首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Iino  Moritoshi  Briggs  Winslow R.  Schäfer  Eberhard 《Planta》1984,160(1):41-51
Unilateral irradiation with red light (R) or blue light (BL) elicits positive curvature of the mesocotyl of maize (Zea mays L.) seedlings raised under R for 2 d from sowing and kept in the dark for 1 d prior to curvature induction. The fluenceresponse curve for R-induced mesocotyl curvature, obtained by measuring curvature 100 min after phototropic induction, shows peaks in two fluence ranges, designated first positive range (from the threshold to the trough), and second positive range (above the trough). The fluence-response curve for BL is similar to that for R but shifted two orders of magnitude to higher fluences. Blue light elicits the classical first positive curvature of the coleoptile, whereas this response is not found with R. Positive mesocotyl curvature induced by either R or BL is eliminated by R given from above just before the unilateral irradiation, whereas BL-induced coleoptile curvature is not eliminated. The above results collectively offer evidence that phototropic curvature of the mesocotyl is induced by R-sensitive photosystem(s). Mesocotyl curvature in the second positive range is reduced by vertical far-red light (FR) applied after phototropic induction with R, but is not affected by FR applied before R. Unilateral irradiation with FR following vertical irradiation with a high R fluence leads to negative curvature of the mesocotyl. It is concluded that mesocotyl curvature in the second positive range results from a gradient in the amount of the FR-absorbing form of phytochrome (Pfr) established across the plant axis. Mesocotyl curvature in the first positive range is inhibited by vertical FR given either before or after phototropic induction with R. Since the FR used here is likely to produce more Pfr than the very low fluences of R eliciting the mesocotyl curvature in the first positive range, it is assumed that FR reduces the response in this case by adding Pfr at both sides of the plant axis. By rotating seedlings on a clinostat with its axis horizontal, the kinetics of mesocotyl curvature can be studied in the absence of a counteracting gravitropic response. On the clinostat, the R-induced mesocotyl curvature develops after a lag, through two successive phases having different curvature rates, the late phase is slower than the early phase. Negative curvature of the coleoptile can be induced by either R or BL; the BL-induced negative curvature is found at fluences higher than those giving positive curvature. The clinostat experiments show that the negative coleoptile curvature induced by either R or BL is a gravitropic compensation for positive mesocotyl curvature.Abbreviations BL blue light - FR far-red light - Pfr phytochrome in the far-red-absorbing form - Pr phytochrome in the red-absorbing form - R red light C.I.W.-D.P.B. Publication No. 824  相似文献   

2.
Abstract The present study was prompted by the question as to whether the strong effect of red and far-red light treatments on blue-light-mediated phototropism in the sesame (Sesamum indicum L.) hypocotyl (Woitzik & Mohr, 1988) should be attributed in part to changes initialed by light in the gravitropic counter-response. Light treatments, operating through phytochrome, do indeed strongly affect the gravitropic response. However, the direction of the light effect is the same in gravitropism, as in phototropism. Thus, the gravitropic counter-response leads to an underestimate, rather than an overestimate, of the importance of phytochrome action on phototropic responsiveness. The effect of red and far-red light, operating via phytochrome, on the gravitropic response of the sesame hypocotyl could be studied in the present paper without any interference due to phototropism or light control of longitudinal growth. It was found that the effects of red and far-red pretreatments (given prior to the onset of the stimulus) as well as the action of simultaneously applied red or far-red light (simultaneous to the phototropic or gravitropic stimulus) are very similar in both phototropism and gravitropism. In particular, the seedling is capable of superimposing information about the actual light conditions during bending on the ‘memory’ it has about the light conditions prior to the onset of phototropism or gravitropic stimulation, This striking similarity between the phototropic and gravitropic responses possibly indicates that phytochrome affects the signal-response-chain at a relatively late stage, after the phototropic and the gravitropic signal-response chains have merged. From a teleonomic point of view the action of red and far-red light on phototropic, as well as gravitropic, responsiveness can be conceived as part of a shade escape strategy.  相似文献   

