首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Selecting the codon at which to begin translation is a complicated event in an already complicated process. Many protein initiation factors (eIFs) have been implicated in start site selection, but the mechanistic details of their activities have remained obscure until recently. Biochemical and genetic studies of eIFs 1, 1A, 2 and 5 have suggested that the 43S pre-initiation complex exists in two conformations and that the changing interactions of the factors within the 43S pre-initiation complex in response to encountering an AUG codon regulates these conformations and, ultimately, the selection of the start codon.  相似文献   

2.
New ways of initiating translation in eukaryotes?   总被引:17,自引:0,他引:17       下载免费PDF全文
  相似文献   

3.
Is the nucleus in need of translation?   总被引:2,自引:0,他引:2  
  相似文献   

4.
Eukaryotic initiation factor 4E (eIF4E) plays an important role in mRNA translation by binding the 5'-cap structure of the mRNA and facilitating the recruitment to the mRNA of other translation factors and the 40S ribosomal subunit. eIF4E can interact either with the scaffold protein eIF4G or with repressor proteins termed eIF4E-binding proteins (4E-BPs). High levels of expression can disrupt cellular growth control and are associated with human cancers. A fraction of the cellular eIF4E is found in the nucleus where it may play a role in the transport of certain mRNAs to the cytoplasm. eIF4E undergoes regulated phosphorylation (at Ser209) by members of the Mnk group of kinases, which are activated by multiple MAP kinases (hence Mnk = MAP-kinase signal integrating kinase). The functional significance of its phosphorylation has been the subject of considerable interest. Recent genetic studies in Drosophila point to a key role for phosphorylation of eIF4E in growth and viability. Initial structural data suggested that phosphorylation of Ser209 might allow formation of a salt bridge with a basic residue (Lys159) that would clamp eIF4E onto the mRNA and increase its affinity for ligand. However, more recent structural data place Ser209 too far away from Lys159 to form such an interaction, and biophysical studies indicate that phosphorylation actually decreases the affinity of eIF4E for cap or capped RNA. The implications of these studies are discussed in the light of other, in vitro and in vivo, investigations designed to address the role of eIF4E phosphorylation in mRNA translation or its control.  相似文献   

5.
Since the incorporation of mitochondria and chloroplasts (plastids) into the eukaryotic cell by endosymbiosis, genes have been transferred from the organellar genomes to the nucleus of the host, via an ongoing process known as endosymbiotic gene transfer. Accordingly, in photosynthetic eukaryotes, nuclear genes with cyanobacterial affinity are believed to have originated from endosymbiotic gene transfer from chloroplasts. Analysis of the Arabidopsis thaliana genome has shown that a significant fraction (2%-9%) of the nuclear genes have such an endosymbiotic origin. Recently, it was argued that 6-phosphogluconate dehydrogenase (gnd)-the second enzyme in the oxidative pentose phosphate pathway-was one such example. Here we show that gnd genes with cyanobacterial affinity also are present in several nonphotosynthetic protistan lineages, such as Heterolobosea, Apicomplexa, and parasitic Heterokonta. Current data cannot definitively resolve whether these groups acquired the gnd gene by primary and/or secondary endosymbiosis or via an independent lateral gene transfer event. Nevertheless, our data suggest that chloroplasts were introduced into eukaryotes much earlier than previously thought and that several major groups of heterotrophic eukaryotes have secondarily lost photosynthetic plastids.  相似文献   

6.
To learn if an mRNA·18S rRNA interaction or a special secondary structure in the mRNA start region is essential for translation in eukaryotic cells, we constructed recombinant plasmids with the SV40 early promoter 5 to part of the Escherichia coli tuf B-lacZ gene. Deletion of bases potentially complementary to the 18S rRNA highly increased the transient -galactosidase expressed in transfected CHO cells. Deletion of bases that fostered formation of potential hairpins with the mRNA 5-terminus or altered the structure of the coding region reduced -galactosidase activity suggesting that these features of the mRNA secondary structure may be essential for initiation of translation. Computer aided analysis of the potential structure of 290 mRNAs suggests these are conserved features of the initiation region.  相似文献   

