首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Primary ciliary dyskinesia (PCD) is a group of heterogeneous disorders of unknown origin, usually inherited as an autosomal recessive trait. Its phenotype is characterized by axonemal abnormalities of respiratory cilia and sperm tails leading to bronchiectasis and sinusitis, which are sometimes associated with situs inversus (Kartagener syndrome) and male sterility. The main ciliary defect in PCD is an absence of dynein arms. We have isolated the first gene involved in PCD, using a candidate-gene approach developed on the basis of documented abnormalities of immotile strains of Chlamydomonas reinhardtii, which carry axonemal ultrastructural defects reminiscent of PCD. Taking advantage of the evolutionary conservation of genes encoding axonemal proteins, we have isolated a human sequence (DNAI1) related to IC78, a C. reinhardtii gene encoding a dynein intermediate chain in which mutations are associated with the absence of outer dynein arms. DNAI1 is highly expressed in trachea and testis and is composed of 20 exons located at 9p13-p21. Two loss-of-function mutations of DNAI1 have been identified in a patient with PCD characterized by immotile respiratory cilia lacking outer dynein arms. In addition, we excluded linkage between this gene and similar PCD phenotypes in five other affected families, providing a clear demonstration of locus heterogeneity. These data reveal the critical role of DNAI1 in the development of human axonemal structures and open up new means for identification of additional genes involved in related developmental defects.  相似文献   

2.
Primary ciliary dyskinesia (PCD) is a heterogeneous autosomal recessive disease that is caused by impaired ciliary and flagellar functions. About 50% of PCD patients show situs inversus, denoted as Kartagener syndrome. In most cases, axonemal defects in cilia and sperm tails can be demonstrated by electron microscopy, i.e. PCD patients often lack inner and/or outer dynein arms in their sperm tails and cilia, supporting the hypothesis that mutations in dynein genes may cause PCD. In order to identify novel PCD genes we have isolated the human ortholog of the murine TCTE3 gene. The human TCTE3 gene encodes a dynein light chain and shares high similarity to dynein light chains of other species. The TCTE3 gene is expressed in tissues containing cilia or flagella, it is composed of four exons and located on chromosome 6q25-->q27. To elucidate the role of TCTE3 as a candidate gene for PCD a mutational analysis of thirty-six PCD patients was performed. We detected five polymorphisms in the coding sequence and in the 5' UTR of the TCTE3 gene. In one patient a heterozygous nucleotide exchange was identified resulting in an arginine to isoleucine substitution at the amino acid level. However, this exchange was also detected in one control DNA. Our results indicate that mutations in the TCTE3 gene are not a main cause of primary ciliary dyskinesia.  相似文献   

3.
Kartagener syndrome (KS) is a trilogy of symptoms (nasal polyps, bronchiectasis, and situs inversus totalis) that is associated with ultrastructural anomalies of cilia of epithelial cells covering the upper and lower respiratory tracts and spermatozoa flagellae. The axonemal dynein intermediate-chain gene 1 (DNAI1), which has been demonstrated to be responsible for a case of primary ciliary dyskinesia (PCD) without situs inversus, was screened for mutation in a series of 34 patients with KS. We identified compound heterozygous DNAI1 gene defects in three independent patients and in two of their siblings who presented with PCD and situs solitus (i.e., normal position of inner organs). Strikingly, these five patients share one mutant allele (splice defect), which is identical to one of the mutant DNAI1 alleles found in the patient with PCD, reported elsewhere. Finally, this study demonstrates a link between ciliary function and situs determination, since compound mutation heterozygosity in DNAI1 results in PCD with situs solitus or situs inversus (KS).  相似文献   

4.
An electron microscopic study of the ciliary epithelium of respiratory tracts was carried out in children (members of the same family) with Kartagener syndrome, which is a variant of ciliary dyskinesia. It was shown that in the case of both mobile cilia and ciliary dyskinesia in man, centrioles are formed during formation of the ciliary basal bodies predominantly de novo, involving deuterosomes. A wide spectrum of pathological changes was described in literature, such as the absence of dynein arms in the axoneme and disorganization of axoneme structure. In addition to these changes in the ciliary system, we found integration of several ciliary axonemes by the same plasma membrane, running of microtubules from the plasma membrane as bundles, different orientation of basal legs, etc.  相似文献   

5.
We screened a large group of primary ciliary dyskinesia/Kartagener syndrome (PCD/KS) patients and their siblings (148 patients from 126 unrelated families) for the presence of the CFTR mutations that are most frequently found in the Polish population: the severe F508del and 2,3del21kb, and the mild 3849+10kbC > T. No statistically significant increase in the frequency of these mutations was found in the studied group, as compared with the general population. This is consistent with an earlier observation in another population and indicates that the status of being a carrier of any of these CFTR mutations should not be considered as an important risk factor in PCD/KS pathogenesis.  相似文献   