3.
The photoreceptor phytochrome mediates tropic responses in protonemata of the moss Ceratodon purpureus. Under standard conditions the tip cells grow towards unilateral red light, or perpendicular to the electrical vector of polarized light. In this study the response of tip cells to partial irradiation of the apical region was analysed using a microbeam apparatus. The fluence response curve gave an unexpected pattern: whereas a 15-min microbeam with light intensities around 3 micro mol m (-2) s (-1) induced a growth curvature towards the irradiated side, higher light intensities around 100 micro mol m (-2) s (-1) caused a negative response, the cells grew away from the irradiated side. This avoidance response is explained by two effects: the light intensity is high enough to induce photoconversion into the active Pfr form of phytochrome, not only on the irradiated but also on the non-irradiated side by stray light. At the same time, the strong light on the irradiated side acts antagonistically to Pfr. As a result of this inhibition, the growth direction is moved to the light-avoiding side. Such a Pfr-independent mechanism might be important for the phototropic response to distinguish between the light-directed and light-avoiding side under unilateral light.  相似文献   

4.
Moritoshi Iino 《Planta》1988,176(2):183-188
The effects of pretreatments with red and blue light (RL, BL) on the fluence-response curve for the phototropism induced by a BL pulse (first positive curvature) were investigated with darkadapted maize (Zea mays L.) coleoptiles. A pulse of RL, giving a fluence sufficient to saturate phytochrome-mediated responses in this material, shifted the bell-shaped phototropic fluence-response curve to higher fluences and increased its peak height. A pulse of high-fluence BL given immediately prior to this RL treatment temporarily suppressed the phototropic fluence-response curve, and shifted the curve to higher fluences than induced by RL alone. The shift by BL progressed rapidly compared to that by RL. The results indicate (1) that first positive curvature is desensitized by both phytochrome and a BL system, (2) that desensitization by BL occurs with respect to both the maximal response and the quantum efficiency, and (3) that the desensitization responses mediated by phytochrome and the BL system can be induced simultaneously but develop following different kinetics. It is suggested that theses desensitization responses contribute to the induction of second positive curvature, a response induced by prolonged irradiation.Abbreviations BL blue light - RL red light CIW-DPB Publication No. 1001  相似文献   

5.
Phototropic responses to broadband far red (FR) radiation were investigated in fully de-etiolated seedlings of a long-hypocotyl mutant (lh) of cucumber (Cucumis sativus L.), which is deficient in phytochrome-B, and its near isogenic wild type (WT). Continuous unilateral FR light provided against a background of white light induced negative curvatures (i.e. bending away from the FR light source) in hypocotyls of WT seedlings. This response was fluence-rate dependent and was absent in the lh mutant, even at very high fluence rates of FR. The phototropic effect of FR light on WT seedlings was triggered in the hypocotyls and occurred over a range of fluence rates in which FR was very effective in promoting hypocotyl elongation. FR light had no effect on elongation of lh-mutant hypocotyls. Seedlings grown in the field showed negative phototropic responses to the proximity of neighboring plants that absorbed blue (B) and red light and back-reflected FR radiation. The bending response was significantly larger in WT than in lh seedlings. Responses of WT and lh seedlings to lateral B light were very similar; however, elimination of the lateral B light gradients created by the proximity of plant neighbors abolished the negative curvature only in the case of lh seedlings. More than 40% of the total hypocotyl curvature induced in WT seedlings by the presence of neighboring plants was present after equilibrating the fluence rates of B light received by opposite sides of the hypocotyl. These results suggest that: (a) phytochrome functions as a phototropic sensor in de-etiolated plants, and (b) in patchy canopy environments, young seedlings actively project new leaves into light gaps via stem bending responses elicited by the B-absorbing photoreceptor(s) and phytochrome.  相似文献   

