首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Abstract: Using immunocytochemical localization, the distribution of the glycine transporters GLYT1 and GLYT2 in the developing mouse brain was studied. GLYT1 and GLYT2 immunoreactivity begins during the period of fiber outgrow and synaptogenesis. GLYT2 is first expressed in spinal and spinothalamic white matter and is followed by the expression of synaptophysin. In the postnatal stages, GLYT2 staining in the white matter disappears, and a punctuated pattern in the gray matter emerges. In contrast, in the fetal brain GLYT1 immunoreactivity coincides with gray matter neuropil and processes of radial glia. GLYT1 is distributed over a much wider area of the brain than GLYT2. However, the distribution of these two GLYTs implies that GLYT1 and GLYT2 operate in concert within the area where both are present. At the day 12 embryo stage, GLYT1 antibodies stain the liver, and later they also react with the pancreas and the gastroduodenal junction. No other organs exhibit significant GLYT1 immunoreactivity. We additionally observed the presence of GLYT1 in rat fetal cerebral cortex and hippocampus, which was not detected in fetal mouse brain. Moreover, GLYT1 immunoreactivity was found in the mouse floor plate and the ventral commissure but was not present in the same regions in rats. These findings suggest possible differences in the expression of GLYT1 between these two species.  相似文献   

2.
Abstract: Clonal cell lines stably expressing the glial glycine transporter 1b (GLYT1b) and the neuronal glycine transporter 2 (GLYT2) from rat brain have been generated and used comparatively to examine their kinetics, ion dependence, and electrical properties. Differential sensitivity of the transporters to sarcosine is clearly exhibited by the clonal cell lines. GLYT2 transports glycine with higher apparent affinity than GLYT1b and is not inhibited by any assayed compound, as deduced by glycine transport assays and electrophysiological recordings. A sigmoidal Na+ dependence of the glycine uptake by the stable cell lines is observed, indicating the involvement of more than one Na+ in the transport process. A more cooperative behavior for Na+ of GLYT2 than GLYT1b is suggested. One Cl is required for GLYT1b and GLYT2 transport cycles, although GLYT1b shows three times higher affinity for this ion than GLYT2. The number of expressed transporters was sufficient to allow electrophysiological recordings of the uptake current in the two stable cell lines. GLYT2 exhibits more voltage dependence in both its glycine-evoked current and its capacitive currents recorded in the absence of substrate.  相似文献   

3.
Abstract: Treatment of human embryonic kidney cells (HEK 293 cells) expressing the mouse glycine transporter 1 (GLYT1b) with the protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (PMA) decreased specific [3H]glycine uptake. This down-regulation resulted from a reduction of the maximal transport rate and was blocked by the PKC inhibitors 1-(5-isoquinolinylsulfonyl)-2-methylpiperazine (H7) and staurosporine. The inhibitory effect of PMA treatment was also observed after removing all five predicted phosphorylation sites for PKC in GLYT1b by site-directed mutagenesis. These data indicate that glycine transport by GLYT1b is modulated by PKC activation; however, this regulation may involve indirect phosphorylation mechanisms.  相似文献   

4.
Membrane rafts, the highly-ordered, cholesterol-rich microdomains of the plasma membrane play important roles in cellular functions. In this study, GLYT1-CFP and GLYT2-CFP were constructed, followed by investigation of whether the tagged transporters associate with a fluorescence probe that labels membrane rafts (DilC16) by using Fluorescence Resonance Energy Transfer. A close association was observed between DiIC16 and GLYT1-CFP, but not for GLYT2-CFP. The glycine transport ability of GLYT1 is also highly dependent on the integrity of this area. Together, the results suggest that GLYT1 and membrane rafts are co-localized in the membrane, and that this influences the rate of glycine transport.  相似文献   