7.
Lateral gene transfer (LGT) is the transmission of genes, sometimes across species barriers, outwith the classic vertical inheritance from parent to offspring. LGT is recognized as an important phenomenon that has shaped the genomes and biology of prokaryotes. Whether LGT in eukaryotes is important and widespread remains controversial. A study in BMC Biology concludes that LGT in eukaryotes is neither continuous nor prevalent and suggests a rule of thumb for judging when apparent LGT may reflect contamination.See research article: http://bmcbiol.biomedcentral.com/articles/10.1186/s12915-016-0315-9.  相似文献   

8.
9.
Phylogenetic placements of archaebacteria and protozoa are important in understanding the origin and early evolution of eukaryotes. These problems have been analyzed mainly by comparisons of small subunit ribosomal RNA (SrRNA) sequences. However, the SrRNA phylogeny may sometimes be unreliable, especially when base compositions are biased among species. Because it is difficult to take full account of the bias in inferring the SrRNA tree, alternative examinations using protein sequence data have been very much desired. We analyzed the phylogenetic relationship among eukaryotes, archaebacteria, and eubacteria by the ML method of protein phylogeny using amino acid sequence data of EF-1α/Tu and 2/G. The unrooted tree analyses of both the EF-1α/Tu and 2/G consistently demonstrated that the ‘eocyte’ tree, in which archaebacteria are not monophyletic but eocytes are closer to eukaryotes than to other archaebacteria, is very likely. Further analysis using a composite tree of EF-1α/Tu and 2/G suggested that archaebacteria are closer to eukaryotes than to eubacteria but are not monophyletic. These results clearly support the hypothesis that eukaryotes have evolved from the eocyte-like organism. We also analyzed a protozoan phylogeny including mitochondrion-lacking species by the ML method using EF-1α and EF-2 data sets, and demonstrated (a) that two mitochondrion-lacking species, G. plecoglossi (Microsporidians) and G. lamblia (Diplomonads) probably represent the first and the second earliest offshoots of eukaryotes, respectively; (b) that Trypanosoma is not likely to have diverged next to Giardia as suggested by the SrRNA tree, but shows high affinity with higher eukaryotes; and (c) that protein phylogeny would give a robust estimation because amino acid compositions of conservative proteins do not differ significantly among species.  相似文献   

10.
Kozak M 《Gene》2004,343(1):41-54
The belief that initiation of translation requires communication between the 5' and 3' ends of the mRNA guides--or misguides--the interpretation of many experiments. The closed-loop model for initiation creates the expectation that sequences at the 3' end of eukaryotic mRNAs should regulate translation. This review looks closely at the evidence in three prominent cases where such regulation is claimed. The mRNAs in question encode 15-lipoxygenase, ceruloplasmin, and histones. Vertebrate histone mRNAs lack a poly(A) tail, instead of which a 3' stem-loop structure is said to promote translation by binding a protein which purportedly binds initiation factors. The proffered evidence for this hypothesis has many flaws. Temporal control of 15-lipoxygenase production in reticulocytes is often cited as another well-documented example of translational regulation via the 3' untranslated region, but inspection of the evidence reveals significant gaps and contradictions. Solid evidence is lacking also for the idea that a ribosomal protein binds to and shuts off translation of ceruloplasmin mRNA. Some viral RNAs that lack a poly(A) tail have alternative 3' structures which are said to promote translation via circularization of the mRNA, but in no case has this been shown convincingly. Interpretation of many experiments is compromised by possible effects of the 3' structures on mRNA stability rather than translation. The functional-half-life assay, which is often employed to rule out effects on mRNA stability, might not be adequate to settle the question. Other issues, such as the possibility of artifacts caused by overexpression of RNA-binding proteins, can complicate studies of translational regulation. There is no doubt that elements at the 3' end of eukaryotic mRNAs can regulate gene expression in a variety of ways. It has not been shown unequivocally that one of these ways involves direct participation of the 3' untranslated region in the initiation step of translation.  相似文献   

