首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The characteristics of the extracellular polymeric substances (EPS) extracted with nine different extraction protocols from four different types of anaerobic granular sludge were studied. The efficiency of four physical (sonication, heating, cationic exchange resin (CER), and CER associated with sonication) and four chemical (ethylenediaminetetraacetic acid, ethanol, formaldehyde combined with heating, or NaOH) EPS extraction methods was compared to a control extraction protocols (i.e., centrifugation). The nucleic acid content and the protein/polysaccharide ratio of the EPS extracted show that the extraction does not induce abnormal cellular lysis. Chemical extraction protocols give the highest EPS extraction yields (calculated by the mass ratio between sludges and EPS dry weight (DW)). Infrared analyses as well as an extraction yield over 100% or organic carbon content over 1 g g−1 of DW revealed, nevertheless, a carry-over of the chemical extractants into the EPS extracts. The EPS of the anaerobic granular sludges investigated are predominantly composed of humic-like substances, proteins, and polysaccharides. The EPS content in each biochemical compound varies depending on the sludge type and extraction technique used. Some extraction techniques lead to a slightly preferential extraction of some EPS compounds, e.g., CER gives a higher protein yield.  相似文献   

2.
Enzymatic activity in the activated-sludge floc matrix   总被引:45,自引:0,他引:45  
The enzymatic activity of activated sludge was investigated with special emphasis on the localization of the enzymes in the sludge floc matrix. Activated sludge from an advanced activated-sludge treatment plant, performing biological N and P removal, was used. An enzymatic fingerprint was established using a panel of six different enzymes. The fingerprint revealed peptidase as the most dominating specific enzyme tested. By monitoring sludge bulk enzymatic activity over a 3-month period using fluorescein diacetate as an enzyme substrate, considerable variations in activity were observed even over short periods (a few days). The variation in esterase activity was to some extent correlated to the presence of humic compounds in the sludge, but not to the sludge protein content. Comparison of full sludge enzyme activity to the activity of a batch-grown sludge culture indicated that enzymes accumulated in sludge flocs. A large proportion of the exoenzymes were immobilized in the sludge by adsorption in the extracellular polymeric substances (EPS) matrix. This was demonstrated by extraction of EPS from the activated sludge using cation exchange. Contemporary to the release of EPS a very large fraction of the exoenzymes was released into the water. This showed that the exoenzymes should be considered to be an integrated part of the EPS matrix rather than as direct indicators of the microbial activity or biomass.  相似文献   

3.
Aims: Extracellular polymeric substances (EPS) are an important component of microbial biofilms, and it is becoming increasingly apparent that extracellular DNA (eDNA) has a functional role in EPS. This study characterizes the eDNA extracted from the novel activated sludge biofilm process of aerobic granules. Methods and Results: Exposing the sludge to cation exchange resin (CER) was used for the extraction of eDNA and intracellular DNA (iDNA) from aerobic granules. This was optimized for eDNA yield while causing minimal cell lysis. We then compared the DNA composition of these extractions using randomly amplified polymorphic DNA (RAPD) fingerprinting and PCR‐based denaturing gradient‐gel electrophoresis (DGGE). Upon the analysis of the genomic DNA and the 16S rRNA genes, differences were detected between the sludge biofilm eDNA and iDNA. Conclusions: Different bacteria within the biofilm disproportionally release DNA into the EPS matrix of the biofilm. Significance and Impact of the Study: The findings further the idea that eDNA has a functional role in the biofilm state, which is an important conceptual information for industrial application of biofilms.  相似文献   

4.
Extraction of extracellular polymeric substances (EPS) of sludges   总被引:54,自引:0,他引:54  
The efficacies of extracting extracellular polymeric substances (EPS) from aerobic, acidogenic and methanogenic sludges using EDTA, cation exchange resin and formaldehyde under various conditions were compared. Results show that formaldehye plus NaOH was most effective in extracting EPS for all sludges; only 1.1-1.2% of DNA in the sludge samples were detected, suggesting the EPS extracted were not contaminated by intracellular substances. For each gram of volatile solids, formaldehyde-NaOH extracted 165, 179 and 102 mg of EPS from aerobic, acidogenic and methanogenic sludges, respectively. All EPS were mainly composed of carbohydrate, protein and humic substance, plus small quantities of uronic acid and DNA. Carbohydrate was predominant in the acidogenic sludge (62% in the EPS extracted by formaldehyde-NaOH), whereas protein was predominant in the methanogenic sludge (41%). Humic substance, which has often been overlooked, accounted for 30.6, 8.4 and 22.8% of the extracted EPS from aerobic, acidogenic and methanogenic sludges, respectively. However, judging from EPS quantities estimated from confocal laser scanning microscopic observations, formaldehyde-NaOH extracted only a limited portion of EPS. Optimization of extraction procedures and/or development of a more effective extraction method are warranted.  相似文献   

