首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
From cell cultures of Haplopappus gracilis, an enzyme, catalyzing the glucosylation of cyanidin at the 3 position using uridine diphosphate-D-glucose (UDPG) as glucosyl-donor, has been isolated and purified 50-fold. The enzyme was not specific for cyanidin alone, but also glucosylated other anthocyanidins and flavonols in position 3. However, apigenin, luteolin, naringenin and dihydroquercetin were not glucosylated. The reaction has an optimum pH of approximately 8, and the apparent K m values for UDPG and cyanidin were 0.5 and 0.33 mM respectively. The enzyme reaction is strongly inhibited by cyanidin (above 0.25 mM).  相似文献   

2.
An enzyme, catalysing the glucosylation of cyanidin at the 3-position using uridine diphosphate-D-glucose (UDPG) as glucosyl-donor, has been isolated and purified about 50-fold from young red cabbage (Brassica oleracea) seedlings. The pH optimum for this reaction was ca 8 and no additional cofactors were required. The reaction was inhibited by cyanidin (above 0.25 mM) and by very low concentrations of the reaction product cyanidin-3-glucoside (5 μM). The Km values for UDPG and cyanidin were 0.51 and 0.4 mM respectively. In addition to cyanidin the enzyme could also glucosylate the following compounds at the 3-position: pelargonidin, peonidin, malvidin, kaempferol, quercetin, isorhamnetin, myricetin and fisetin. In contrast, cyanidin-3-glucoside, cyanidin-3-sophoroside, cyanidin-3,5-diglucoside, apigenin, luteolin, naringenin and dihydroquercetin were not glucosylated.  相似文献   

3.
The substrate specificity of two recombinant enzymes, zeatin O-glucosyltransferase 1 (ZOG1) and zeatin O-xylosyltransferase 1 (ZOX1), was further characterised. ZOG1 utilises zeatin (Z), UDPG, and UDPX as substrates to form O-glucosylzeatin (OGZ) and O-xylosylzeatin (OXZ) but has higher affinity to UDPG than UDPX. ZOX1 uses only UDPX, converting Z to OXZ. Dihydrozeatin (DHZ) is also a substrate for both enzymes, but only in combination with UDPX, giving rise to O-xylosyldihydrozeatin (OXDHZ). O-Glucosyldihydrozeatin (OGDHZ) is not formed by ZOG1, possibly due to steric hindrance. Regions relevant to UDPG/UDPX affinity and competition were identified using hybrid enzymes derived from domain exchanges of parental genes. The N-terminal half of the enzyme is important in this respect. The BstEII-BstAPI segment of ZOG1 correlates with inhibition of O-xylosyltransferase activity by UDPG while the BstAPI-Eco0109 segment of ZOG1 is required for utilisation of UDPG as the sugar donor.  相似文献   

4.
Summary Three cellulose-negative (Cel-) mutants of Acetobacter xylinum strain ATCC 23768 were complemented by a cloned 2.8 kb DNA fragment from the wild type. Biochemical analysis of the mutants showed that they were deficient in the enzyme uridine 5-diphosphoglucose (UDPG) pyrophosphorylase. The analysis also showed that the mutants could synthesize (1-4)-glucan in vitro from UDPG, but not in vivo from glucose. This result was expected, since UDPG is known to be the precursor for cellulose synthesis in A. xylinum. In order to analyze the function of the cloned gene in more detail, its biological activity in Escherichia coli was studied. These experiments showed that the cloned fragment could be used to complement an E. coli mutant deficient in the structural gene for UDPG pyrophosphorylase. It is therefore clear that the cloned fragment must contain this gene from A. xylinum. This is to our knowledge the first example of the cloning of a gene with a known function in cellulose biosynthesis from any organism, and we suggest the gene be designated celA.  相似文献   

5.
From the fruits of Sambucus canadensis four anthocyanin glycosides have been isolated by successive application of an ion-exchange resin, droplet-counter chromatography and gel filtration. The structure of the novel, major (69.8%) pigment, cyanidin 3-O-[6-O-(E-p-coumaroyl-2-O-(β- -xylopyranosyl)-β- -glucopyranoside]-5-O-β- -glucopyranoside, was determined by means of chemical degradation, chromatography and spectroscopy, especially homo- and heteronuclear two-dimensional NMR techniques. The other anthocyanins were identified as cyanidin 3-sambubioside-5-glucoside (22.7%), cyanidin 3-sambubioside (2.3 %) and cyanidin 3-glucoside (2.1 %).  相似文献   

