首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Differences in feeding behavior and performance among the five native Hawaiian gobioid stream fishes (Sicyopterus stimpsoni, Lentipes concolor, Awaous guamensis, Stenogobius hawaiiensis, and Eleotris sandwicensis) have been proposed based on the skeletal anatomy of their jaws and dietary specialization. However, performance of the feeding apparatus likely depends on the proportions and configurations of the jaw muscles and the arrangement of the jaw skeleton. We used a published mathematical model of muscle function to evaluate potential differences in jaw closing performance and their correlations with morphology among these species. For example, high output force calculated for the adductor mandibulae muscles (A2 and A3) of both A. guamensis and E. sandwicensis matched expectations based on the morphology of these species because these muscles are larger than in the other species. In contrast, Stenogobius hawaiiensis exhibited an alternative morphological strategy for achieving high relative output forces of both A2 and A3, in which the placement and configuration of the muscles conveyed high mechanical advantage despite only moderate cross‐sectional areas. These differing anatomical pathways to similar functional performance suggest a pattern of many‐to‐one mapping of morphology to performance. In addition, a functional differentiation between A2 and A3 was evident for all species, in which A2 was better suited for producing forceful jaw closing and A3 for rapid jaw closing. Thus, the diversity of feeding performance of Hawaiian stream gobies seems to reflect a maintenance of functional breadth through the retention of some primitive traits in combination with novel functional capacities in several species. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
This study compares the pharyngeal biting mechanism of the Cichlidae, a family of perciform fishes that is characterized by many anatomical specializations, with that of the Centrarchidae, a family that possesses the generalized perciform anatomy. Our objective was to trace the key structural and functional changes in the pharyngeal jaw apparatus that have arisen in the evolution from the generalized to derived (cichlid) perciform condition. We propose a mechanical model of pharyngeal biting in the Centrarchidae and compare this with an already existing model for pharyngeal biting in the family Cichlidae. Central to our centrarchid model is a structural coupling between the upper and lower pharyngeal jaws. This coupling severely limits independent movement of the pharyngeal jaws, in contrast to the situation in the speciose Cichlidae, in which the upper and lower pharyngeal jaw movements are to a large extent independent. We tested both models by electrically stimulating nine muscles of the branchial and hyoid apparatuses in three centrarchild and three cichlid species. The results confirmed the coupled movement of the upper and lower pharyngeal jaws in the Centrarchidae and the independence of these movements in the Cichlidae. We suggest that the key structural innovation in the development of the functionally versatile cichlid (labroid) pharyngeal jaw apparatus was the decoupling of epibranchials 4 from the upper pharyngeal jaws. This structural decoupling implies the decoupling of the movements of the upper and lower pharyngeal jaws and leads to a cichlid (labroid) type of pharyngeal bite. The initial decoupling facilitated a cascade of changes, each leading to improved biting effectiveness and/or to increased mobility and mechanical flexibility of the pharyngeal jaws. The shift of insertion of the m. levator externus 4 which has been considered the primary innovation in the transformation probably arose secondarily. The transformation of the pharyngeal biting mechanism in the perciforms is an excellent example of decoupling of structures associated with diversification of form and function and with increased speciation rates.  相似文献   