5.
The neuronal glycine transporter GLYT2 belongs to the neurotransmitter:sodium:symporter (NSS) family and removes glycine from the synaptic cleft, thereby aiding the termination of the glycinergic signal and achieving the reloading of the presynaptic terminal. The task fulfilled by this transporter is fine tuned by regulating both transport activity and intracellular trafficking. Different stimuli such as neuronal activity or protein kinase C (PKC) activation can control GLYT2 surface levels although the intracellular compartments where GLYT2 resides are largely unknown. Here, by biochemical and immunological techniques in combination with electron and confocal microscopy, we have investigated the subcellular distribution of GLYT2 in rat brainstem tissue, and characterized the vesicles that contain the transporter. GLYT2 is shown to be present in small and larger vesicles that contain the synaptic vesicle protein synaptophysin, the recycling endosome small GTPase Rab11, and in the larger vesicle population, the vesicular inhibitory amino acid transporter VIAAT. Rab5A, the GABA transporter GAT1, synaptotagmin2 and synaptobrevin2 (VAMP2) were not present. Coexpression of a Rab11 dominant negative mutant with recombinant GLYT2 impaired transporter trafficking and glycine transport. Dual immunogold labeling of brainstem synaptosomes showed a very close proximity of GLYT2 and Rab11. Therefore, the intracellular GLYT2 resides in a subset of endosomal membranes and may traffic around several compartments, mainly Rab11-positive endosomes.  相似文献   

6.
Glycine and GABA are likely co-transmitters in the spinal cord. Their possible interactions in presynaptic terminals have, however, not been investigated. We studied the effects of glycine on GABA release using superfused mouse spinal cord synaptosomes. Glycine concentration dependently elicited [(3)H]GABA release which was insensitive to strychnine or 5,7-dichlorokynurenic acid, but was Na(+) dependent and sensitive to the glycine uptake blocker glycyldodecylamide. The glycine effect was external Ca(2+) independent, but was reduced when intraterminal Ca(2+) was chelated with 1,2-bis-(2-aminophenoxy)ethane-N,N,N',N'-tetracetic acid or depleted with thapsigargin, or when vesicular storage was impaired with bafilomycin. Glycine-induced [(3)H]GABA release was prevented, in part, by blocking GABA transport. The glycine effect was halved by sarcosine, a GLYT1 substrate/inhibitor, or by amoxapine, a GLYT2 blocker, and abolished by a mixture of the two. The sensitivity to sarcosine, used as a transporter inhibitor or substrate, persisted in synaptosomes prelabelled with [(3)H]GABA in the presence of beta-alanine, excluding major gliasome involvement. To conclude, in mice spinal cord, transporters for glycine (both GLYT1 and GLYT2) and for GABA coexist on the same axon terminals. Activation of the glycine transporters elicits GABA release, partly by internal Ca(2+)-dependent exocytosis and partly by transporter reversal.  相似文献   

7.
In the vertebrate CNS, glycine acts as an inhibitory neurotransmitter and as the obligatory coagonist of glutamate at N-methyl-d-aspartate receptors. These roles depend on extracellular glycine levels, regulated by Na+/Cl-dependent transporters GLYT1, present mainly in glial cells, and GLYT2, predominantly neuronal. In Bergmann glia, GLYT1 mediates both, glycine uptake and efflux, which, in turn, influences excitatory neurotransmission at Purkinje cell synapses. The biochemical properties of GLYTs and their regulation by signaling pathways in these cells are largely unknown. We characterized Gly uptake in confluent primary cultures of Bergmann glia from chick cerebellum. Transport was found to be energy- and Na+-dependent, and was resolved into a high (Km=25 μM) and a low affinity (Km=1.1 mM) components identified as GLYT1 and transport System A, respectively. Results show that high affinity transport by GLYT1 is regulated by calcium from intracellular stores, calmodulin, and myosin light chain kinase through an actin cytoskeleton-mediated action. Special issue dedicated to Dr. Simo S. Oja  相似文献   

8.
The subcellular localization of glycine transporters one (GLYT1) and two (GLYT2) stably expressed in PC12 cells has been studied. To facilitate visualization, enhanced green fluorescent protein (GFP) was fused to the amino terminus of both glycine transporters. Functional analysis of the GFP-GLYT1 and GFP-GLYT2 stable cell lines demonstrated that they exhibited high affinity for glycine and the characteristic properties of both glycine transporter subtypes. The GFP-coupled transporters were differently distributed throughout the cell. GFP-GLYT1 was mainly localized on the plasma membrane, whereas most of GFP-GLYT2 was present on large dense-core vesicles and endosomes. Both transporters were absent from the synaptic vesicle population in PC12 cells.  相似文献   