6.
Jorge J. Casal 《Planta》1995,196(1):23-29
Etiolated seedlings of the wild-type (WT) and of the phyB-1 mutant of Arabidopsis thaliana (L.) Heynh. were exposed to red-light (R) and far-red light (FR) treatments to characterize the action of phytochrome B on hypocotyl extension growth. A single R or FR pulse had no detectable effects on hypocotyl growth. After 24-h pre-treatment with continuous FR (FRc) a single R, compared to FR pulse inhibited (more than 70%) subsequent hypocotyl growth in the WT but not in the phyB-1 mutant. This effect of FRc was fluence-rate dependent and more efficient than continuous R (Rc) or hourly FR pulses of equal total fluence. Hypocotyl growth inhibition by Rc was larger in WT than phyB-1 seedlings when chlorophyll screening was reduced either by using broadband Rc (maximum emission 610 nm) or by using narrow-band Rc (658 nm) over short periods (24 h) or with seedlings bleached with Norflurazon. Hourly R or R + FR pulses had similar effects in WT and phyB-1 mutant etiolated seedlings. It is concluded that phytochrome B is not the only photoreceptor of Rc and that the action of phytochrome B is enhanced by a FRc high-irradiance reaction. Complementary experiments with the phyA-201 mutant indicate that this promotion of a phytochrome B-mediated response occurs via co-action with phytochrome A.Abbreviations D darkness - FR far-red light - FRc continuous FR - Pfr FR-absorbing form of phytochrome - HIR high-irradiance reaction - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - Rc continuous R - WT wild-type I thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands) and Professor J. Chory (Salk Institute, Calif., USA) for their kind provision of the original WT and phyB-1 and phyA-201 seed, respectively. This work was financially supported by grants PID and PID-BID from CONICET, AG 040 from Universidad de Buenos Aires and A 12830/1-000019 from Fundación Antorchas.  相似文献   

7.
A combination of physiological and genetic approaches was used to investigate whether phytochromes and blue light (BL) photoreceptors act in a fully independent manner during photomorphogenesis of Arabidopsis thaliana (L.) Heynh. Wild-type seedlings and phyA, phyBand hy4 mutants were daily exposed to 3 h BL terminated with either a red light (R) or a far-red light (FR) pulse. In wild-type and phyA-mutant seedlings, BL followed by an R pulse inhibited hypocotyl growth and promoted cotyledon unfolding. The effects of BL were reduced if exposure to BL was followed by an FR pulse driving phytochrome to the R-absorbing form (Pr). In the wild type, the effects of R versus FR pulses were small in seedlings not exposed to BL. Thus, maximal responses depended on the presence of both BL and the FR-absorbing form of phytochrome (Pfr) in the subsequent dark period. Impaired responses to BL and to R versus FR pulses were observed in phyB and hy4 mutants. Simultaneous irradiation with orange light indicated that BL, perceived by specific BL photoreceptors (i.e. not by phytochromes), required phytochrome B to display a full effect. These results indicate interdependent co-action between phytochrome B and BL photoreceptors, particularly the HY4 gene product. No synergism between phytochrome A (activated by continuous or pulsed FR) and BL photoreceptors was observed.Abbreviations BL blue light - D darkness - FR far-redlight - FRc continuous FR - Pfr FR-absorbing form of phytochrome - Pfr/P proportion of phytochrome as Pfr - phyA phytochrome A - phyB phytochrome B - R red light - WT wild type We thank Professors R.E. Kendrick and M. Koornneef (Wageningen Agricultural University, The Netherlands), Professor J. Chory (Salk Institute, Calif., USA) and the Arabidopsis Biological Resource Center (Ohio State University, Ohio, USA) for their kind provision of the original seed batches. This work was financially supported by CONICET, Universidad de Buenos Aires (AG 040) and Fundación Antorchas (A-12830/1 0000/9)  相似文献   