6.
The potential markers of juvenility (cyanidin 3-glucoside and cyanidin 3-rutinoside) in autumn leaves of seven Acer palmatum Thunb. cultivars were investigated. Three shoot positions were marked on each cultivar—crown shoot, middle shoot, and basal shoot—and the anthocyanins were analyzed using HPLC-MS. The results showed great differences in cyanidin 3-glucoside and cyanidin 3-rutinoside concentrations among seven cultivars; moreover, significant differences in cyanidin 3-glucoside content levels were also observed among three shoot positions regardless of the cultivar analyzed. The concentration decreased basipetally and reached levels up to 52 times higher in leaves obtained from crown shoots in comparison to basal shoot leaves. Therefore, the content level of cyanidin 3-glucoside can be defined as a quantitative marker of positional effect in all the Acer palmatum Thunb. cultivars analyzed. The content level of cyanidin 3-rutinoside did not express the same positional dependence.  相似文献   

7.
Anthocyanins contained in plants belonging to the genusEpimedium in Japan are discussed in this study. Two kinds of anthocyanin, delphinidin 3-p-coumaroyl-sophoroside-5-glucoside (cayratinin) and cyanidin 3-p-coumaroylsophoroside, were identified, and the latter is new to the literature. Only cayratinin was found in the colored petals of theEpimedium species, but cayratinin and cyanidin glucoside were contained in the stems, young leaves and autumn leaves of all the species surveyed.  相似文献   

8.
The accumulation of only one anthocyanin, cyanidin 3-glucoside, in cell-suspension cultures of plane tree (Platanus aceriflia) is reported for the first time. During a time span of 6 years, no new anthocyanin was detected and cyanidin 3-glucoside was maintained at about 35 mg l–1 cell culture medium. This stable cell culture system could therefore be used for the biotechnological production of cyanidin 3-glucoside.  相似文献   

9.
The major anthocyanins accumulated by an Afghan cultivar ofDaucus carota L. are cyanidin 3-(xylosylglucosylgalactosides) acylated with sinapic or ferulic acid. The formation of the branched triglycoside present as a common structural element requires an ordered sequence of glycosylation events. Two of these enzymic glycosylation reactions have been detected in protein preparations from carrot cell-suspension cultures. The first step is a galactosyl transfer catalyzed by UDP-galactose: cyanidin galactosyltransferase (CGT) resulting in cyanidin 3-galactoside. The putative second step is the formation of cyanidin 3-(xylosylgalactoside) catalyzed by UDP-xylose: cyanidin 3-galactoside xylosyltransferase (CGXT). Both enzyme activities were characterized from crude protein preparations. The CGT was purified 526-fold from the cytosolic fraction of UV-irradiated cell cultures by ion-exchange chromatography on diethylaminoethyl (DEAE)-Sephacel, affinity chromatography on Blue Sepharose CL-6B, gel permeation chromatography on Sephadex G-75 and elution from the gel matrix after non-dissociating PAGE. Its molecular mass was estimated by SDS-PAGE and by calibrated gel permeation chromatography on Sephadex G-75. In both cases a molecular mass of 52 kDa was determined, indicating that the native protein is a monomer of 52 kDa. The galactosyl transfer and the xylosyl transfer are presumed to be catalyzed by separate enzymes.Abbreviations CGT UDP-galactose: cyanidin galactosyltransferase - CGXT UDP-xylose: cyanidin 3-galactoside xylosyltrans-ferase - DEAE diethylaminoethyl This study was supported by a grant from the Deutsche Forschun-gsgemeinschaft and a fellowship (W.E.G.) from the Land Baden-Württemberg. The skilful technical assistance of Johannes Madlung is gratefully acknowledged.  相似文献   