3.
Functional and structural patterns in the pharyngeal jaw apparatus of euteleostean fishes are described and analysed as a case study of the transformation of a complex biological design. The sequential acquisition of structural novelties in the pharyngeal apparatus is considered in relation to both current hypotheses of euteleostean phylogeny and patterns of pharyngeal jaw function. Several euteleostean clades are corroborated as being monophyletic, and morphologically conservative features of the pharyngeal jaw apparatus are recognized. Functional analysis, using cinematography and electromyography, reveals four distinct patterns of muscle activity during feeding in primitive euteleosts (Esox) and in derived euteleostean fishes(Perca, Micropterus, Ambloplites, Pomoxis). The initial strike, buccal manipulation, pharyngeal manipulation, and the pharyngeal transport of prey into the oesophagus all involve unique muscle activity patterns that must be distinguished in analyses of pharyngeal jaw function. During pharyngeal transport, the upper and lower pharyngeal jaws are simultaneously protracted and retracted by the action of dorsal and ventral musculoskeletal gill arch couplings. The levator externus four and retractor dorsalis muscles, anatomical antagonists, overlap for 70–90°of their activity period. Levatores externi one and two are the main protractors of the upper pharyngeal jaws in the acanthopterygian fishes studied. The major features of pharyngeal jaw movement in primitive euteleosts are retained in many derived clades in spite of a dramatic structural reorganization of the pharyngeal region. Homologous muscles have radically changed their relative activity periods while pharyngeal jaw kinematics have been modified relatively little. Patterns of transformation of activity may thus bear little direct relationship to the sequence of structural modification in the evolution of complex designs. Overall function of a structural system may be maintained, however, through co-ordinated modifications of the timing of muscle activity and anatomical reorientation of the musculoskeletal system. Deeper understanding of the principles underlying the origin and transformation of functional design in vertebrates awaits further information on the acquisition of both structural and functional novelties at successive hierarchical levels within monophyietic clades. This is suggested as a key goal of future research in functional and evolutionary morphology.  相似文献   

4.
Within clariid fishes several cranial morphologies can be discerned. Especially within anguilliform representatives an increase in the degree of hypertrophy of the jaw adductors occurs. The hypertrophy of the jaw adductors and skeletal modifications in the cranial elements have been linked to increased bite force. The functional significance of this supposed increase in bite force remains obscure. In this study, biomechanical modeling of the cranial apparatus in four clariid representatives showing a gradual increase in the hypertrophy of the jaw adductors (Clarias gariepinus, Clariallabes melas, Channallabes apus, and Gymnallabes typus) is used to investigate whether bite force actually increased. Static bite modeling shows that the apparent hypertrophy results in an increase in bite force. For a given head size, the largest bite forces are predicted for C. apus, the lowest ones for C. gariepinus, and intermediate values are calculated for the other species. In addition, also in absolute measures differences in bite force remain, with C. apus biting distinctly harder than C. gariepinus despite its smaller head size. This indicates that the hypertrophy of the jaw adductors is more than just a correlated response to the decrease in absolute head size. Further studies investigating the ecological relevance of this performance difference are needed.  相似文献   

5.
Intramandibular joints (IMJ) are novel articulations between bony elements of the lower jaw that have evolved independently in multiple fish lineages and are typically associated with biting herbivory. This novel joint is hypothesized to function by augmenting oral jaw expansion during mouth opening, which would increase contact between the tooth‐bearing area of the jaws and algal substratum during feeding, resulting in more effective food removal from the substrate. Currently, it is not understood if increased flexibility in a double‐jointed mandible also results in increased force generation during herbivorous biting and/or scraping. Therefore, we selected the herbivore Girella laevifrons for a mechanical study of the IMJ lower jaw lever system. For comparative purposes, we selected Graus nigra, a non–IMJ‐bearing species, from a putative sister genus. Shortening of the lower jaw, during flexion at the IMJ, resulted in a more strongly force‐amplifying closing lever system in the lower jaw, even in the absence of notable changes to the sizes of the muscles that power the lever system. To explain how the IMJ itself functions, we use a four‐bar linkage that models the transmission of force and velocity to and through the lower jaw via the IMJ. When combined, the functionally interrelated lever and linkage models predict velocity to be amplified during jaw opening, whereas jaw closing is highly force modified by the presence of the IMJ. Moreover, the function of the IMJ late during jaw closure provides enough velocity to detach sturdy and resilient prey. Thus, this novel jaw system can alternate between amplifying the force or the velocity exerted onto the substrate where food items are attached. This unique mechanical configuration supports the argument that IMJs are functional innovations that have evolved to meet novel mechanical challenges and constraints placed on the feeding apparatus by attached and sturdy food sources. J. Morphol. 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