11.
Many mammalian mRNAs possess long 5′ UTRs with numerous stem-loop structures. For some of them, the presence of Internal Ribosome Entry Sites (IRESes) was suggested to explain their significant activity, especially when cap-dependent translation is compromised. To test this hypothesis, we have compared the translation initiation efficiencies of some cellular 5′ UTRs reported to have IRES-activity with those lacking IRES-elements in RNA-transfected cells and cell-free systems. Unlike viral IRESes, the tested 5′ UTRs with so-called ‘cellular IRESes’ demonstrate only background activities when placed in the intercistronic position of dicistronic RNAs. In contrast, they are very active in the monocistronic context and the cap is indispensable for their activities. Surprisingly, in cultured cells or cytoplasmic extracts both the level of stimulation with the cap and the overall translation activity do not correlate with the cumulative energy of the secondary structure of the tested 5′ UTRs. The cap positive effect is still observed under profound inhibition of translation with eIF4E-BP1 but its magnitude varies for individual 5′ UTRs irrespective of the cumulative energy of their secondary structures. Thus, it is not mandatory to invoke the IRES hypothesis, at least for some mRNAs, to explain their preferential translation when eIF4E is partially inactivated.  相似文献   

12.
Archamoebae: the ancestral eukaryotes?   总被引:8,自引:0,他引:8  
The archezoan phylum Archamoebae Cavalier-Smith, 1983 is here modified by adding a new order Phreatamoebida (presently containing only Phreatamoeba) and removing the family Entamoebidae. Entamoebidae are instead tentatively placed as a class Entamoebea together with the classes Heterolobosea, Percolomonadea and Pseudociliatea in the new protozoan phylum Percolozoa Cavalier-Smith, 1991. Thus emended the phylum Archamoebae is more homogeneous; it is more distinguished from the other two phyla of the primitively amitochondrial kingdom and superkingdom Archezoa (i.e. Metamonada and Microsporidia) by having kinetids with only a single flagellum and basal body and a flagellar root consisting of a cone of evenly spaced microtubules. This unikont character of the archamoebae suggests that they may be ancestral to the tetrakont Metamonada, from which the non-flagellate Microsporidia possibly evolved. Higher eukaryotes (superkingdom Metakaryota) probably evolved from a tetrakont metamonad by the symbiotic origin of mitochondria and peroxisomes. If so, the Archamoebae are the most primitive extant phylum of eukaryotes; if molecular phylogenetic studies confirm this idea, Archamoebae will deserve intensive study, which could reveal much about the origin of the eukaryote condition and also establish what is truly universal among eukaryotes. Archamoebae, like other Archezoa, lack mitochondria and peroxisomes and have no obvious Golgi dictyosomes. Their evolutionary significance is discussed and a detailed classification is presented in which the two earlier classes are merged into a single one: Pelobiontea Page, 1976 stat. nov., containing two orders Mastigamoebida Frenzel, 1892 (Syn. Rhizo-Flagellata Kent, 1880 non Rhizomastigida auct.) (including Mastigamoeba, Mastigina, Mastigella, Pelomyxa and probably a few other genera, which have one or more flagella or cilia (motile or immotile, 9 + 2 or otherwise) in the amoeboid trophic phase), and Phreatamoebida ord. nov. (including only Phreatamoeba in the new family Phreatamoebidae, which has alternating phases of non-flagellate amoebae and uniflagellate cells). Mastigamoebida are divided into three families: Mastigamoebidae Goldschmidt, 1907; Mastigellidae fam. nov.; Pelomyxidae Schulze, 1877. Archamoebae may be uni- or multi-nucleate and either gut parasites or (more usually) free-living in soil, freshwater, or marine habitats. Some can form cysts that would probably fossilize; the earliest (1450 My old) smooth-walled fossil cells large enough to be probable eukaryotes might therefore be archamoebal cysts.  相似文献   

13.
DNA replication is one of the most ancient of cellular processes and functional similarities among its molecular machinery are apparent across all cellular life. Cdc45 is one of the essential components of the eukaryotic replication fork and is required for the initiation and elongation of DNA replication, but its molecular function is currently unknown. In order to trace its evolutionary history and to identify functional domains, we embarked on a computational sequence analysis of the Cdc45 protein family. Our findings reveal eukaryotic Cdc45 and prokaryotic RecJ to possess a common ancestry and Cdc45 to contain a catalytic site within a predicted exonuclease domain. The likely orthology between Cdc45 and RecJ reveals new lines of enquiry into DNA replication mechanisms in eukaryotes.  相似文献   