5.
Extracellular polymeric substances (EPS) were quantified in flocculent and aerobic granular sludge developed in two sequencing batch reactors with the same shear force but different settling times. Several EPS extraction methods were compared to investigate how different methods affect EPS chemical characterization, and fluorescent stains were used to visualize EPS in intact samples and 20-mum cryosections. Reactor 1 (operated with a 10-min settle) enriched predominantly flocculent sludge with a sludge volume index (SVI) of 120 +/- 12 ml g(-1), and reactor 2 (2-min settle time) formed compact aerobic granules with an SVI of 50 +/- 2 ml g(-1). EPS extraction by using a cation-exchange resin showed that proteins were more dominant than polysaccharides in all samples, and the protein content was 50% more in granular EPS than flocculent EPS. NaOH and heat extraction produced a higher protein and polysaccharide content from cell lysis. In situ EPS staining of granules showed that cells and polysaccharides were localized to the outer edge of granules, whereas the center was comprised mostly of proteins. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on a noncellular, protein core. The comparison of EPS methods explains how significant cell lysis and contamination by dead biomass leads to different and opposing conclusions.  相似文献   

6.
Efficient dissociation of microorganisms from their aggregate matrix is required to study the microorganisms without interaction with their native environment (e.g., biofilms, flocs, granules, etc.) and to assess their community composition through the application of molecular or microscopy techniques. To this end, we combined enzymatic treatments and a cell extraction by density gradient to efficiently recover anaerobic microorganisms from urban wastewater treatment plant sludge. The enzymes employed (amylase, cellulase, DNase, and pectinase) as a pretreatment softly disintegrated the extrapolymeric substances (EPS) interlocked with the microorganisms. The potential damaging effects of the applied procedure on bacterial and archaeal communities were assessed by studying the variations in density (using quantitative PCR), diversity (using capillary electrophoresis single-strand conformation polymorphism fingerprinting [CE-SSCP]), and activity (using a standard anaerobic activity test) of the extracted microorganisms. The protocol preserved the general capacity of the microbial community to produce methane under anaerobic conditions and its diversity; particularly the archaeal community was not affected in terms of either density or structure. This cell extraction procedure from the matrix materials offers interesting perspectives for metabolic, microscopic, and molecular assays of microbial communities present in complex matrices constituted by bioaggregates or biofilms.  相似文献   

7.
Extracellular polymeric substances (EPS) were quantified in flocculent and aerobic granular sludge developed in two sequencing batch reactors with the same shear force but different settling times. Several EPS extraction methods were compared to investigate how different methods affect EPS chemical characterization, and fluorescent stains were used to visualize EPS in intact samples and 20-μm cryosections. Reactor 1 (operated with a 10-min settle) enriched predominantly flocculent sludge with a sludge volume index (SVI) of 120 ± 12 ml g−1, and reactor 2 (2-min settle time) formed compact aerobic granules with an SVI of 50 ± 2 ml g−1. EPS extraction by using a cation-exchange resin showed that proteins were more dominant than polysaccharides in all samples, and the protein content was 50% more in granular EPS than flocculent EPS. NaOH and heat extraction produced a higher protein and polysaccharide content from cell lysis. In situ EPS staining of granules showed that cells and polysaccharides were localized to the outer edge of granules, whereas the center was comprised mostly of proteins. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on a noncellular, protein core. The comparison of EPS methods explains how significant cell lysis and contamination by dead biomass leads to different and opposing conclusions.  相似文献   

8.
This study extracted the soluble microbial products and loosely bound and tightly bound extracellular polymeric substances (EPS) from suspended sludge from a membrane bioreactor, original and aerobically/anaerobically digested, and compared their fouling potentials on a microfiltration membrane. The resistance of cake layer accounts for 95–98% of the total filtration resistances when filtering the whole sludges, with anaerobically digested sludge presenting the highest resistance among the three tested sludges. The tightly bound EPS has the highest potential to foul the membrane; however, the loosely bound EPS contribute most of the filtration resistances of the whole sludges. The foulants corresponding to the irreversible fouling have chemical fingerprints similar to those from loosely bound EPS, which have a greater predilection to proteins and humic substances than to polysaccharides.  相似文献   