6.
Tetraodontiform fishes are characterized by jaws specialized for powerful biting and a diet dominated by hard-shelled prey. Strong biting by the oral jaws is an unusual feature among teleosts. We present a functional morphological analysis of the feeding mechanism of a representative tetraodontiform, Balistes vetula. As is typical for the order, long, sharp, strong teeth are mounted on the short, robust jaw bones of B. vetula. The neurocranium and suspensorium are enlarged and strengthened to serve as sites of attachment for the greatly hypertrophied adductor mandibulae muscles. Electromyographic recordings made from 11 cranial muscles during feeding revealed four distinct behaviors in the feeding repertoire of B. vetula. Suction is used effectively to capture soft prey and is associated with a motor pattern similar to that reported for many other teleosts. However, when feeding on hard prey, B. vetula directly bit the prey, exhibiting a motor pattern very different from that of suction feeding. During buccal manipulation, repeated cycles of jaw opening and closing (biting) were coupled with rapid movement of the prey in and out of the mouth. Muscle activity during buccal manipulation was similar to that seen during bite-captures. A blowing behavior was periodically employed during prey handling, as prey were forcefully “spit out” from the mouth, either to reposition them or to separate unwanted material from flesh. The motor pattern used during blowing was distinct from similar behaviors described for other fishes, indicating that this behaviors may be unique to tetraodontiforms. Thus B. vetula combines primitive behaviors and motor patterns (suction feeding and buccal manipulation) with specialized morphology (strong teeth, robust jaws, and hypertrophied adductor muscles) and a novel behavior (blowing) to exploit armored prey such as sea urchins molluscs, and crabs. © 1993 Wiley-Liss, Inc.  相似文献   

7.
The Lake Victoria Cichlid fishes have diverged very rapidly. The estimated 500 species inhabiting the lake are believed to have arisen within the last 14,000 years. The fishes' jaws and teeth have diverged markedly to adapt to different feeding behaviors and environments. To examine how the genomes of these fishes differentiated during speciation, we performed comparative analysis of expressed sequenced tag (EST) sequences. We constructed cDNA libraries derived only from the jaw portions of two cichlid species endemic to Lake Victoria. We sequenced 17,280 cDNA clones from Haplochromis chilotes and 9600 cDNA clones from Haplochromis sp. "Redtailsheller" and obtained 543 different genes common to both species. Of these genes, 441 were essentially identical between species and 102 contained base replacements in their open reading frame (ORF) or untranslated (UTR) regions. Comparative analysis of 71 selected sequences has revealed that while the degree of polymorphism is 0.0054/site for H. chilotes and 0.0047/site for H. sp. "Redtailsheller", genetic distance between the two species is 0.0031/site. The genetic distance particularly indicates that the two species diverged about 890,000 years ago.  相似文献   

8.
Haplochromis pharyngalis and Haplochromis petronius, two endemic cichlids from the Lake Edward system (Uganda, Democratic Republic of the Congo), are very similar in general morphology but have been reported to differ in pharyngeal jaw morphology and distribution. This study analysed 51 morphometrics and various qualitative characteristics of 48 specimens from different localities. The morphological traits of both species strongly overlap, and differences in the pharyngeal jaw morphology correspond to a geographic morphocline. We conclude that all specimens belong to one valid species, H. pharyngalis, and consider H. petronius to be a synonym.  相似文献   