14.
15.
In order to obtain more insight into the possible role of cyclic AMP or cyclic GMP in modulating the initial cellular processes following activation of lymphocytes, we measured the effects of the T-cell mitogen concanavalin A and other substances including hormones on the cyclic nucleotide levels in human peripheral blood lymphocytes. The enzyme activities of the corresponding nucleotide cyclases, adenylate cyclase and guanylate cyclase were measured in both isolated plasma membranes or the cytosol of resting or concanavalin A stimulated rabbit thymocytes. Concanavalin A in a mitogenic concentration of about 5-10 micrograms/ml caused small, but consistent increases in cAMP but no changes in cGMP levels during the first hour of activation. Concomitantly, the specific activity of plasma membrane-bound adenylate cyclase was always increased at least 1.5-fold 30 min after stimulation of rabbit thymocytes with concanavalin A, but no effect could be detected on the specific activities of plasma membrane-bound or soluble guanylate cyclase. At high, supraoptimal concentrations of concanavalin A (more than 20 micrograms/ml) cAMP levels dramatically increased in human lymphocytes within minutes, but cGMP levels again were unaffected. Forskolin and beta-adrenergic hormones elevated cAMP in human lymphocytes, whereas cGMP levels were increased by the addition of sodium nitroprusside or alpha-adrenergic hormones. Sodium nitroprusside, in concentrations which elevated cGMP in human lymphocytes, had no influence on the incorporation of [3H]uridine into RNA of resting or concanavalin A stimulated human lymphocytes. Addition of forskolin resulted in an increase of cAMP levels and a dose-dependent decrease of [3H]uridine incorporation into RNA of concanavalin A-stimulated lymphocytes with no effect on resting lymphocytes. The data suggest that cGMP does not play a role in the initial phase of mitogenic activation of lymphocytes, whereas cAMP may be involved in the blast transformation process as an inhibitory signal.  相似文献   

16.
A putative implication 3′-terminal 18S rRNA segment in the cap-independent initiation of translation on plant ribosomes was studied. It was shown that 3′-terminal segment (nucleotides 1777–1811) of 18S rRNA including the last hairpin 45 was accessible for complementary interactions within 40S ribosomal subunits. Oligonucleotides complementary to this segment of rRNA, when added to wheat germ cell-free protein synthesizing system, specifically inhibited translation of uncapped reporter mRNA encoding β-glucuronidase. In the 5′-untranslated region (UTR), the reporter mRNA contained a leader sequence of potato virus Y (PVY) genomic RNA with fragments complementary to the region 1777–1811. A sequence corresponding to nucleotides 291–316 of PVY, which was complementary to most of the 3′-terminal 18S rRNA segment 1777–1808, was shown to enhance translational efficiency of the reporter mRNAs when placed into 5′-UTR. The obtained results suggest that complementary interactions between 5′-UTR of mRNA and 3′-terminal segment of 18S rRNA can take place during cap-independent translation initiation.  相似文献   

17.
18.
Loss of heterozygosity (LOH) of tumour suppressor genes is a crucial step in the development of sporadic and hereditary cancer. Recently, we and others have developed mouse models in which the frequency and nature of LOH events at an autosomal locus can be elucidated in genetically stable normal somatic cells. In this paper, an overview is presented of recent studies in LOH-detecting mouse models. Molecular mechanisms that lead to LOH and the effects of genetic and environmental variables are discussed. The general finding that LOH of a marker gene occurs frequently in somatic cells of the mouse without deleterious effects on cell viability, suggests that also tumour suppressor genes are lost in similar frequencies. LOH of tumour suppressor genes may thus be an initiating event in cancer development.  相似文献   

19.
20.
The fusion of biological membranes is the terminal step of all vesicular trafficking reactions in eukaryotic cells. Therefore, this fusion is fundamental for the transfer of proteins and lipids between different compartments, for exocytosis and for the structural integrity of organelles. In the past decade, many parts of the molecular machinery involved in fusion have been uncovered. Although the mechanisms responsible for mutual recognition and binding of membranes inside eukaryotes are becoming reasonably well known, there is considerable uncertainty as to what causes the actual merging of the lipid bilayer. Two classes of mechanisms have been proposed. Proximity models postulate that very close apposition of membranes suffices to induce fusion. By contrast, pore models propose that continuous proteinaceous pores between apposed membranes could be the basis for fusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号