6.
Primary ciliary dyskinesia (PCD) is a clinically and genetically heterogenous group of disorders, predominantly inherited as an autosomal recessive trait. The disease phenotype is characterised by defective mucociliary clearance of the airways caused by inborn defects of motile respiratory cilia. Randomization of left/right-body symmetry is found in most PCD variants and results from dysfunction of nodal cilia during early embryonic development. Thus ~50% of PCD patients exhibit situs inversus or heterotaxia. To date nine genes encoding either axonemal motor protein components or dynein assembly factors have been identified. In addition, two X-linked syndromic PCD variants associated either with retinitis pigmentosa or mental retardation have been reported. High-speed videomicroscopy (HVM) for ciliary beat evaluation is the most sensitive diagnostic test, since electron microscopy (EM) and immunofluorescence (IF) analyses are not able to detect all PCD variants. Genetic analyses should be targeted once the PCD variant has been characterized in detail by HVM and EM/IF.  相似文献   

7.
An electron microscopic study of the ciliary epithelium of respiratory tracts was carried out in children (members of the same family) with Kartagener syndrome, which is a variant of ciliary dyskinesia. It was shown that in the case of both mobile cilia and ciliary dyskinesia in man, centrioles are formed during formation of the ciliary basal bodies predominantly de novo, involving deuterosomes. A wide spectrum of pathological changes was described in literature, such as the absence of dynein arms in the axoneme and disorganization of axoneme structure. In addition to these changes in the ciliary system, we found integration of several ciliary axonemes by the same plasma membrane, running of microtubules from the plasma membrane as bundles, different orientation of basal legs, etc.__________Translated from Ontogenez, Vol. 36, No. 3, 2005, pp. 190–198.Original Russian Text Copyright © 2005 by Domaratskii, Uvakina, Volkov, Onishchenko.  相似文献   

8.
9.
Primary ciliary dyskinesia (PCD) is a rare (1/20,000), multisystem disease with a complex phenotype caused by the impaired motility of cilia/flagella, usually related to ultrastructural defects of these organelles. Mutations in genes encoding radial spoke head (RSPH) proteins, elements of the ciliary ultrastructure, have been recently described. However, the relative involvement of RSPH genes in PCD pathogenesis remained unknown, due to a small number of PCD families examined for mutations in these genes. The purpose of this study was to estimate the involvement of RSPH4A and RSPH9 in PCD pathogenesis among East Europeans (West Slavs), and to shed more light on ultrastructural ciliary defects caused by mutations in these genes. The coding sequences of RSPH4A and RSPH9 were screened in PCD patients from 184 families, using single strand conformational polymorphism analysis and sequencing. Two previously described (Q109X; R490X) and two new RSPH4A mutations (W356X; IVS3_2-5del), in/around exons 1 and 3, were identified; no mutations were found in RSPH9. We estimate that mutations in RSPH4A, but not in RSPH9, are responsible for 2-3% of cases in the East European PCD population (4% in PCD families without situs inversus; 11% in families preselected for microtubular defects). Analysis of the SNP-haplotype background provided insight into the ancestry of repetitively found mutations (Q109X; R490X; IVS3_2-5del), but further studies involving other PCD cohorts are required to elucidate whether these mutations are specific for Slavic people or spread among other European populations. Ultrastructural defects associated with the mutations were analyzed in the transmission electron microscope images; almost half of the ciliary cross-sections examined in patients with RSPH4A mutations had the microtubule transposition phenotype (9+0 and 8+1 pattern). While microtubule transposition was a prevalent ultrastructural defect in cilia from patients with RSPH4A mutations, similar defects were also observed in PCD patients with mutations in other genes.  相似文献   

10.
Primary ciliary dyskinesia (PCD) results from ciliary dysfunction and is commonly characterized by sinusitis, male infertility, hydrocephalus, and situs inversus. Mice homozygous for the nm1054 mutation develop phenotypes associated with PCD. On certain genetic backgrounds, homozygous mutants die perinatally from severe hydrocephalus, while mice on other backgrounds have an accumulation of mucus in the sinus cavity and male infertility. Mutant sperm lack mature flagella, while respiratory epithelial cilia are present but beat at a slower frequency than wild-type cilia. Transgenic rescue demonstrates that the PCD in nm1054 mutants results from the loss of a single gene encoding the novel primary ciliary dyskinesia protein 1 (Pcdp1). The Pcdp1 gene is expressed in spermatogenic cells and motile ciliated epithelial cells. Immunohistochemistry shows that Pcdp1 protein localizes to sperm flagella and the cilia of respiratory epithelial cells and brain ependymal cells in both mice and humans. This study demonstrates that Pcdp1 plays an important role in ciliary and flagellar biogenesis and motility, making the nm1054 mutant a useful model for studying the molecular genetics and pathogenesis of PCD.  相似文献   