9.
Decoupling of the upper jaw bones—jaw kinesis—is a distinctive feature of the ray-finned fishes, but it is not clear how the innovation is related to the extraordinary diversity of feeding behaviours and feeding ecology in this group. We address this issue in a lineage of ray-finned fishes that is well known for its ecological and functional diversity—African rift lake cichlids. We sequenced ultraconserved elements to generate a phylogenomic tree of the Lake Tanganyika and Lake Malawi cichlid radiations. We filmed a diverse array of over 50 cichlid species capturing live prey and quantified the extent of jaw kinesis in the premaxillary and maxillary bones. Our combination of phylogenomic and kinematic data reveals a strong association between biting modes of feeding and reduced jaw kinesis, suggesting that the contrasting demands of biting and suction feeding have strongly influenced cranial evolution in both cichlid radiations.  相似文献   

10.
Male stag beetles (Lucanidae) use their extremely elongated jaws to pinch their rivals forcefully in male–male battles. The morphology of these jaws has to be a compromise between robustness (to withstand the bite forces), length and weight. Cyclommatus metallifer stag beetles circumvent this trade-off by reducing their bite force when biting with their slender jaw tips. Here we describe the functional mechanism behind the force modulation behaviour. Scanning Electron Microscopy and micro CT imaging show large numbers of small sensors in the jaw cuticle. We find a strong correlation between the distribution of these sensors and that of the material stress in the same jaw region during biting. The jaw sensors are mechanoreceptors with a small protrusion that barely protrudes above the undulating jaw surface. The sensors stimulate dendrites that extend from the neuronal cell body through the entire thickness of the jaw exoskeleton towards the sensors at the external surface. They form a sensory field that functions in a feedback mechanism to control the bite muscle force. This negative feedback mechanism enabled the stag beetles to evolve massive bite muscles without risking overloading their valuable jaws.  相似文献   

11.
Predicting patterns of prey use from morphology of fishes   总被引:8,自引:0,他引:8  
Synopsis Ecomorphological analyses that search for patterns of association between morphological and prey-use data sets will have a greater chance of understanding the causal relationships between form and diet if the morphological variables used have known consequences for feeding performance. We explore the utility of fish body size, mouth gape and jaw-lever mechanics in predicting patterns of prey use in two very different communities of fishes, Caribbean coral reef fishes, and species of the Centrarchidae that live in Lake Opinicon, Ontario. In spite of major differences in the spectrum of potential prey available, the centrarchids of Lake Opinicon show dietary transitions during ontogeny that are very similar to those seen among and within species of Caribbean groupers (Serranidae). The transition from small zooplankton to intermediate sized invertebrates and ultimately to fishes appears to be very general in ram-suction feeding fishes and is probably driven largely by the constraints of mouth size on prey capture ability. The jaw-lever systems for mouth opening and closing represent direct trade-offs for speed and force of jaw movement. The ratio of in-lever to out-lever in the opening system changes during ontogeny in bluegill, indicating that the mechanics and kinematics of jaw movement may change as well. Among 34 species of Caribbean reef fishes, biting species had jaw-closing ratios that favored force translation, while species that employ rapid-strike ram-suction had closing ratios that enhanced speed of closing and mouth opening ratios that favored a more rapid expansion of the mouth during the strike. We suggest that when prey are categorized into functional groups, reflecting the specific performance features that are important in capturing and handling them, and the differences among habitats in the available prey resource are taken into account, general patterns can be found in morphology-diet relations that cross phylogenetic boundaries.  相似文献   