9.
10.
Concentrations of extracellular glycine in the central nervous system are regulated by Na+/Cl-dependent glycine transporters, GLYT1 and GLYT2. N-Arachidonylglycine (NAGly) is an endogenous inhibitor of GLYT2 with little or no effect on GLYT1 and is analgesic in rat models of neuropathic and inflammatory pain. Understanding the molecular basis of NAGly interactions with GLYT2 may allow for the development of novel therapeutics. In this study, chimeric transporters were used to determine the structural basis for differences in NAGly sensitivity between GLYT1 and GLYT2 and also the actions of a series of related N-arachidonyl amino acids. Extracellular loops 2 and 4 of GLYT2 are important in the selective inhibition of GLYT2 by NAGly and by the related compounds N-arachidonyl-γ-aminobutyric acid and N-arachidonyl-d-alanine, whereas only the extracellular loop 4 of GLYT2 is required for N-arachidonyl-l-alanine inhibition of transport. These observations suggest that the structure of the head group of these compounds is important in determining how they interact with extracellular loops 2 and 4 of GLYT2. Site-directed mutagenesis of GLYT2 EL4 residues was used to identify the key residues Arg531, Lys532, and Ile545 that contribute to the differences in NAGly sensitivity.  相似文献   

11.
It is widely accepted that glycine transporters of the GLYT1 type are situated on astrocytes whereas GLYT2 are present on glycinergic neuronal terminals where they mediate glycine uptake. We here used purified preparations of mouse spinal cord nerve terminals (synaptosomes) and of astrocyte-derived subcellular particles (gliosomes) to characterize functionally and morphologically the glial versus neuronal distribution of GLYT1 and GLYT2. Both gliosomes and synaptosomes accumulated [3H]GABA through GAT1 transporters and, when exposed to glycine in superfusion conditions, they released the radioactive amino acid not in a receptor-dependent manner, but as a consequence of glycine penetration through selective transporters. The glycine-evoked release of [3H]GABA was exocytotic from synaptosomes but GAT1 carrier-mediated from gliosomes. Based on the sensitivity of the glycine effects to selective GLYT1 and GLYT2 blockers, the two transporters contributed equally to evoke [3H]GABA release from GABAergic synaptosomes; even more surprising, the 'neuronal' GLYT2 contributed more efficiently than the 'glial' GLYT1 to mediate the glycine effect in [3H]GABA releasing gliosomes. These functional results were largely confirmed by confocal microscopy analysis showing co-expression of GAT1 and GLYT2 in GFAP-positive gliosomes and of GAT1 and GLYT1 in MAP2-positive synaptosomes. To conclude, functional GLYT1 are present on neuronal axon terminals and functional GLYT2 are expressed on astrocytes, indicating not complete selectivity of glycine transporters in their glial versus neuronal localization in the spinal cord.  相似文献   

12.
Glycine neurotransmitter transporters: an update   总被引:6,自引:0,他引:6  
Glycine accomplishes several functions as a transmitter in the central nervous system (CNS). As an inhibitory neurotransmitter, it participates in the processing of motor and sensory information that permits movement, vision, and audition. This action of glycine is mediated by the strychnine-sensitive glycine receptor, whose activation produces inhibitory post-synaptic potentials. In some areas of the CNS, glycine seems to be co-released with GABA, the main inhibitory amino acid neurotransmitter. In addition, glycine modulates excitatory neurotransmission by potentiating the action of glutamate at N-methyl-D-aspartate (NMDA) receptors. It is believed that the termination of the different synaptic actions of glycine is produced by rapid re-uptake through two sodium-and-chloride-coupled transporters, GLYT1 and GLYT2, located in the plasma membrane of glial cells or pre-synaptic terminals, respectively. Glycine transporters may become major targets for therapeutic of pathological alterations in synaptic function. This article reviews recent progress on the study of the molecular heterogeneity, localization, function, structure, regulation and pharmacology of the glycine transporter proteins.  相似文献   

