首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Paraquat (PQ) is a well-known pneumotoxicant that exerts its toxic effect by elevating intracellular levels of superoxide. In addition, production of pro-inflammatory cytokines has possibly been linked to PQ-induced inflammatory processes through reactive oxygen species (ROSs) and nitric oxide (NO). However, the role of NO in PQ-induced cell injury has been controversial. To explore this problem, we examined the effect of NO on A549 cells by exposing them to the exogenous NO donor NOC18 or to cytokines; tumor necrosis factor-α, interleukin-1 β and interferon-γ, as well as PQ. Although the exogenous NO donor on its own had no effect on the release of lactate dehydrogenase (LDH), remarkable release was observed when the cells were exposed to high concentrations of NOC18 and PQ. This cellular damage caused by 1 mM NOC18 plus 0.2 mM PQ was ascertained by phase contrast microscopy. On the other hand, NO derived from 25–50 μM NOC18 added into the medium improved the MTT reduction activity of mitochondria, suggesting a beneficial effect of NO on the cells. Incubation of A549 cells with cytokines increased in inducible NO synthase (iNOS) expression and nitrite accumulation, resulting in LDH release. PQ further potentiated this release. The increase in nitrite levels could be completely prevented by NOS inhibitors, while the leakage of LDH was not attenuated by the inhibition of NO production with them. On the other hand, ROS scavenging enzymes, superoxide dismutase and catalase, inhibited the leakage of LDH, whereas they had no effect on the increase in the nitrite level. These results indicate that superoxide, not NO, played a key role in the cellular damage caused by PQ/cytokines. Our in vitro models demonstrate that NO has both beneficial and deleterious actions, depending on the concentrations produced and model system used.  相似文献   

2.
Human fibroblasts and keratinocytes possess nitric oxide synthases (NOS), which metabolize L-arginine (L-Arg) for producing nitric oxide (NO*). This report delineates the relations between NO* and UVA in the human keratinocyte cell line HaCaT. NOS activity was stimulated by exposure of cells to L-Arg just after irradiation. L-Arg (5 mM) supply led to an increase in UVA (25.3 J/cm(2)) cytotoxicity (% of viability 18 +/- 3%) whereas neither L-Arg itself nor UVA irradiation induced cell death at the doses used in this study. Cells were also treated either with L-thiocitrulline (L-Thio), an irreversible inhibitor of NOS, or with exogenous superoxide dismutase (SOD) and catalase. L-Thio and SOD prevented L-Arg-mediated deleterious effects in irradiated cells, whereas catalase was ineffective. Intracellular antioxidant enzyme activities were also determined. UVA/L-Arg stress altered catalase (66% decrease) and glutathione peroxidase (83% decrease). DNA damage was evaluated using the 'comet assay' and quantified using the 'tail moment'. UVA alone was genotoxic (mean tail moment: 25.43 +/- 1.23, P<0.001 compared control cells). The addition of L-Arg potentiated DNA damage (mean tail moment: 41.05+/-3.9) whereas L-Thio prevented them (mean tail moment 9.86 +/- 0.98). We attempted to assess the effect of poly(ADP-ribose) polymerase (PARP) inhibition on cell death. Using the PARP inhibitor 3-aminobenzamide, we established that PARP determines both cell lysis and DNA damage induced by UVA and/or L-Arg. Our findings demonstrated that L-Arg was able to increase UVA-mediated deleterious effects in keratinocytes (both DNA damage and cytotoxicity) and that the ratio NO*/O2*- plays a key role in these processes.  相似文献   

3.
Yu G  Xiao CL  Lu CH  Jia HT  Ge F  Wang W  Yin XF  Jia HL  He JX  He QY 《Molecular bioSystems》2011,7(2):472-479
As an in vitro model for type II human lung cancer, A549 cells resist cytotoxicity via phosphorylation of proteins as demonstrated by many studies. However, to date, no large-scale phosphoproteome investigation has been conducted on A549. Here, we performed a systematical analysis of the phosphoproteome of A549 by using mass spectrometry (MS)-based strategies. This investigation led to the identification of 337 phosphorylation sites on 181 phosphoproteins. Among them, 67 phosphoproteins and 230 phosphorylation sites identified appeared to be novel with no previous characterization in lung cancer. Based on their known functions as reported in the literature, these phosphoproteins were functionally organized into highly interconnected networks. Western blotting and immunohistochemistry analyses were performed to validate the expression of a bottleneck phosphoprotein YAP1 in cancer cell lines and tissues. This dataset provides a valuable resource for further studies on phosphorylation and lung carcinogenesis.  相似文献   