12.
Evaluations of bite force, either measured directly or calculated theoretically, have been used to investigate the maximum feeding performance of a wide variety of vertebrates. However, bite force studies of fishes have focused primarily on small species due to the intractable nature of large apex predators. More massive muscles can generate higher forces and many of these fishes attain immense sizes; it is unclear how much of their biting performance is driven purely by dramatic ontogenetic increases in body size versus size-specific selection for enhanced feeding performance. In this study, we investigated biting performance and feeding biomechanics of immature and mature individuals from an ontogenetic series of an apex predator, the bull shark, Carcharhinus leucas (73–285 cm total length). Theoretical bite force ranged from 36 to 2128 N at the most anterior bite point, and 170 to 5914 N at the most posterior bite point over the ontogenetic series. Scaling patterns differed among the two age groups investigated; immature bull shark bite force scaled with positive allometry, whereas adult bite force scaled isometrically. When the bite force of C. leucas was compared to those of 12 other cartilaginous fishes, bull sharks presented the highest mass-specific bite force, greater than that of the white shark or the great hammerhead shark. A phylogenetic independent contrast analysis of anatomical and dietary variables as determinants of bite force in these 13 species indicated that the evolution of large adult bite forces in cartilaginous fishes is linked predominantly to the evolution of large body size. Multiple regressions based on mass-specific standardized contrasts suggest that the evolution of high bite forces in Chondrichthyes is further correlated with hypertrophication of the jaw adductors, increased leverage for anterior biting, and widening of the head. Lastly, we discuss the ecological significance of positive allometry in bite force as a possible “performance gain” early in the life history of C. leucas.  相似文献   

13.
The radiation of cichlid fishes in the African great lakes is often described as adaptive, because, at a superficial level, cichlid fishes seem adapted to the ecological niches they occupy. However, adaptedness has rarely been studied. We''ve investigated to what extent island populations of three species of the rock-dwelling genus Neochromis, endemic to Lake Victoria, are adapted anatomically to exploit locally abundant resources. Specifically, we asked whether different resource environments were reflected in differences in the feeding apparatus, both within species and between species. In populations of two specialized biters, the algae scrapers N. rufocaudalis and N. omnicaeruleus, the biting force of the lower jaw increased with increasing amount of items that require biting in the diet. N. greenwoodi is a less specialized biter; we found differences between two populations in the hyoid position and in the premaxilla that enhance suction feeding. These adaptations were related to the amount of items requiring suction. Comparing across three sympatric pairs of species, in each case different diets were reflected in differences in anatomy.  相似文献   

14.
Secretases degrade amyloid precursor protein (APP) releasing fragments (-peptides A, Ax) that assemble to form hallmark extracellular deposits in Alzheimer's disease (AD) correlating with disease severity. As such, secretases supply targets for therapeutic intervention and form the focus of this overview. Progress in elucidating secretases and their modes of catalysis come from exploiting the use of transgenics or transfected cells. In addition to Ax, secretases also release C-terminal fragments with putative signaling properties (amyloid intracellular domain, AICD) similar in concept to those available for conversion of the Notch-r to release the nuclear transactivator NICD. The review considers lingering questions on APP fragmentation by secretase action, ancillary proteins such as presenilins (PS1/2), nicastrin, XII, or proteases (caspases), and the influence of familial mutations (mAPP, mPS) in terms of fibrillogenesis.  相似文献   

15.
Reconstructing the feeding ecology of fossil fishes can be difficult, but new mechanical approaches enable reasonably reliable inferences by comparison with living forms. Here, the feeding ecology of one of the most iconic and abundant actinopterygians of the Early Jurassic, Dapedium, is explored through detailed anatomical study and functional analyses of jaw mechanics. Mathematical models derived from modern teleost functional morphology are applied, to ascertain the transmission of force through the jaws of Dapedium. A number of features not previously identified in the genus are described, and the dentition is described in full for the first time. The analysis of the functional morphology of Dapedium, in combination with its jaw anatomy and dentition, indicates that the genus was well adapted to a durophagous feeding habit, although indirect evidence suggests a more generalist feeding mode. Being a generalist durophage may explain the success of the genus in the aftermath of the end‐Triassic extinction event and its radiation in the Early Jurassic, as indicated by the ubiquity of Dapedium fossils throughout the Lower Lias.  相似文献   