13.
Glycine accomplishes several functions as a transmitter in the central nervous system(CNS). As an inhibitory neurotransmitter, it participates in the processing of motor and sensory information that permits movement, vision, and audition. This action of glycine is mediated by the strychnine-sensitive glycine receptor, whose activation produces inhibitory post-synaptic potentials. In some areas of the CNS, glycine seems to be co-released with GABA, the main inhibitory amino acid neurotransmitter. In addition, glycine modulates excitatory neurotransmission by potentiating the action of glutamate at N-methyl-D-aspartate (NMDA) receptors. It is believed that the termination of the different synaptic actions of glycine is produced by rapid reuptake through two sodium-and-chloride-coupled transporters, GLYT1 and GLYT2, located in the plasma membrane of glial cells or pre-synaptic terminals, respectively. Glycine transporters may become major targets for therapeutic of pathological alterations in synaptic function. This article reviews recent progress on the study of the molecular heterogeneity, localization, function, structure, regulation and pharmacology of the glycine transporter  相似文献   

14.
Zafra F  Giménez C 《IUBMB life》2008,60(12):810-817
Glycine is an inhibitory neurotransmitter that is mainly active in the caudal areas of the CNS. However, glycine also participates in excitatory neurotransmission since it is a co-agonist of the NMDA subtype of glutamate receptors. The concentration of glycine at synapses is mainly controlled by two sodium and chloride dependent transporters, GLYT1 and GLYT2, proteins that display a complementary distribution and activity in the nervous system. Our understanding of the physiological role of these transporters has advanced recently, thanks to the development of specific inhibitors and the generation of mice defective in the corresponding genes. In addition, the three-dimensional resolution of the structure of a bacterial homologue has shed light on the mechanisms of glycine transport. It is likely that this knowledge will prove to be useful for the development of drugs with antipsychotic, procognitive or analgesic properties.  相似文献   

15.
In this study we have examined the effect of the SNARE protein syntaxin 1A on the glycine transporters GLYT1 and GLYT2. Our results demonstrate a functional and physical interaction between both glycine transporters and syntaxin 1A. Co-transfection of syntaxin 1A with GLYT1 or GLYT2 in COS cells resulted in approximately 40% inhibition in glycine transport. This inhibition was reversed by the syntaxin 1A-binding protein, Munc18. Furthermore, immunoprecipitation studies showed a physical interaction between syntaxin 1A and both transporters in COS cells and in rat brain tissue. Finally, we conclude that this physical interaction resulted in a partial removal of the glycine transporters from the plasma membrane as demonstrated by biotinylation studies.  相似文献   

16.
In the central nervous system, glycine is a co-agonist with glutamate at the N-methyl-D-aspartate subtype of glutamate receptors and also an agonist at inhibitory, strychnine-sensitive glycine receptors. The GLYT1 subtypes of glycine transporters (GLYTs) are responsible for regulation of glycine at excitatory synapses, whereas a combination of GLYT1 and GLYT2 subtypes of glycine transporters are used at inhibitory glycinergic synapses. Zn2+ is stored in synaptic vesicles with glutamate in a number of regions of the brain and is believed to play a role in modulation of excitatory neurotransmission. In this study we have investigated the actions of Zn2+ on the glycine transporters, GLYT1b and GLYT2a, expressed in Xenopus laevis oocytes and we demonstrate that Zn2+ is a noncompetitive inhibitor of GLYT1 but has no effect on GLYT2. We have also investigated the molecular basis for these differences and the relationship between the Zn2+ and proton binding sites on GLYT1. Using site-directed mutagenesis, we identified 2 histidine residues, His-243 in the large second extracellular loop (ECL2) and His-410 in the fourth extracellular loop (ECL4), as two coordinates in the Zn2+ binding site of GLYT1b. In addition, our study suggests that the molecular determinants of proton regulation of GLYT1b are localized to the 2 histidine residues (His-410 and His-421) of ECL4. The ability of Zn2+ and protons to regulate the rate of glycine transport by interacting with residues situated in ECL4 of GLYT1b suggests that this region may influence the substrate translocation mechanism.  相似文献   