4.
A549 cells constitutively expressed IL-15 mRNA which could be upregulated by stimulation with TNF-alpha- or IL-1beta. Constitutive and induced levels of IL-15 mRNA were not decreased in the presence of 10- 6 M dexamethasone. Control experiments revealed that 10- 6 M dexamethasone inhibited the TNF-alpha- or IL-1beta-mediated increase of IL-8 mRNA in A549 cells, which showed that the glucocorticoid was functional. A549 cells did not secrete relevant amounts of IL-15 protein. The constitutive expression and the TNF-alpha- or IL-1beta-mediated upregulation of intracellular IL-15 protein was not inhibited by dexamethasone, in contrast, the release of IL-8 protein was inhibited. Also, cyclosporin A at 250 ng/ml did not inhibit the TNF-alpha-induced upregulation of IL-15 mRNA and intracellular IL-15 protein. The data suggest that the synthesis of IL-15 mRNA and protein is not influenced by immunosuppressive glucocorticoids or by cyclosporin A.  相似文献   

5.
The molecular events associated with apoptosis induced by two distinct triggers (1) serum withdrawal and (2) etoposide treatment were investigated in the human lung carcinoma cell line A549. Although both serum withdrawal and etoposide treatment resulted in internucleosomal DNA fragmentation, the morphologic features were distinct. Serum deprived apoptotic cells appeared small, round and refractile, with little evidence of nuclear fragmentation; etoposide-induced apoptotic cells appeared enlarged and flattened and displayed prominent nuclear fragmentation. p53 and p21/waf1 protein levels were elevated in etoposide-treated cells, but not in cells subjected to serum with-drawal. Apoptosis induced by both treatments was accompanied by a significant reduction in Rb protein levels. However, etoposide treatment led to hypo-phosphorylation of Rb, while serum withdrawal did not alter the Rb phosphorylation pattern. Serum withdrawal-induced apoptosis was correlated with activation of JNK and suppression of ERK activities, while both JNK and ERK activities were slightly elevated during etoposid- induced apoptosis. Together, these results support the hypothesis that apoptosis induced by serum withdrawal and etoposide treatment occurs through different pathways and involves distinct mediators.  相似文献   

6.
7.
The study on proteome of human cancer is helpful to explain its pathogenesis and make good effect on its prevention and cure. We compared the 2-DE maps of whole proteins of human lung cancer line A549 at 37 degrees C, 42 degrees C and 45 degrees C for the purpose of studying the expression of its heat shock proteins. Three temperature-sensitive differential spots were obtained and named as P1, P2, P3, respectively. Analyzed by MALDI-TOF-MS and Peptident software searched in the SWISS-PROT database, the three differential proteins were elementarily identified. P1 matches with two proteins belong to the Aldo-keto reductase family, P2 may be a new protein and P3 is Zinc finger protein 11A.  相似文献   

8.
9.
We investigated the role of protein tyrosine phosphatase-alpha (PTPα) expression in the cell death profile of the A431 human carcinoma cell line that was induced by cytotoxic concentrations of the nitric oxide (NO) donors sodium nitroprusside (SNP) and 3,3-bis-(aminoethyl)-1-hydroxy-2-oxo-1-triazene (NOC-18). Both NO donors promoted extensive cell detachment in A431 parental cells as compared to the detachment observed for A431 cells that ectopically expressed PTPα (A431 (A27B(PTPα)) cells). The NO-induced cell death characteristics for both cell lines were examined. After incubation for 10 hours with 2.0 mM SNP, attached or detached A431 cells underwent apoptosis. Cells were highly positive for Annexin-V, featured increased cleavage of procaspase-8, activation of downstream caspase-3, and activation of poly-ADP-ribose polymerase 1 (PARP-1). In contrast, exposure of A431 (A27B(PTPα)) cells to 2.0 mM SNP produced an increase in the release of lactate dehydrogenase and enhanced incorporation of propidium iodide. In addition, A431 (A27B(PTPα)) cells showed partial inhibition of the activities of caspase-8, caspase-3, and PARP-1 upon detachment and cell death induced by SNP treatment. Results indicate that necrotic cell damage was induced, characterized by cellular swelling and lysis. We conclude from these results that PTPα regulates the A431 tumor cell death profile mediated by NO donors. Expression of PTPα or its absence may determine the occurrence of NO-induced cell death with necrotic or apoptotic features, respectively.  相似文献   