16.
The kinetics of the head and function of select jaw muscles were studied during biting behavior in the lemon shark, Negaprion brevirostris. High speed cinematography and electromyography of seven cranial muscles were recorded during bites elicited by a probe to the oral cavity. In weak bites mandible depression was followed by mandible elevation and jaw closure without cranial elevation. In strong bites cranial elevation always preceded lower jaw depression, lower jaw elevation, and cranial depression. The average duration of the strong bites was rapid (176 msec), considering the size of the animal relative to other fishes. Different electromyographic patterns distinguished the two forms of bite, primarily in activity of the epaxial muscles, which effect cranial elevation. A composite reconstruction of the activity of seven cranial muscles during biting revealed that epaxial muscle activity and consequently cranial elevation preceded all other muscle activity. Mandible depression was primarily effected by contraction of the common coracoarcual and coracomandibularis, with assistance by the coracohyoideus. Simultaneous activity of the levator hyomandibulae is believed to increase the width of the orobranchial chamber. The adductor mandibulae dorsal was the primary jaw adductor assisted by the adductor mandibulae ventral. This biomechanically conservative mechanism for jaw opening in aquatic vertebrates is conserved, with the exception of the coracomandibularis, which is homologous to prehyoid muscles of salamanders.  相似文献   

17.
The feeding mechanism of Epibulus insidiator is unique among fishes, exhibiting the highest degree of jaw protrusion ever described (65% of head length). The functional morphology of the jaw mechanism in Epibulus is analyzed as a case study in the evolution of novel functional systems. The feeding mechanism appears to be driven by unspecialized muscle activity patterns and input forces, that combine with drastically changed bone and ligament morphology to produce extreme jaw protrusion. The primary derived osteological features are the form of the quadrate, interopercle, and elongate premaxilla and lower jaw. Epibulus has a unique vomero-interopercular ligament and enlarged interoperculo-mandibular and premaxilla-maxilla ligaments. The structures of the opercle, maxilla, and much of the neurocranium retain a primitive labrid condition. Many cranial muscles in Epibulus also retain a primitive structural condition, including the levator operculi, expaxialis, sternohyoideus, and adductor mandibulae. The generalized perciform suction feeding pattern of simultaneous peak cranial elevation, gape, and jaw protrusion followed by hyoid depression is retained in Epibulus. Electromyography and high-speed cinematography indicate that patterns of muscle activity during feeding and the kinematic movements of opercular rotation and cranial elevation produce a primitive pattern of force and motion input. Extreme jaw protrusion is produced from this primitive input pattern by several derived kinematic patterns of modified bones and ligaments. The interopercle, quadrate, and maxilla rotate through angles of about 100 degrees, pushing the lower jaw into a protruded position. Analysis of primitive and derived characters at multiple levels of structural and functional organization allows conclusions about the level of design at which change has occurred to produce functional novelties.  相似文献   

18.
Sharks as a group have a long history as highly successful predatory fishes. Although, the number of recent studies on their diet, feeding behavior, feeding mechanism, and mechanics have increased, many areas still require additional investigation. Dietary studies of sharks are generally more abundant than those on feeding activity patterns, and most of the studies are confined to relatively few species, many being carcharhiniform sharks. These studies reveal that sharks are generally asynchronous opportunistic feeders on the most abundant prey item, which are primarily other fishes. Studies of natural feeding behavior are few and many observations of feeding behavior are based on anecdotal reports. To capture their prey sharks either ram, suction, bite, filter, or use a combination of these behaviors. Foraging may be solitary or aggregate, and while cooperative foraging has been hypothesized it has not been conclusively demonstrated. Studies on the anatomy of the feeding mechanism are abundant and thorough, and far exceed the number of functional studies. Many of these studies have investigated the functional role of morphological features such as the protrusible upper jaw, but only recently have we begun to interpret the mechanics of the feeding apparatus and how it affects feeding behavior. Teeth are represented in the fossil record and are readily available in extant sharks. Therefore much is known about their morphology but again functional studies are primarily theoretical and await experimental analysis. Recent mechanistic approaches to the study of prey capture have revealed that kinematic and motor patterns are conserved in many species and that the ability to modulate feeding behavior varies greatly among taxa. In addition, the relationship of jaw suspension to feeding behavior is not as clear as was once believed, and contrary to previous interpretations upper jaw protrusibility appears to be related to the morphology of the upper jaw-chondrocranial articulation rather than the type of jaw suspension. Finally, we propose a set of specific hypotheses including: (1) The functional specialization for suction feeding hypothesis that morphological and functional specialization for suction feeding has repeatedly arisen in numerous elasmobranch lineages, (2) The aquatic suction feeding functional convergence hypothesis that similar hydrodynamic constraints in bony fishes and sharks result in convergent morphological and functional specializations for suction feeding in both groups, (3) The feeding modulation hypothesis that suction capture events in sharks are more stereotyped and therefore less modulated compared to ram and bite capture events, and (4) The independence of jaw suspension and feeding behavior hypothesis whereby the traditional categorization of jaw suspension types in sharks is not a good predictor of jaw mobility and prey capture behavior. Together with a set of questions these hypotheses help to guide future research on the feeding biology of sharks.  相似文献   