10.
为获取紫背天葵(Cynura bicolor DC.)叶片中花青素种类及其合成调控基因等信息,该试验以紫背天葵叶背面紫色以及经处理叶背面几乎全绿(对照)的叶片为材料,进行转录组测序分析,同时进行6个相关差异表达基因的qRT-PCR分析和6种花青素苷元的HPLC检测,以揭示紫背天葵特有的花青素苷元及其合成调控关键基因信息。结果表明:(1)在紫背天葵中共获得14个花青素苷元及32个花青素合成调控基因信息,其中表达量差异显著下调的4个基因为Pg(c11692)、Cy(c42112)、ANS(c38551)和3GT(c9064),表达量差异显著上调的2个基因是D FR(c35961)和3GT(c20283)。(2)qRT-PCR检测结果显示,上述6个基因在2种紫背天葵叶中的表达趋势(上调或下调)与转录组测序结果完全一致,但转录组测序检测到的表达趋势差异倍数比qRT-PCR检测结果更加明显。(3)HPLC分析显示,紫背天葵叶中均未检测到Dp、Pt、Pn及Mv等4类花青素苷元,但紫背天葵叶中富含Cy花青素苷元,且背面紫色的叶中Cy类花青素苷元含量(62.21 mg/kg)显著高于绿色叶对照(6.86 mg/kg);背面紫色和全绿叶中的Pg花青素苷元含量均低于0.43 mg/kg。研究推测,Cy和Pg花青素苷元在绿叶紫背天葵(对照)中含量显著降低可能是因为存在1个ANS和1个3GT正调控以及1个DFR和1个3GT负调控所致。  相似文献   

11.
To clarify a low level of cellulose biosynthesis of thein vitro cultured cells, the effects of several biochemical factors such as carbon sources (sucrose, maltose, and UDPG), antioxidants (ascorbic acid and glutathione) and physical factors such as artificial pressure, high gravity, on the cellulose production in barley callus and suspension cultures were investigated. In the suspension culture of two barley strains, the supplement of different concentrations (0, 1.5, 3.0, and 4.5%) of sucrose or maltose into the medium for 30 days did not promote the cellulose production and 4.5% of sugar supplement was rather inhibitory in one strain. However, in the presence of sucrose at 3%, UDPG (3 or 10 mM) supplement, as a precursor for cellulose, promoted 1.2–13 fold of the production in two strains. A low concentration (3 mM) of ascorbic acid and glutathione promoted 1.5 and 1.2 fold of the production in two strains, respectively. These results suggest that low cellulose biosynthesis of thein vitro cultured cells is due to a decreased level of the UDPG in the cytosol, and that the oxidative condition of external medium impedes cellulose synthesis in some manners. Artificial pressure applied to the callus promoted 1.4 fold of the cellulose production. High gravity (5,000 or 10,000g) applied to the suspension-cultured cells by centrifugation did not cause a substantial change.  相似文献   

12.
M. Teusch 《Planta》1986,169(4):559-563
Petals of genetically defined lines of Matthiola incana R.Br. contain a glycosyltransferase which catalyzes the transfer of the xylosyl moiety of uridine 5-diphosphate-xylose to the glucose of cyanidin 3-glucoside. The enzyme also uses 3-glucosides of pelargonidin and delphinidin, cyanidin 3-(p-coumaroyl)-glucoside and 3-(caffeoyl)-glucoside as substrates. The xylosyltransferase exhibits a pH optimum of 6.5. The enzyme activity depends on the stage of bud and flower development. Accumulation of cyanidin 3-glucoside during flower development is correlated with xylosyltransferase activity.Abbreviations HPLC high-performance liquid chromatography - UDP uridine 5-diphosphate  相似文献   

13.
Enzyme activities involved in the galactose metabolism of Torulopsis Candida grown on a. lactose medium were investigated with the cell-free extract and ammonium sulfate fraction. Remarkable activities of galactokinase, galactose-1-phosphate uridylyltransferase and UDPG pyrophosphorylase were detected, whereas UDPGal pyrophosphorylase activity was weak. UDPGal formation proceeded by the cell-free extract along a coupling reaction catalyzed by UDPG pyrophosphorylase and galactose-1-phosphate uridylyltransferase where UDPG or glucose-l-phosphate acted as a catalyst.