8.
E. Hofmann  V. Speth  E. Schäfer 《Planta》1990,180(3):372-377
The intracellular localisation of phytochrome in oat (Avena sativa L. cv. Garry Oat) coleoptiles was analysed by electron microscopy. Serial ultrathin sections of resin-embedded material were indirectly immunolabeled with polyclonal antibodies against phytochrome together with a gold-coupled second antibody. The limits of detectability of sequestered areas of phytochrome (SAPs) were analysed as a function of light pretreatments and amounts of the far-red absorbing form of phytochrome (Pfr) established. In 5-d-old dark-grownAvena coleoptiles SAPs were not detectable if less than 13 units of Pfr — compared with 100 units total phytochrome of 5-d-old dark-grown seedlings — were established by a red light pulse. In other sets of experiments, seedlings were preirradiated either with a non-saturating red light pulse to allow destruction to occur or with a saturating red followed by a far-red light pulse to induce first SAP formation and then its disaggregation. These preirradiations resulted in an increase of the limit of detectability of SAP formation after a second red light pulse to 38–41 and 19–23 units Pfr, respectively. We conclude that with respect to Pfr-induced SAP formation an adaptation process exists and that our data indicate that SAP formation is not a simple self-aggregation of newly formed Pfr.Abbreviations FR far-red light - Pfr, Pr far-red-absorbing and red-absorbing forms of phytochrome, respectively - Plot total phytochrome (Pfr + Pr) - R red light - SAP sequestered areas of phytochrome This work was supported by Deutsche Forschungsgemeinschaft (SFB 206). The competent technical assistance of Karin Fischer is gratefully acknowledged.  相似文献   

9.
Avena phytochrome A (phyA) overexpressed in tobacco (Nicotiana tabacum L.) and tomato (Lycopersicon sculentum Mill) was functionally characterised by comparing wild-type (WT) and transgenic seedlings. Different proportions of phytochrome in its far-red-absorbing form (Pfr/P) were provided by end-of-day (EOD) light pulses. Stem-length responses occurred largely in the range of low Pfr/P (3–61%) for WT seedlings and in the range of high Pfr/P (61–87%) for transgenic seedlings. A similar shift was observed when the photoperiod was interrupted by short light pulses providing different Pfr/P ratios and followed by 1 h dark incubation. In other experiments, Avena phyA was allowed to re-accumulate in darkness and subsequently phototransformed to Pfr but no extra inhibition of stem extension growth was observed. In transgenic tomato seedlings the response to EOD far-red light was faster and the response to a far-red light pulse delayed into darkness was larger than in the WT. Avena phyA Pfr remaining at the end of the photoperiod appears intrinsically unable to sustain growth inhibition in subsequent darkness. Avena phyA modifies the sensitivity and the kinetics of EOD responses mediated by native phytochrome.Abbreviations EOD end-of-day - FR far-red light - Pfr/P pro-portion of phytochrome in its FR-absorbing form - phyA phyto-chrome A - phyB phytochrome B - R red light - RFR R to FR ratio - WT wild type We thank Dr Brian Thomas for providing the antibodies used in this work, and Federico Guerendiain for his excellent technical assistance. This work was financially supported by grants UBA AG 040 and Fundacion Antorchas A-12830/1-19 (both to J.J.C.), PID-CONICET (to R.A.S. and J.J.C.), United States Department of Energy DE-FG02-88ER13968 (to R.D.V.).  相似文献   

10.
Etiolated seedlings of tobacco (Nicotiana tabacum L.) were exposed to single light pulses predicted to establish different proportions of phytochrome in its far-red absorbing form (Pfr/P). The angle between the cotyledons was compared in wild-type and transgenic seedling overexpressing Avena phytochrome A over the range of both very low-fluence responses (VLFR) and low-fluence responses (LFR). The unfolding of the cotyledons increased linearly for 24 h after the light pulse. At this time the Pfr/P-response curve showed two linear segments. The segment below a calculated Pfr/P = 3% (i.e. VLFR) was steeper than the segment above 3% (i.e. LFR). In the VLFR range the slope was almost threefold higher in transgenic than wild-type seedlings. However, in the LFR range the difference was less than 50%. From these data we propose that Avena phytochrome A makes a higher contribution to VLFR than LFR in etiolated tobacco seedlings.Abbreviations FR far-red light - LFR low-fluence response - Pfr/P proportion of phytochrome (P) in its FR-absorbing form (Pfr) - R red light - VLFR very low-fluence response Financial support was provided by the University of Buenos Aires and Fundación Antorchas (Argentina) to J.J.C., CONICET (Argentina) to R.A.S. and the U.S. Department of Energy (DE-FG02-88ER13968) to R.D.V.  相似文献   