19.
Swallowing and biting responses in the marine mollusk Aplysia are both mediated by a cyclical alternation of protraction and retraction movements of the grasping structure, the radula and underlying odontophore, within the feeding apparatus of the animal, the buccal mass. In vivo observations demonstrate that Aplysia biting is associated with strong protractions and rapid initial retractions, whereas Aplysia swallowing is associated with weaker protractions and slower initial retractions. During biting, the musculature joining the radula/odontophore to the buccal mass (termed the hinge) is stretched more than in swallowing. To test the hypothesis that stretch of the hinge might contribute to rapid retractions observed in biting, we analyzed the hinges passive properties. During biting, the hinge is stretched sufficiently to assist retraction. In contrast, during swallowing, the hinge is not stretched sufficiently for its passive forces to assist retraction, because the odontophores anterior movement is smaller than during biting. A quantitative model demonstrated that steady-state passive forces were sufficient to generate the retraction movements observed during biting. Experimental measures of the relative magnitude of the hinges active and passive forces at the protraction displacements of biting suggest that passive forces are at least a third of the total force.Abbreviations I1/I3 intrinsic buccal muscles 1 and 3 - I2 intrinsic buccal muscle 2 (nomenclature from Howells 1942)  相似文献   

20.
The level of integration present among organismal traits is thought to influence evolutionary potential, and this potential should be affected by the type or types of integration displayed (e.g., functional, developmental, or genetic). Morphological integration is generally high among functionally related traits, but whether this is predominantly determined by genetic architecture, or is instead a result of biomechanical remodeling during development remains poorly understood. We examine this question in Lake Malawi cichlid fishes by combining a finite-element analysis (FEA) of bite force transmission with quantitative genetic analyses of skull morphology in order to test the hypothesis that functionally coupled traits share a common genetic basis. FEA modeling indicates that the profile of the neurocranium affects its ability to resist forces transmitted from the jaws during biting, and suggests a novel role for skull shape in fish feeding mechanics. Quantitative trait loci mapping demonstrates that the functional integration between jaw and neurocranial shape has a genetic basis, and that this association is being driven by alleles inherited from the specialized biting species. Notably, the co-inheritance of these two functionally related traits in our F2 matches patterns of covariation within and between Lake Malawi cichlid species. Across species, jaw and neurocranial shapes covary, but the trend appears strongest among biting species. Similarly, within populations of biting species, the dimensions of the jaw and neurocranium are tightly linked, whereas this correlation disappears within populations of omnivorous and suction feeding fish. These data suggest (1) that either pleiotropy, or physical linkage maintained by selection, underlies the phenotypic integration of these two functionally related traits, and (2) that this pattern of integration may have influenced the radiation of craniofacial morphology in Lake Malawi cichlids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号