11.
Kartagener’s syndrome is a very rare congenital malformation comprising of a classic triad of sinusitis, situs inversus and bronchiectasis. Primary ciliary dyskinesia is a genetic disorder with manifestations present from early life and this distinguishes it from acquired mucociliary disorders. Approximately one half of patients with primary ciliary dyskinesia have situs inversus and, thus are having Kartagener syndrome. We present a case of 12 year old boy with sinusitis, situs inversus and bronchiectasis. The correct diagnosis of this rare congenital autosomal recessive disorder in early life is important in the overall prognosis of the syndrome, as many of the complications can be prevented if timely management is instituted, as was done in this in this case.  相似文献   

12.
13.
Kartagener''s syndrome is a very rare congenital malformation comprising of a classic triad of sinusitis, situs inversus and bronchiectasis. Primary ciliary dyskinesia is a genetic disorder with manifestations present from early life and this distinguishes it from acquired mucociliary disorders. Approximately one half of patients with primary ciliary dyskinesia have situs inversus and, thus are having Kartagener syndrome. We present a case of 12 year old boy with sinusitis, situs inversus and bronchiectasis. The correct diagnosis of this rare congenital autosomal recessive disorder in early life is important in the overall prognosis of the syndrome, as many of the complications can be prevented if timely management is instituted, as was done in this in this case.  相似文献   

14.
15.
Primary ciliary dyskinesia (PCD) is a group of genetically and clinically heterogeneous disorders with motile cilia dysfunction. It is clinically characterized by oto-sino-pulmonary diseases and subfertility, and half of the patients have situs inversus (Kartagener syndrome). To identify the genetic cause in a Han-Chinese pedigree, whole-exome sequencing was conducted in the 37-year-old proband, and then, Sanger sequencing was performed on available family members. Minigene splicing assay was applied to verify the impact of the splice-site variant. Compound heterozygous variants including a splice-site variant (c.1974-1G>C, rs1359107415) and a missense variant (c.7787G>A, p.(Arg2596Gln), rs780492669), in the dynein axonemal heavy chain 11 gene (DNAH11) were identified and confirmed as the disease-associated variants of this lineage. The minigene expression in vitro revealed that the c.1974-1G>C variant could cause skipping over exon 12, predicted to result in a truncated protein. This discovery may enlarge the DNAH11 variant spectrum of PCD, promote accurate genetic counselling and contribute to PCD diagnosis.  相似文献   

16.
Primary ciliary dyskinesia (PCD) is an autosomal recessive disease characterized by chronic sinusitis and bronchiectasis, and usually associated with hypofertility. Half of the patients present a situs inversus, defining the Kartagener's syndrome. This phenotype results from axonemal abnormalities of respiratory cilia and sperm flagella, i.e., mainly an absence of dynein arms. Recently, a candidate-gene approach, based on documented abnormalities of immotile strains of Chlamydomonas reinhardtii, allowed us to identify the first gene involved in PCD. Following the same strategy, we have characterized DNAI2, a human gene related to Chlamzydomonas IC69, and evaluated its possible involvement in a PCD population characterized by an absence of outer dynein arms. DNAI2, which is composed of 14 exons located at 17q25, is highly expressed in trachea and testis. No mutation was found in the DNAI2 coding sequence of the twelve patients investigated. However, ten intragenic polymorphic sites and an EcoRI RFLP have been identified, allowing the exclusion of DNAI2 in three consanguineous families.  相似文献   

17.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 14 genes, but they collectively account for only 60% of all PCD. To identify mutations that cause PCD, we performed exome sequencing on six unrelated probands with ciliary outer dynein arm (ODA) defects. Mutations in CCDC114, an ortholog of the Chlamydomonas reinhardtii motility gene DCC2, were identified in a family with two affected siblings. Sanger sequencing of 67 additional individuals with PCD with ODA defects from 58 families revealed CCDC114 mutations in 4 individuals in 3 families. All 6 individuals with CCDC114 mutations had characteristic oto-sino-pulmonary disease, but none had situs abnormalities. In the remaining 5 individuals with PCD who underwent exome sequencing, we identified mutations in two genes (DNAI2, DNAH5) known to cause PCD, including an Ashkenazi Jewish founder mutation in DNAI2. These results revealed that mutations in CCDC114 are a cause of ciliary dysmotility and PCD and further demonstrate the utility of exome sequencing to identify genetic causes in heterogeneous recessive disorders.  相似文献   