11.
Phytochrome modulation of blue-light-induced phototropism   总被引:1,自引:0,他引:1  
Red light enhances hypocotyl phototropism toward unilateral blue light through a phytochrome‐mediated response. This study demonstrates how the phytochromes modulate blue‐light‐induced phototropism in the absence of a red light pre‐treatment. It was found that phytochromes A, B, and D have conditionally overlapping functions in the promotion of blue‐light‐induced phototropism. Under very low blue light intensities (0.01 µmol m?2 s?1) phyA activity is necessary for the progression of a normal phototropic response, whereas above 1.0 µmol m?1 s?2 phyB and phyD have functional redundancy with phyA to promote phototropism. PhyA also contributes to attenuation of phototropism under high fluence rates of unilateral blue light, which was previously shown to be dependent on the phototropins and cryptochromes. From these results, it appears that phytochromes are required to develop a robust phototropic response under low fluence rates, whereas under high irradiances where phototropism may be less important, phyA suppresses phototropism.  相似文献   

12.
The kinetics of type 1 phytochrome were investigated in green, light-grown wheat. Phytochrome was measured by a quantitative sandwich enzyme-linked immunosorbent assay using monoclonal antibodies. The assay was capable of detecting down to 150 pg of phytochrome. In red light, rapid first-order destruction of the far-red-light-absorbing form of phytochrome (Pfr) with a half-life of 15 min was observed. Following white light terminated by red, phytochrome synthesis was delayed in darkness by about 15 h compared to plants given a terminal far-red treatment. Synthesis of the red-light-absorbing form of phytochrome (Pr) was zero-order in these experiments. Phytochrome synthesis in far-red light was approximately equal to synthesis in darkness in wheat although net destruction occurred in light-grown Avena sativa tissues in continuous far-red light, as has been reported for other monocotyledons. In wheat, destruction of Pfr apparently did not occur below a certain threshold level of Pfr or Pfr/total phytochrome. These results are consistent with an involvement of type 1 phytochrome in the photoperiodic control of flowering in wheat and other long-day plants.Abbreviations ELISA enzyme-linked immunosorbent assay - FR far-red light - HIR high-irradiance response - Pfr farred-light-absorbing form of phytochrome - Pr red-light-absorbing form of phytochrome - Ptot total phytochrome (Pr + Pfr) - R red light The authors wish to thank Prof. Daphne Vince-Prue (University of Reading) for many helpful discussions regarding this work. Hugh Carr-Smith was supported by a Science and Engineering Research Council studentship and Chris Plumpton by an Agricultural and Food Research Council (AFRC) studentship. B. Thomas and G. Butcher were supported by the AFRC.  相似文献   

13.
Schizaea pusilla is a rare fern that occurs in acidic bogs and is one of the few fern species that maintains a filamentous gametophyte throughout its development. To expand our knowledge of the physiology of this fern, phototropic responses were examined in young gametophytes. In contrast to germ filaments of other fern species, apical protonemata of young gametophytes are negatively phototropic in continuous white, red and blue light at all fluence rates tested. The expression of phototropic curvature is not limited by time since apical protonemata are also negatively phototropic when they are given brief exposures of light and then placed in the dark. In other lower plant groups such as mosses and some algae, the direction of phototropic curvature can change depending on light quality and intensity, but in young gametophytes of Schizaea, negative phototropic curvature was observed in all conditions studied. Blue light is the most effective in promoting the negative phototropic response in Schizaea.  相似文献   