10.
Active oxygen species are generated in cells during pathophysiologic conditions such as illflammation and postischemic reperfusion. If oxygen radical scavengers are added before reperfusion, then the magnitude of injury is reduced. We inves-tigated whether free radicals generated following exposure to hypoxia and reoxygenation activate voltage-dependent K+ ion channels in tumor cells in vitro. Using the technique of whole cell voltage clamping, we recorded currents from two families of potassium (K+) channels that were activated following reoxygenation. One of these groups possessed the electrophysical characteristics of a tetraethylammonium (TEA)-sensitive delayed rectifier channel and the other possessed characteristics of a Tea-insensitive slow inactivating channel. We present evidence which suggests that K+ channels are activated following reoxygenation but not during the hypoxia phase. The K+ currents decayed with time following reoxygenation. The decay characteristics of the K+ currents depended on the duration and level of hypoxia to which the cells were exposed. To determine whether activation of K+ channels by reoxygenation was initiated by free radicals, we pretreated cells with N-Acetyl L-Cysteine (NAC), a free radical scavenger, and found that this pretreatment abolished the currents induced by reoxygenation. We also present evidence that free radicals do not directly act on the channel itself, but activate a protein kinase which, in turn, activates the K+ channels. Taken together, these results indicate that one of the early responses to oxidative stress is the activation of K+ currents. © 1993 Wiley-Liss, Inc.  相似文献   

11.
12.
13.
Bladder cancer is the second common cancer of the genitourinary system throughout the world and intravesical chemotherapy is usually used to reduce tumour recurrence and progression. Human transitional cell carcinoma (TCC) is an epithelial-like adherent cell line originally established from primary bladder carcinoma.Here we report the effect of mogoltacin, a sesquiterpene coumarin from Ferula badrakema on TCC cells. Mogoltacin was isolated from the fruits of F. badrakema, using silica gel column chromatography and preparative thin layer chromatography. Mogoltacin did not have any significant cytotoxicity effect on neoplastic TCC cells at 16, 32, 64, 128, 200 and 600 μg ml?1 concentrations. In order to analyse its combination effect, TCC cells were cultured in the presence of various combining concentrations of mogoltacin and vincristine. Cells were then observed for morphological changes (by light microscopy) and cytotoxicity using MTT assay. The effect of mogoltacin on vincristine toxicity was studied after 24, 48 and 72 h of drug administration. The results of MTT assay showed that mogoltacin can significantly enhance the cytotoxicity of vincristine and confirmed the morphological observations. Results revealed that combination of 40 μg ml?1 vincristine with 16 μg ml?1 mogoltacin increased the cytotoxicity of vincristine after 48 h by 32.8%.  相似文献   

14.
The Caulerpa taxifolia is excellent marine green algae, which produced enormous bioactive compounds with more biological activities. Also, it is an excellent source for synthesis of Ag NPs with increased bioactivity against various infections. In our study, the marine algae marine algae Caulerpa taxifolia mediated Ag NPs was synthesized effectively. The synthesized Ag NPs was characterized well using UV-spectrometer and X-ray powder diffraction (XRD) and confirmed as synthesized particle was Ag NPs. The available structure of the Ag NPs was morphologically identified by scanning electron microscope (SEM), and exact minimum size, polydispersive spherical shape of the entire Ag NPs structure was confirmed by Transmission electron microscope (TEM). Further, the anti-cancer efficiency of biosynthesized Ag NPs against A549 lung cancer cells was found at 40 µg/mL concentration by cytotoxicity experiment. In addition, the phase contrast images of the result were supported the Ag NPs, which damaged the A549 morphologically clearly. Finally, florescence microscopic images were effectively proved the anti-cancerous effect against A549 lung cancer cells due to the condensed morphology of increased death cells. All the confirmed in-vitro results were clearly stated that the Caulerpa taxifolia mediated Ag NPs has superior anti-cancer agent against A549 lung cancer cells.  相似文献   

15.
16.
Yin X  Zhou J  Jie C  Xing D  Zhang Y 《Life sciences》2004,75(18):2233-2244
Scutellaria barbata (S. barbata), a traditional Chinese herbal medicine native to southern China, is widely used as an anti-inflammatory and a diuretic in China. Several studies have indicated that extracts of S. barbata have growth inhibitory effects on a number of human cancers. Treatment of lung cancer, digestive system cancers, hepatoma, breast cancer, and chorioepithelioma by S. barbata extracts was reported. However, the mechanism underlying the antitumor activity was unclear. In this study, we studied the growth inhibitory effect of S. barbata and determined its mechanism of antitumor activity using human lung cancer cell line A549. Our results showed that ethanol extracts of S. barbata greatly inhibited A549 cell growth, with IC50 of 0.21 mg/ml. The major mechanisms of inhibition included cell apoptosis and cytotoxic effects. cDNA microarray analysis showed that 16 genes, involved in DNA damage, cell cycle control, nucleic acid binding and protein phosphorylation, underwent more than 5-fold change. These data indicated that these processes are involved in S. barbata-mediated killing of cancer cells. A surprising finding is that CD209, related to dendritic cell (DC) function, was dramatically downregulated by 102-fold. Further functional studies are needed to assess the role of the array-identified genes in S. barbata mediated anticancer activity.  相似文献   