The mechanism of UDPGal accumulation under the fermentative condition could be explained by a concerted inhibition of UDPGal-4- epimerase activity by 5′-UMP and galactose present as fermentation substrates.  相似文献   

14.
Seed clusters of individual locules from fruit capsules of Gossypium arboreum L. with adhering intact fibres were fed with radioactive uridinediphosphoglucose (UDPG), guanosinediphosphoglucose (GDPG), glucose and sucrose. The incorporation into high molecular weight glucans of the fibres was studied. For primary wall fibres, UDPG at 1 mM was by far the best precursor, whereas sucrose was the best precursor for secondary wall fibres. No competition was observed between the incorporation of glucose from UDPG and from sucrose when the two were fed simultaneously to secondary wall fibres, indicating that their metabolic pathways are well separated when they are fed from the apoplast. Inhibitors of respiratory ATP-formation strongly inhibited incorporation of sucrose but not that of UDPG. Sucrose incorporation was studied at five different stages of development of the cotton fibres. At the stage of most intense secondary wall formation the incorporation rate was about 300 times that during primary wall formation (24 days post anthesis (DPA)). Incorporation from 1 mM UDPG or GDPG by secondary wall fibres (35 DPA) was less than twice that of primary wall fibres (22 DPA), indicating that the two sugar nucleotides are not readily used as precursors for secondary wall cellulose when they are fed to the exterior of intact cells. The high molecular weight non-cellulosic glucans formed from UDPG and sucrose at 5 and 1,000 M were solubilized in strongly alkaline solutions or dimethyl-sulfoxide (DMSO) and were partially characterized by degradation with an exo--1,3-glucanase. After feeding for one hour, at most 1/3 of the radioactivity in high molecular weight material was found in cellulose and at least 2/3 in -1,3-glucan. The proportions varied little for fibres in the age range of 30 to 48 DPA when sucrose was the precursor although the total incorporation varied by a factor of about four. The fact that at all stages of secondary wall formation -1,3-glucan is synthesized at a very high rate, but that the total amount in the cell wall does not exceed 2% in the later stages of wall formation, can be interpreted in terms of a high turnover of this polysaccharide if it is assumed that wound effects are negligible in the system under study.Abbreviations UDPG uridinediphosphoglucose - GDPG guanosinediphosphoglucose - HEPES N-2-hydroxyethylpiperazine-N-2-ethansulphonic acid - DMSO dimethyl-sulfoxide - DNP 2,4-dinitrophenol - DPA days post anthesis  相似文献   

15.
W. Hinderer  M. Petersen  H. U. Seitz 《Planta》1984,160(6):544-549
In carrot cells (Daucus carota L.), cultured in the presence of gibberellic acid, anthocyanin synthesis is blocked at the level of chalcone synthase. By feeding suitable precursors for anthocyanins (naringenin, eriodictyol, dihydroquercetin) biosynthesis of cyanidin glycosides can be restored. After addition of these substrates to the culture medium in the presence of gibberellic acid, the activity of chalcone synthase remained as low as in the control without precursors. The highest increase in anthocyanin content was achieved using dihydroquercetin as the added precursor. The time course of this supplementation showed a rapid response; within 4 h a substantial increase in anthocyanin could be observed. In contranst, the flavonol quercetin is not a precursor for cyanidin. The fact that naringenin was also accepted for cyanidin synthesis leads to the conclusion that hydroxylation in 3-position of ring B in Daucus carota takes place at the flavonoid stage.Abbreviations CHI Chalcone isomerase - CHS chalcone synthase - DMSO dimethylsulfoxide - GA3 gibberellic acid - PAL phenylalanine ammonia-lyase  相似文献   