9.
Abstract The composition of the capsular polysaccharides (CPS) and exopolysaccharides (EPS) of three strains of Arthrobacter globiformis , isolated from the leaf cavities of Azolla caroliniana (strain B1), A. filiculoides (strains A3 and L1) and A. globiformis ATCC 8010 have been analysed by HPLC and enzymatic assays. Glucose and galactose were detected in the EPS of all the strains, while rhamnose was present only in the EPS of the strain L1 and uronic acids in B1 and ATCC 8010. Traces of fructose were detected by enzymatic assays in all the strains. The CPS contained glucose, galactose and rhamnose, while uronic acids were present only in strain B1. In all the strains the amount of EPS was higher than CPS. The reactivity to different dyes and lectins of the mucilagineous matrix of the algal packets extracted from the fern and of the bacterial mucilage were similar.  相似文献   

10.
Enzyme activities in activated sludge flocs   总被引:9,自引:0,他引:9  
This study quantified the activities of enzymes in extracellular polymeric substances (EPS) and in pellets. Seven commonly adopted extraction schemes were utilized to extract from aerobic flocs the contained EPS, which were further categorized into loosely bound (LB) and tightly bound (TB) fractions. Ultrasonication effectively extracted the EPS from sludge flocs. Enzyme assay tests showed that the protease activity was localized mainly on the pellets, α-amylase and α-glucosidase activities were largely bound with LB-EPS, and few protease, α-amylase, or α-glucosidase activities were associated with the TB-EPS fraction. There exists no correlation between the biochemical compositions of EPS and the distribution of enzyme activities in the sludge matrix. The 44–65% of α-amylase and 59–100% of α-glucosidase activities noted with the LB-EPS indicate heterogeneous hydrolysis patterns in the sludge flocs with proteins and carbohydrates.  相似文献   

11.
Changes in the chemical composition of organic compounds in total activated sludge, activated sludge extracellular polymeric substances (EPS), and sludge bulk water during anaerobic storage (12 days) were studied. The background for the study was that anaerobic storage of activated sludge, which often takes place at wastewater treatment plants before dewatering, causes a deterioration of the dewaterability. The reasons are not known at present, but may be related to changes in exopolymer composition of the flocs. The results showed that a fast decrease in total sludge protein and carbohydrate took place within 3 days of anaerobic storage as a result of degradation processes, which accounted for approximately 20% of the organic fraction. The amount of uronic acids and humic compounds remained almost constant in the sludge. The EPS were extracted from the floc matrix using a cationexchange resin. In the EPS matrix a similar initial (2–3 days) degradation of proteins and carbohydrate took place, whereas the content of DNA and uronic acids showed minor changes. The extractability of humic compounds increased during the first 3 days of storage. No changes in extractability of the carbohydrate were observed. A fraction of the EPS protein was found to be difficult to extract but was observed to be degraded during the anaerobic storage. The EPS composition was further characterized by high-performance size-exclusion chromatography analysis obtained by on-line UV detection and post-column detection of proteins, carbohydrates, humic compounds and DNA. Four fractions of polysaccharides were found, of which only one was responsible for the decrease in the carbohydrate content observed with storage time. The fraction was presumably of low molecular mass. Humic compounds and volatile fatty acids (acetate and propionate) were released to the bulk water from the flocs during the storage. A possible mechanism to explain the reduced dewaterability developed during anaerobic storage, partly because of the observed changes in EPS, is discussed.  相似文献   

12.
This study aimed to characterize biofilms from the paper industry and evaluate the effectiveness of enzymatic treatments in reducing them. The extracellular polymeric substances (EPS) extracted from six industrial biofilms were studied. EPS were mainly proteins, the protein to polysaccharide ratio ranging from 1.3 to 8.6 depending on where the sampling point was situated in the paper making process. Eight hydrolytic enzymes were screened on a 24-h multi-species biofilm. The enzymes were tested at various concentrations and contact durations. Glycosidases and lipases were inefficient or only slightly efficient for biofilm reduction, while proteases were more efficient: after treatment for 24 h with pepsin, Alcalase? or Savinase?, the removal exceeded 80%. Savinase? appeared to be the most adequate for industrial conditions and was tested on an industrial biofilm sample. This enzyme led to a significant release of proteins from the EPS matrix, indicating its potential efficiency on an industrial scale.  相似文献   