17.
Glycine is an inhibitory neurotransmitter in the spinal cord and brain stem, where it acts on strychnine-sensitive glycine receptors, and is also an excitatory neurotransmitter throughout the brain and spinal cord, where it acts on the N-methyl-d-aspartate family of receptors. There are two Na(+)/Cl(-)-dependent glycine transporters, GLYT1 and GLYT2, which control extracellular glycine concentrations and these transporters show differences in substrate selectivity and blocker sensitivity. A bacterial Na(+)-dependent leucine transporter (LeuT(Aa)) has recently been crystallized and its structure determined. When the amino acid residues within the leucine binding site of LeuT(Aa) are aligned with residues of the two glycine transporters there are a number of identical residues and also some key differences. In this report, we demonstrate that the LeuT(Aa) structure represents a good working model of the Na(+)/Cl(-)-dependent neurotransmitters and that differences in substrate selectivity can be attributed to a single difference of a glycine residue in transmembrane domain 6 of GLYT1 for a serine residue at the corresponding position of GLYT2.  相似文献   

18.
The glycine transporter GLYT1 regulates both glycinergic and glutamatergic neurotransmission by controlling the reuptake of glycine at synapses. Trafficking of GLYT1 to and from the cell surface is critical for its function. Activation of PKC down-regulates the activity of GLYT1 through a mechanism that has so far remained uncharacterized. Here we show that GLYT1b undergoes fast constitutive endocytosis that is accelerated by phorbol esters. Both constitutive and regulated endocytosis occur through a dynamin 2- and clathrin-dependent pathway, accumulating in the transporter in transferrin-containing endosomes. A chimera with the extracellular and transmembrane domains of the nerve growth factor receptor and the COOH-terminal tail of GLYT1 was efficiently internalized through this clathrin pathway, suggesting the presence of molecular determinants for GLYT1b endocytosis in its COOH-terminal tail. Extensive site-directed mutagenesis in this region of the chimera highlighted the involvement of lysine residues in its internalization. In the context of the full-length transporter, lysine 619 played a prominent role in both the constitutive and phorbol 12-myristate 13-acetate-induced endocytosis of GLYT1b, suggesting the involvement of ubiquitin modification of GLYT1b during the internalization process. Indeed, we show that GLYT1b undergoes ubiquitination and that this process is stimulated by phorbol 12-myristate 13-acetate. In addition, this endocytosis is impaired in an ubiquitination-deficient cell line, further evidence that constitutive and regulated endocytosis of GLYT1b is ubiquitin-dependent. It remains to be determined whether GLYT1b recycling might be affected in pathologies involving alterations to the ubiquitin system, thereby interfering with its influence on inhibitory and excitatory neurotransmission.Glycine fulfills a dual role in neurotransmission by mediating inhibition through the strychnine-sensitive glycine receptor and excitation as a co-agonist of the NMDA2 receptors (1, 2). Although it was initially believed that the concentration of glycine in the synaptic cleft would be sufficient to saturate the glycine sites on NMDA receptors, recent pharmacological and electrophysiological evidence indicates that due to the activity of the GLYT1 (glycine transporter-1) glycine transporter, this is probably not the case. Three isoforms of GLYT1 exist that differ in their NH2-terminal sequence (GLYT1a, GLYT1b, and GLYT1c), and they are strongly expressed in glycinergic areas of the nervous system, predominantly in glial cells (3). Indeed, mice lacking GLYT1 have impaired glycinergic neurotransmission, which has been attributed to an increase in extracellular glycine close to the strychnine-sensitive glycine receptor (4). Moreover, GLYT1 has been identified in neuronal elements closely associated with the glutamatergic pathways throughout the brain (5, 6). GLYT1 is enriched in presynaptic buttons, where it largely co-localizes with the vesicular glutamate transporter vGLUT1. It is also present in the postsynaptic densities of asymmetric synapses, and complexes containing both NMDA receptor and GLYT1 have been shown to exist (5). In these postsynaptic sites, the distribution of GLYT1 is partially controlled through its interaction with the scaffolding protein PSD-95 (7). Accordingly, GLYT1 is believed to play a role in controlling the concentration of glycine in the microenvironment around the NMDA receptor. Indeed, functional studies have shown that a specific GLYT1 inhibitor, N-[3-(4′-fluorophenyl)-3-(4′-phenylphenoxy)propyl]sarcosine, potentiates NMDA-mediated responses in vitro and