16.
Fifteen flavonoids were isolated from flowers and leaves of four species ofWeigela [W. florida (Bunge) A. DC.,W. praecox (Lemoine) Bailey,W. hortensis (Sieb. et Zucc.) K. Koch, andW. subsessilis (Nakai) Bailey] of Korea and one species (W. coraeensis Thunb.) of Japan. The flavonoid data indicated the presence of two distinct chemical groups: the “yellow flower” type producing flavonols and the “red flower” type producing flavonols and flavones. Two cyanidin 3-O-glycosides (glucoside and glucose-xylose) also occurred in all examined taxa. In the floral color-changing species,W. subsessilis, only quercetin glycosides predominated in floral tissue at first, decreasing in number and quantity with time. Instead, cyanidin 3-O-glycosides became present predominantly in flower color changing tissue from yellow to mauve.Weigela florida produced apigenin and luteolin glycosides, along with cyanidin 3-O-glycosides, which were also found inW. subsessilis. Within a relatively limited number of individuals (five),W. hortensis was unique in its production of all flavonols, flavones, and anthocyanins, although two individuals lacked flavone compounds but possessed all flavonols and anthocyanins. In effect, the putative hybrid,W. hortensis of Korea showed additive profiles of the parental marker compounds ofW. subsessilis andW. florida. Pollinator (andrenid bees) non-discrimination betweenWeigela flower-color morphs leading to non-assortive mating was a common, which indicated no breeding barrier among species. This flavonoid study indicated that species of both sections,Weigela andCalysphyrum appeared in each chemical grouping and it was obvious that the arrangement based on flavonoids cut across the sectional treatment of Hara. Floral tissues may be directly involved in the evolutionary strategy of pollination mechanisms and hence, their inherent flavonoids may no longer support taxonomic relationships. The presence of flavone glycosides inWeigela would support that tribe Dievilleae have a closer affinity to tribe Lonicereae within the Family Caprifoliaceae.  相似文献   

17.
Forty-six polygonaceous plants were examined regarding the nature and amount of anthocyanidins which were obtained as the HCl-hydrolyzate of leaf proanthocyanidins. All of the plants examined contained cyanidin in common in their hydrolyzed leafextracts. From this survey, at least three groups of plants may be distinguished; the first containing only cyanidin, the second delphinidin in addition to cyanidin and the third an unknown anthocyanidin (called PA-X) and cyanidin. Of the plants examined,Polygonum cuspidatum leaves yielded cyanidin in the largest amounf. There were no geographical and seasondl variations of the distribution pattern of pigments in the plants, and also no variation of anthocyanidin-types was observed in young and mature leaves. A further survey of anthocyanins in the plants revealed that delphinidin glycosides are present in the sepals ofPolygonum nepalense andP. thunbergii.  相似文献   

18.
The changes of granule bound starch synthetase activity in cucumber leaves (Cucumis sativus L. cv. Suisei No. 2) were investigated during ammonium toxicity. Generally speaking the quantity of starch granules of injured plants were less than that of normal plants. ADPG is a more effective glucose donor to starch synthesis than UDPG. It was found that the starch synthetase activity of injured plants was decreased compared to the normal plants. This variation of enzyme activity was higher when UDPG was used as glucose donor. The addition of K+ and NH4+ generally inhibited the enzyme activity when UDPG was used as glucose donor, but stimulated it when ADPG was used. This stimulation was found to be more effective in enzymes prepared from injured plants than from normal plants. The level of potassium bound to starch granules was not changed markedly between normal and injured plants.  相似文献   

19.
It was demonstrated that the polysaccharide, pullulan, was synthesized from sucrose by acetone-dried cells of Pullularia pullulans or from UDPG by cell-free enzyme preparations prepared from the organism. The pullulan formed was estimated by precipitation with ethanol, and determining maltotriose produced after treating the precipitate with Aerobacter isoamylase (pullulanase). Acetone cells (5 g) shaken with 200 ml of 10% sucrose produced over 250 mg of pullulan per 100 ml after 90 hr at 30°C and pH 6.0. Cell-free enzyme produced pullulan from UDPG in the presence of ATP. ATP was essential for the biosynthesis, and ADPG could not replace for UDPG.

In addition, it was observed that a lipid containing glucose residue was formed during, the reaction. The nature of this glucolipid was examined, and possible participation of a lipid intermediate was assumed in the pullulan biosynthesis.  相似文献   

20.
A particulate enzyme preparation from Phaseolus aureus (mung bean) seedlings catalyzed the synthesis of a water insoluble β-1,3-glucan from UDP-α-d-glucose (UDPG) at high concentrations (0.4~20 mm) and an alkaline insoluble β-1,3 and β-1,4-mixed glucan from UDPG at a low concentration (8.5 µm).

Furthermore, the two kinds of β-glucan synthetases which were investigated with two reaction systems at high and low concentrations of UDPG had different properties in optimal pH, stability of enzyme activity, and metallic ion requirement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号