13.
Extracellular polymeric substances (EPS) of microbial origin are a complex mixture of biopolymers comprising polysaccharides, proteins, nucleic acids, uronic acids, humic substances, lipids, etc. Bacterial secretions, shedding of cell surface materials, cell lysates and adsorption of organic constituents from the environment result in EPS formation in a wide variety of free-living bacteria as well as microbial aggregates like biofilms, bioflocs and biogranules. Irrespective of origin, EPS may be loosely attached to the cell surface or bacteria may be embedded in EPS. Compositional variation exists amongst EPS extracted from pure bacterial cultures and heterogeneous microbial communities which are regulated by the organic and inorganic constituents of the microenvironment. Functionally, EPS aid in cell-to-cell aggregation, adhesion to substratum, formation of flocs, protection from dessication and resistance to harmful exogenous materials. In addition, exopolymers serve as biosorbing agents by accumulating nutrients from the surrounding environment and also play a crucial role in biosorption of heavy metals. Being polyanionic in nature, EPS forms complexes with metal cations resulting in metal immobilization within the exopolymeric matrix. These complexes generally result from electrostatic interactions between the metal ligands and negatively charged components of biopolymers. Moreover, enzymatic activities in EPS also assist detoxification of heavy metals by transformation and subsequent precipitation in the polymeric mass. Although the core mechanism for metal binding and / or transformation using microbial exopolymer remains identical, the existence and complexity of EPS from pure bacterial cultures, biofilms, biogranules and activated sludge systems differ significantly, which in turn affects the EPS-metal interactions. This paper presents the features of EPS from various sources with a view to establish their role as central elements in bioremediation of heavy metals.  相似文献   

14.
The feasibility of composite hydrolysis enzymes in enhanced dewatering of waste-activated sludge (WAS) was verified in this study. A Pearson correlation analysis was conducted to explore the roles of different extracellular polymeric substance (EPS) fractions on WAS dewaterability. The results indicated that tightly bound EPS (TB-EPS) was released into the liquid phase consistently during enzymatic hydrolysis to form soluble EPS (S-EPS) and loosely bound EPS and that the TB-EPS content was positively correlated with the capillary suction time of WAS. A kinetic analysis was carried out to gain further insights into the kinetic variation in TB-EPS removal. It was found that TB-EPS reduction fit a first-order kinetic model and that mild temperature (25–30 °C) and a slightly acidic condition were favorable for the improvement of enzyme activity. Solid phase extraction combined with UV–Vis spectroscopy analysis was used to characterize the processes of migration and transformation of the hydrophobic (HPO), transphilic and hydrophilic (HPI) fractions in EPS during the enzymatic process. The results revealed that HPO and HPI were mainly composed of PN and PS, respectively, and that the enzymatic hydrolysis could enhance the transformation of HPI from TB-EPS to S-EPS, which was the dominant mechanism of improving WAS dewaterability.  相似文献   

15.
Dynamic membrane (DM) formation in dynamic membrane bioreactors plays an important role in achieving efficient solid-liquid separation. In order to study the contribution of extracellular polymeric substances (EPS) to DM formation in anaerobic dynamic membrane bioreactor (AnDMBR) processes, EPS extraction from and re-addition to bulk sludge were carried out in short-term filtration tests. DM formation behaviors could be well simulated by cake filtration model, and sludge with EPS re-addition showed the highest resistance coefficient, followed by sludge after EPS extraction. The DM layers exhibited a higher resistance and a lower porosity for the sludge sample after EPS extraction and for the sludge with EPS re-addition. Particle size of sludge flocs decreased after EPS extraction, and changed little with EPS re-addition, which was confirmed by interaction energy analysis. Further investigations by confocal laser scanning microscopy (CLSM) analysis and batch tests suggested that the removal of in-situ EPS stimulated release of soluble EPS, and re-added EPS were present as soluble EPS rather than bound EPS, which thus improved the formation of DM. The present work revealed the role of EPS in anaerobic DM formation, and could facilitate the operation of AnDMBR processes.  相似文献   