in vivo (810). The potential role of GLYT1 in glutamatergic neurotransmission has also been confirmed in heterozygous Glyt1+/− animals that express only 50% of the normal levels of GLYT1 as well as when GLYT1 expression is disturbed in forebrain neurons. In these animals, hippocampal NMDA receptor function is enhanced, and the mice appear to display better memory retention than wild type mice (1113).The mechanisms responsible for the insertion of GLYT1 into glutamatergic synapses are unknown. However, recent studies indicate that the movement of transporters within the cell is highly organized and that a number of ancillary proteins control their intracellular trafficking by interacting with targeting motifs in the transporter. Indeed, like other neurotransmitter transporters, GLYT1 is asymmetrically distributed in polarized cells (14, 15). The asymmetric distribution of sodium-dependent neurotransmitter transporters (NSS) requires a number of steps that commence with their efficient exit from the endoplasmic reticulum. This is followed by sorting processes in the Golgi complex, insertion into the plasma membrane, and the retention of the transporter at functional synaptic sites. Moreover, the amount of transporter in the plasma membrane is also regulated by endocytosis and recycling mechanisms. Like several other members of the NSS family, GLYT1 is subjected to regulation by protein kinase C. Activation of PKC by phorbol esters down-regulates GLYT1, which is endocytosed from the plasma membrane to intracellular compartments in several cell lines (1618). For years, the molecular mechanisms that mediate phorbol 12-myristate 13-acetate (PMA)-stimulated endocytosis of the NSS family members have remained elusive. However, recent evidence obtained for the dopamine transporter (DAT) has revealed the importance of ubiquitination of DAT for its endocytosis (19). DAT is ubiquitinated by the Nedd4-2 ligase at several intracellular lysines. Indeed, mutation of these lysines abolished both ubiquitination and phorbol ester-stimulated endocytosis, indicating that the associated ubiquitin molecules serve as a platform to recruit endocytotic adaptors (2023). Ubiquitination has also been implicated in the endocytosis of other membrane proteins, including the main transporter for glutamate, GLT1, and the system A transporter SNAT2 (2426).Ubiquitin coupling can involve either mono- or polyubiquitination. Monoubiquitination occurs when a single ubiquitin molecule is coupled to one or more lysine residues on a target protein, such that the final stoichiometry is one ubiquitin per lysine. Polyubiquitination refers to the coupling of a chain of ubiquitins to a lysine on the target protein, with a final stoichiometry of four or more ubiquitins per lysine. Whereas monoubiquitinated proteins are degraded in lysosomes, polyubiquitinated proteins are recognized by and subsequently degraded by the 26 S proteasome (27).In this study, we show that GLYT1b is endocytosed through a clathrin-dependent mechanism, a process that is accelerated by phorbol esters. Through a mutational analysis, we have identified a lysine residue in the COOH-terminal tail of the protein as the major determinant for GLYT1b internalization through both constitutive and PMA-stimulated pathways. Ubiquitination GLYT1b is stimulated by PMA, a finding compatible with ubiquitin being the platform on which the clathrin network is assembled.  相似文献   

19.
Neurochemical Research - The glycine transporter GLYT1 participates in inhibitory and excitatory neurotransmission by controlling the reuptake of this neuroactive substance from synapses. Over the...  相似文献   

20.
It is known that channel catfish erythrocytes can take up glycine by several distinct transport systems. Further, glycine is an inhibitory neurotransmitter in mammalian brain and spinal cord. Consequently, the uptake of [(3)H]glycine by catfish brain was investigated and found to be a saturable process, dependent on the presence of Na(++) and Cl(--) and sensitive to temperature. A kinetic analysis of transport was performed at 22C. This showed that a high-affinity system existed which exhibited a K(m) of 5.1 (+/- 2. 1) microM. Several structural analogues of glycine were capable of inhibiting uptake in a competitive manner. The most effective inhibitor was sarcosine (IC(50) 5 36 microM). Uptake was also able to be inhibited by harmaline, a drug known to interfere with Na(+)-dependent transport processes. It is concluded that glycine transport by channel catfish brain has much in common with transport by mammalian nervous tissue which is carried out by the membrane carriers GLYT1 and GLYT2. On the other hand, synaptosomal transport differs somewhat from glycine transport by channel catfish erythrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号