles than in a total population of vesicles of mixed orientation. This finding suggests that the cardiac sarcolemmal Na+-Ca2+ exchanger is functionally asymmetrical. The results also suggest that membrane phosphatidylinositol is inhibitory to the Na+-Ca2+ exchanger or, alternatively, this phospholipid may anchor an endogenous inhibitory protein in the sarcolemmal membrane. The observation that a transsarcolemmal Ca2+ flux pathway may be stimulated solely by phosphatidylinositol hydrolysis independently of phosphoinositide metabolic products like inositol triphosphate is novel.  相似文献   

20.
The methodical approaches allowing one to record transmembrane currents related to coupled Na+−Ca2+ exchange through the cell membrane are considered. The techniques are based either upon changes of the Na+ or/and Ca2+ concentration gradients, or upon shifts of the membrane potential. The advantages and disadvantages of these techniques applied to different objects, as well as the authors' own experiments on secretory cells of the salivary glands ofChironomus larvae, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号