16.
Biofilm formation and the production of extracellular polymeric substances (EPS) by meso‐ and thermoacidophilic metal‐oxidizing archaea on relevant substrates have been studied to a limited extent. In order to investigate glycoconjugates, a major part of the EPS, during biofilm formation/bioleaching by archaea on pyrite, a screening with 75 commercially available lectins by fluorescence lectin‐binding analysis (FLBA) has been performed. Three representative archaeal species, Ferroplasma acidiphilum DSM 28986, Sulfolobus metallicus DSM 6482T and a novel isolate Acidianus sp. DSM 29099 were used. In addition, Acidianus sp. DSM 29099 biofilms on elemental sulfur were studied. The results of FLBA indicate (i) 22 lectins bound to archaeal biofilms on pyrite and 21 lectins were binding to Acidianus sp. DSM 29099 biofilms on elemental sulfur; (ii) major binding patterns, e.g. tightly bound EPS and loosely bound EPS, were detected on both substrates; (iii) the three archaeal species produced various EPS glycoconjugates on pyrite surfaces. Additionally, the substratum induced different EPS glycoconjugates and biofilm structures of cells of Acidianus sp. DSM 29099. Our data provide new insights into interactions between acidophilic archaea on relevant surfaces and also indicate that FLBA is a valuable tool for in situ investigations on archaeal biofilms.  相似文献   

17.
The influence of extracellular polymeric substances (EPS) on bacterial cell adhesion onto solid surfaces was investigated using 27 heterotrophic bacterial strains isolated from a wastewater treatment reactor. Cell adhesion onto glass beads was carried out by the packed-bed method and the results were discussed in terms of the amount of each EPS component produced and cell surface characteristics such as zeta potential and hydrophobicity. Protein and polysaccharides accounted for 75-89% of the EPS composition, indicating that they are the major EPS components. Among the polysaccharides, the amounts of hexose, hexosamine and ketose were relatively high in EPS-rich strains. For EPS-poor strains, the efficiency of cell adhesion onto glass beads increased as the absolute values of zeta potential decreased, suggesting that electrostatic interaction suppresses cell adhesion efficiency. On the other hand, the amounts of hexose and pentose exhibited good correlations with cell adhesiveness for EPS-rich strains, indicating that polymeric interaction due to the EPS covering on the cell surface promoted cell adhesion. It was concluded that, if the EPS amount is relatively small, cell adhesion onto solid surfaces is inhibited by electrostatic interaction, and if it is relatively large, cell adhesion is enhanced by polymeric interaction.  相似文献   

18.
Scanning electron microscopy revealed that collapsed extracellular polymeric substances (EPS) surrounded bacteria present in granular sludge. Treatment of granular sludge with whole-cell antiserum and staining with polycationic ferritin demonstrated that bacteria were enveloped by extensive EPS. Antibody stabilization permitted a visualization of the EPS which more closely resembled its natural hydrated state. The EPS was seen to completely fill the intercellular spaces in the microcolonies. Both pure and mixed microcolonies were observed to be enclosed by EPS. The presence of these large amounts of EPS indicates that this extracellular layer is important in maintaining the structural integrity of granular sludge.  相似文献   

19.
20.
The efficiency of five extraction methods for extracellular polymeric substances (EPS) was compared on three benthic eukaryotic biofilms isolated from an extreme acidic river, Río Tinto (SW, Spain). Three chemical methods (MilliQ water, NaCl, and ethylenediamine tetraacetic acid [EDTA]) and two physical methods (Dowex 50.8 and Crown Ether cation exchange resins) were tested. The quality and quantity of the EPS extracted from acidic biofilms varied according to which EPS extraction protocol was used. Higher amounts were obtained when NaCl and Crown Ether resins were used as extractant agents, followed by EDTA, Dowex, and MilliQ. EPS amounts varied from approximately 155 to 478 mg g−1 of dry weight depending on the extraction method and biofilm analyzed. EPS were primarily composed of carbohydrate, heavy metals, and humic acid, plus small quantities of proteins and DNA. Neutral hexose concentrations corresponded to more than 90% of the total EPS dry weight. The proportions of each metals in the EPS extracted with EDTA are similar to the proportions present in the water from each locality where the biofilms were collected except for Al, Cu, Zn, and Pb. In this study, the extracellular matrix heavy metal sorption efficiencies of five methods for extracting EPS from eukaryotic acidic biofilms were compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号