14.
Unilateral irradiation of maize (Zea mays L.) seedlings results in a fluence-rate gradient, and hence below saturation, a gradient of the far-red-absorbing form of phytochrome (Pfr). The Pfr-gradients established by blue, red and far-red light were spectrophotometrically measured in the mesocotyl. Based on these Pfr-gradients and the fluence-response curves of phytochrome photoconversion the fluence-rate gradients were calculated. The fluence-rate gradient in the blue (460 nm) was steeper than that in the red (665 nm), which in turn was steeper than that in the far-red light (725 nm). The fluence-rate ratios front to rear were 1:0.06 (460 nm), 1:0.2 (665 nm), and 1:0.33 (725 nm). The assumption that phytochrome-mediated phototropism of maize mesocotyls is caused by local phytochrome-mediated growth inhibition was tested in the following manner. Firstly, the Pfr response curve for growth inhibition was calculated; these calculations were based on measurements of Pfr-gradients and data from red-light-induced phototropism. Secondly, the Pfr response curve for growth inhibition was used as a basis for calculating fluence-response curves for blue-and far-red-light-induced phototropism. Finally, these calculated results were compared with experimental data. It was concluded that the threshold for phytochrome-mediated phototropism of maize mesocotyls reflects the apparent photoconversion cross section of phytochrome whereas the maximal inducable curvature depends on the steepness of the light (Pfr) gradient across the mesocotyl.Abbreviations Pfr far-red-absorbing form of phytochrome - Ptot total phytochrome - Fr far-red light  相似文献   

15.
Evidence for a phytochrome-mediated phototropism in etiolated pea seedlings   总被引:6,自引:3,他引:3  
Entirely etiolated pea seedlings (Pisum sativum, L. cv Alaska) were tested for a phototropic response to short pulses of unilateral blue light. They responded with small curvatures resembling in fluence-dependence and kinetics of development a phytochrome-mediated phototropic response previously described in maize mesocotyls. Irradiations from above with saturating red or far-red light, either immediately before or after the unilateral phototropic stimulus, strongly reduced or eliminated subsequent positive phototropic curvature. Only blue light from above, however, entirely eliminated curvature at all fluences of stimulus. It is concluded that the phototropism is primarily a result of phytochrome action.  相似文献   

16.
Elementary processes of photoperception by phytochrome A (PhyA) for the high-irradiance response (HIR) of hypocotyl elongation in Arabidopsis were examined using a newly designed irradiator with LED. The effect of continuous irradiation with far-red (FR) light could be replaced by intermittent irradiation with FR light pulses if given at intervals of 3 min or less for 24 h. In this response, the Bunsen-Roscoe law of reciprocity held in each FR light pulse. Therefore, we determined the action spectrum for the response by intermittent irradiation using phyB and phyAphyB double mutants. The resultant action spectrum correlated well with the absorption spectrum of PhyA in far-red-absorbing phytochrome (Pfr). Intermittent irradiation with 550 to 667 nm of light alone had no significant effect on the response. In contrast, intermittent irradiation with red light immediately after each FR light pulse completely reversed the effect of FR light in each cycle. The results indicate that neither red-absorbing phytochrome synthesized in darkness nor photoconverted Pfr are physiologically active, and that a short-lived signal is induced during photoconversion from Pfr to red-absorbing phytochrome. The mode of photoperception by PhyA for HIR is essentially different from that by PhyA for very-low-fluence responses and phytochrome B for low-fluence responses.  相似文献   

17.
Seeds of the wild type (WT) and of the phyA and phyB mutants of Arabidopsis thaliana were exposed to single red light (R)/far-red light (FR) pulses predicted to establish a series of calculated phytochrome photoequilibria (Pfr/P). WT and phyB seeds showed biphasic responses to Pfr/P. The first phase, i.e. the very-low-fluence response (VLFR), occurred below Pfr/P = 10-1%. The second phase, i.e. the low-fluence response, occurred above Pfr/P = 3%. The VLFR was similarly induced by either a FR pulse saturating photoconversion or a subsaturating R pulse predicted to establish the same Pfr/P. The VLFR was absent in phyA seeds, which showed a strong low-fluence response. In the field, even brief exposures to the very low fluences of canopy shade light (R/FR ratio < 0.05) promoted germination above dark controls in WT and phyB seeds but not in the phyA mutant. Seeds of the phyA mutant germinated normally under canopies providing higher R/FR ratios or under deep canopy shade light supplemented with R from light-emitting diodes. We propose that phytochrome A mediates VLFR of A. thaliana seeds.  相似文献   