17.
Glutathione content and growth in A549 human lung carcinoma cells   总被引:2,自引:0,他引:2  
The relationship between glutathione content and cell growth was investigated in A549 human lung carcinoma cells. A decreased cellular glutathione content was achieved by exposing the cells to L-buthionine-SR-sulfoximine (BSO). It also occurred in these cells as they approached their plateau phase of growth. During exponential growth, a lower initial glutathione content correlated with a longer lag phase in subcultured cells. Further, depletion of cellular glutathione by BSO inhibited cell growth. This inhibition became apparent 36 h after the addition of BSO. These observations raise the possibility that a critical concentration of GSH may be required for optimal growth of A549 human lung carcinoma cells.  相似文献   

18.
Non-small cell lung cancer (NSCLC) A549 cells are resistant to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. Therefore, combination therapy using sensitizing agents to overcome TRAIL resistance may provide new strategies for treatment of NSCLC. Here, we investigated whether lithium chloride (LiCl), a drug for mental illness, could sensitize A549 cells to TRAIL-induced apoptosis. We observed that LiCl significantly enhanced A549 cells apoptosis through up-regulation of death receptors DR4 and DR5 and activation of caspase cascades. In addition, G2/M arrest induced by LiCl also contributed to TRAIL-induced apoptosis. Concomitantly, LiCl strongly inhibited the activity of c-Jun N-terminal kinases (JNKs), and the inhibition of JNKs by SP600125 also induced G2/M arrest and augmented cell death caused by TRAIL or TRAIL plus LiCl. However, glycogen synthase kinase-3β (GSK3β) inhibition was not involved in TRAIL sensitization induced by LiCl. Collectively, these findings indicated that LiCl sensitized A549 cells to TRAIL-induced apoptosis through caspases-dependent apoptotic pathway via death receptors signaling and G2/M arrest induced by inhibition of JNK activation, but independent of GSK3β.  相似文献   

19.
We tested whether zoledronic acid, a biphosphonate with proposed apoptotic activity, augmented the cytotoxicity of cisplatin and/or gemcitabine in A549 lung cancer cell line. This cell line was subjected to different concentrations of the above chemotherapeutic agents and zoledronic acid. Cytotoxicity was assessed by the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrasodium bromide) assay. Particularly, zoledronic acid in 100 micromolar (microM) concentration augmented the cytotoxicity by cisplatin 1microg/ml from 25% to 70% (Z=3.22, P=0.0072). A significant portion of cells underwent apoptosis with or without zoledronic acid, but more so with the combination treatment as assessed by an Annexin V-FITC apoptosis detection kit. However, 100microM zoledronic acid showed 50% cytotoxicity on its own, but failed to improve cytotoxicity by Gemcitabine. Thus, we show for the first time in a lung cancer cell line that zoledronic acid bears cytotoxic potential on its own and in conjunction with cisplatin. The clinical potential of this finding should be further studied.  相似文献   

20.
Flavonoids are natural polyphenolic compounds ubiquitously present in the plant kingdom. They are reported to exhibit numerous beneficial health effects. In the present study, we demonstrate the potential effects of different flavonoids on cytokines mediated cyclooxygenase-2 and inducible nitric oxide synthase expression and activities in A549 cell line using quercetin, amentoflavone and flavanone. Our data revealed that quercetin, at 50 micro M concentration inhibited PGE(2) biosynthesis by A549 very strongly with little effect on COX-2 mRNA and protein expression. Unlike quercetin, amentoflavone inhibited both PGE(2) biosynthesis and COX-2 mRNA and protein expression strongly. In another set of experiment, quercetin inhibited iNOS protein expression completely without affecting iNOS mRNA expression. In contrast, amentoflavone although exerted no inhibitory effect on iNOS mRNA expression, did inhibit weakly iNOS protein expression. Flavanone had no inhibitory effect on either enzyme at the same concentration. Taken together, our data indicated that amentoflavone and quercetin differentially exerted supression of PGE(2) biosynthesis via downregulation of COX-2/iNOS expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号