18.
Primary ciliary dyskinesia (PCD) is a rare genetic disorder caused by the impaired functioning of ciliated cells. Its diagnosis is based on the analysis of the structure and functioning of cilia present in the respiratory epithelium (RE) of the patient. Abnormalities of cilia caused by hereditary mutations closely resemble and often overlap with defects induced by the environmental factors. As a result, proper diagnosis of PCD is difficult and may require repeated sampling of patients’ tissue, which is not always possible. The culturing of differentiated cells and tissues derived from the human RE seems to be the best way to diagnose PCD, to study genotype–phenotype relations of genes involved in ciliary dysfunction, as well as other aspects related to the functioning of the RE. In this review, different methods of culturing differentiated cells and tissues derived from the human RE, along with their potential and limitations, are summarized. Several considerations with respect to the factors influencing the process of in vitro differentiation (cell-to-cell interactions, medium composition, cell-support substrate) are also discussed.  相似文献   

19.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous, autosomal-recessive disorder, characterized by oto-sino-pulmonary disease and situs abnormalities. PCD-causing mutations have been identified in 20 genes, but collectively they account for only ∼65% of all PCDs. To identify mutations in additional genes that cause PCD, we performed exome sequencing on three unrelated probands with ciliary outer and inner dynein arm (ODA+IDA) defects. Mutations in SPAG1 were identified in one family with three affected siblings. Further screening of SPAG1 in 98 unrelated affected individuals (62 with ODA+IDA defects, 35 with ODA defects, 1 without available ciliary ultrastructure) revealed biallelic loss-of-function mutations in 11 additional individuals (including one sib-pair). All 14 affected individuals with SPAG1 mutations had a characteristic PCD phenotype, including 8 with situs abnormalities. Additionally, all individuals with mutations who had defined ciliary ultrastructure had ODA+IDA defects. SPAG1 was present in human airway epithelial cell lysates but was not present in isolated axonemes, and immunofluorescence staining showed an absence of ODA and IDA proteins in cilia from an affected individual, thus indicating that SPAG1 probably plays a role in the cytoplasmic assembly and/or trafficking of the axonemal dynein arms. Zebrafish morpholino studies of spag1 produced cilia-related phenotypes previously reported for PCD-causing mutations in genes encoding cytoplasmic proteins. Together, these results demonstrate that mutations in SPAG1 cause PCD with ciliary ODA+IDA defects and that exome sequencing is useful to identify genetic causes of heterogeneous recessive disorders.  相似文献   

20.
Heterotaxy, a birth defect involving left-right patterning defects, and primary ciliary dyskinesia (PCD), a sinopulmonary disease with dyskinetic/immotile cilia in the airway are seemingly disparate diseases. However, they have an overlapping genetic etiology involving mutations in cilia genes, a reflection of the common requirement for motile cilia in left-right patterning and airway clearance. While PCD is a monogenic recessive disorder, heterotaxy has a more complex, largely non-monogenic etiology. In this study, we show mutations in the novel dynein gene DNAH6 can cause heterotaxy and ciliary dysfunction similar to PCD. We provide the first evidence that trans-heterozygous interactions between DNAH6 and other PCD genes potentially can cause heterotaxy. DNAH6 was initially identified as a candidate heterotaxy/PCD gene by filtering exome-sequencing data from 25 heterotaxy patients stratified by whether they have airway motile cilia defects. dnah6 morpholino knockdown in zebrafish disrupted motile cilia in Kupffer’s vesicle required for left-right patterning and caused heterotaxy with abnormal cardiac/gut looping. Similarly DNAH6 shRNA knockdown disrupted motile cilia in human and mouse respiratory epithelia. Notably a heterotaxy patient harboring heterozygous DNAH6 mutation was identified to also carry a rare heterozygous PCD-causing DNAI1 mutation, suggesting a DNAH6/DNAI1 trans-heterozygous interaction. Furthermore, sequencing of 149 additional heterotaxy patients showed 5 of 6 patients with heterozygous DNAH6 mutations also had heterozygous mutations in DNAH5 or other PCD genes. We functionally assayed for DNAH6/DNAH5 and DNAH6/DNAI1 trans-heterozygous interactions using subthreshold double-morpholino knockdown in zebrafish and showed this caused heterotaxy. Similarly, subthreshold siRNA knockdown of Dnah6 in heterozygous Dnah5 or Dnai1 mutant mouse respiratory epithelia disrupted motile cilia function. Together, these findings support an oligogenic disease model with broad relevance for further interrogating the genetic etiology of human ciliopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号