18.
Phytochrome of oat (Avena sativa L., cv. Garry) coleoptile cells in the red-light-absorbing form, Pr, is diffusely distributed while after conversion to the far-red-light-absorbing form, Pfr, it is observed only in very small areas within the cell. Comparison of phytochrome photoversibility measurements to the distribution of the pigment within the cell indicates that the spectral assay is not influenced by the observed compartmentalization of the chromoprotein. However, the observed compartmentalization of phytochrome is correlated with a loss in spectrophotometrically detectable Pr.Abbreviations Pr red-absorbing form of phytochrome - Pfr farred-absorbing form of phytochrome - R red light - FR far-red light C.I.W.-D.P.B. Publication No. 622  相似文献   

19.
The red-light(R)-absorbing form of phytochrome (Pr) was detected spectrophotometrically in a 20,000 g particulate fraction prepared from a 1,000 g supernatant fraction from epicotyl tissue of pea (Pisum sativum L.) seedlings grown in the dark and only briefly exposed to dim green light. The difference spectrum of phytochrome in this fraction was essentially the same as that of soluble phytochrome from the same tissue. When the non-irradiated 20,000 g particulate fraction was incubated in the dark at 25° C, an absorbance change (decrease) of Pr after actinic red irradiation was found only in the far-red (FR) region. When the 20,000 g particulate fraction was irradiated with R and then incubated in the dark, the FR-absorbing form of phytochrome (Pfr) disappeared spectrally at a rate about half that in the soluble fraction, and the difference spectrum of the Pr which became detectable after dark incubation of the 20,000 g particulate fraction was markedly distorted. In contrast, Pfr in a 20,000 g particulate fraction prepared from tissues irradiated with R did not change optically during dark incubation at 25° C for 60 min, while Pfr in the soluble fraction from the same tissue disappeared in the dark. No dissociation of either Pr or Pfr from the 20,000 g particulate fraction was indicated during a 60-min dark incubation at 25° C, but Pfr in a 20,000 g particulate fraction prepared in vitro from R-irradiated 1,000 g supernatant fraction in the presence of CaCl2 disappeared spectrally and the difference spectrum of Pr in the 20,000 g particulate fraction became quite distorted during the dark incubation.Abbreviations Pr red-light-absorbing form of phytochrome - Pfr far-red-light-absorbing form of phytochrome - FR far-red light - FR1 first actinic far-red light - FR2 second actinic far-red light - R red light - R1 first actinic red light - 1kS 1,000 g supernatant fraction - 20kS 20,000 g supernatant fraction - 20kP 20,000 g particulate fraction  相似文献   

20.
D. C. Morgan  T. O'Brien  H. Smith 《Planta》1980,150(2):95-101
Treatment of the whole of aSinapis alba plant with supplementary far-red light (FR), in back-ground white light (WL), induces a rapid increase in stem extension rate. This rapid increase is regulated by the light environment of the stem itself. Supplementary FR to the stem increases extension rate after a lag period of 10–15 min. A lag period of 3–4 h follows FR irradiation of the leaf, before an increase in extension rate is detectable. When the stem is given supplementary FR, the change in extension rate which is induced increases with increasing FR fluence rate, and with decreasing phytochrome photoequilibrium. There is no difference between the effects of supplementary FR max 719 nm and supplementary FR max 739 nm for these relationships. The increase in extension rate induced by supplementary FR is reversed by an increase in the fluence rate of red light (R). These data indicate that the response is controlled by phytochrome photoequilibrium.Abbreviations B blue light - FR far-red light - R red light - WL white light - Pfr far-red absorbing form of phytochrome - Pr red absorbing form of phytochrome - Ptot total phytochrome level (=Pr+Pfr); -Pfr/Ptot, measured - ER difference in stem extension rate, before and after treatment  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号