首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
A single-strand-specific nuclease from rye germ (Rn nuclease I) was characterized as a tool for secondary and tertiary structure investigation of RNAs. To test the procedure, yeast tRNA(Phe) and tRNA(Asp) for which the tertiary structures are known, as well as the 3'-half of tRNA(Asp) were used as substrates. In tRNA(Phe) the nuclease introduced main primary cuts at positions U33 and A35 of the anticodon loop and G18 and G19 of the D loop. No primary cuts were observed within the double stranded stems. In tRNA(Asp) the main cuts occurred at positions U33, G34, U35, C36 of the anticodon loop and G18 and C20:1 positions in the D loop. No cuts were observed in the T loop in intact tRNA(Asp) but strong primary cleavages occurred at positions psi 55, C56, A57 within that loop in the absence of the tertiary interactions between T and D loops (use of 3'-half tRNA(Asp)). These results show that Rn nuclease I is specific for exposed single-stranded regions.  相似文献   

2.
Solvent exchange rates of all the protons of yeast tRNAphe resonating in the lowfield NMR region (-11 to-15 ppm from DSS) have been measured by saturation-recovery long-pulse Fourier transform NMR. All these protons in yeast tRNAphe are in the fast exchange limit with H2O relative to their intrinsic longitudinal relaxation processes. Most rates show very little temperature dependence; however, tertiary base pair protons are preferentially destabilized in the absence of Mg++ at higher temperatures. The measured exchange rates are between 2 and 125 sec-1 for a temperature range from 10 degrees C to 45 degrees C and MgCl2 concentrations between 0 and 15 mM.  相似文献   

3.
The base-modification pattern has been studied in several synthetic variants of yeast tRNA(Asp) injected into Xenopus laevis oocytes. Certain point mutations in the D-stem and the variable loop of the tRNA led to considerably decreased levels of m1G37, psi 40 and Q34/manQ34 in the anticodon stem or loop and an increased rate of synthesis for m5C49 in the T-stem. The formation of m2G6 in the aminoacyl-stem was not affected in any of the tRNA-variants. Thus, mutations in one part of the tRNA-molecule can have long-range effects on the interactions between another part of the tRNA and the tRNA modifying enzymes.  相似文献   

4.
5.
6.
7.
8.
Atomic coordinates of E. Coli tRNA1Val have been generated from the X-ray crystal structure of Yeast tRNAPhe by base substitution followed by idealization...  相似文献   

9.
10.
The anticodon of yeast tRNA(Asp), GUC, presents the peculiarity to be self-complementary, with a slight mismatch at the uridine position. In the orthorhombic crystal lattice, tRNA(Asp) molecules are associated by anticodon-anticodon interactions through a two-fold symmetry axis. The anticodon triplets of symmetrically related molecules are base paired and stacked in a normal helical conformation. A stacking interaction between the anticodon loops of two two-fold related tRNA molecules also exists in the orthorhombic form of yeast tRNA(Phe). In that case however the GAA anticodon cannot be base paired. Two characteristic differences can be correlated with the anticodon-anticodon association: the distribution of temperature factors as determined from the X-ray crystallographic refinements and the interaction between T and D loops. In tRNA(Asp) T and D loops present higher temperature factors than the anticodon loop, in marked contrast to the situation in tRNA(Phe). This variation is a consequence of the anticodon-anticodon base pairing which rigidifies the anticodon loop and stem. A transfer of flexibility to the corner of the tRNA molecule disrupts the G19-C56 tertiary interactions. Chemical mapping of the N3 position of cytosine 56 and analysis of self-splitting patterns of tRNA(Asp) substantiate such a correlation.  相似文献   

11.
High resolution NMR study of the melting of yeast tRNA Phe   总被引:7,自引:0,他引:7  
The 300 MHz NMR spectra of the hydrogen bonded NH ring protons of tRNAYeastPhe have been measured as a function of temperature. In the presence of Mg++ two resonances, one from the Aψ base pair and the other probably from the neighboring base pair, disappear between 56 and 58°C. In the absence of Mg++ the DHU stem, the acceptor stem (in particular its AU base pair #6 and #7) and the Aψ base pair in the anticodon stem melt slightly earlier than the other parts of the molecule. Since the DHU stems in tRNAYeastPhe and tRNAColifMet have the same base pairing scheme it is interesting that their melting behavior is entirely different in both molecules. This is discussed in terms of the tertiary structure.  相似文献   

12.
The three conformations of the anticodon loop of yeast tRNA(Phe)   总被引:2,自引:0,他引:2  
The complex conformational states of the anticodon loop of yeast tRNA(Phe) which we had previously studied with relaxation experiments by monitoring fluorescence of the naturally occurring Wye base, are analyzed using time and polarization resolved fluorescence measurements at varying counterion concentrations. Synchrotron radiation served as excitation for these experiments, which were analyzed using modulating functions and global methods. Three conformations of the anticodon loop are detected, all three occurring in a wide range of counterion concentrations with and without Mg2+, each being identified by its typical lifetime. The fluorescence changes brought about by varying the ion concentrations, previously monitored by steady state fluorimetry and relaxation methods, are changes in the population of these three conformational states, in the sense of an allosteric model, where the effectors are the three ions Mg2+, Na+ and H+. The population of the highly fluorescent M conformer (8ns), most affine to magnesium, is thus enhanced by that ligand, while the total fluorescence decreases as lower pH favors the H+-affine H conformer (0.6ns). Na+-binding of the N conformer (4ns) is responsible for complex fluorescence changes. By iterative simulation of this allosteric model the equilibrium and binding constants are determined. In turn, using these constants to simulate equilibrium fluorescence titrations reproduces the published results.  相似文献   

13.
14.
15.
The irradiation of native or unmodified yeast tRNA(Phe) by short wavelength UV light (260 nM) results in an intramolecular crosslink that has been mapped to occur between C48 in the variable loop and U59 in the T loop. Photo-reversibility of the crosslink and the absence of fluorescent photo adducts suggest that the crosslink product is a cytidine-uridine cyclobutane dimer. This is consistent with the relative geometries of C48 and U59 in the crystal structure of yeast tRNA(Phe). Evaluation of the crosslinking efficiency of the mutants of tRNA(Phe) indicates that the reaction depends on the correct tertiary structure of the RNA.  相似文献   

16.
Aminoglycoside antibiotics have recently been found to bind to a variety of unrelated RNA molecules, including sequences that are important for retroviral replication. We report the binding of neomycin B, kanamycin A, and Neo-Neo (a synthetic neomycin-neomycin dimer) to tRNA(Phe). Using thermal denaturation studies, fluorescence spectroscopy, Pb2+-mediated tRNA(Phe) cleavage, and gel mobility shift assays, we have established that aminoglycosides interact with yeast tRNA(Phe) and are likely to induce a conformational change. Thermal denaturation studies revealed that aminoglycosides have a substantial stabilizing effect on tRNA(Phe) secondary and tertiary structures, much greater than the stabilization effect of spermine, an unstructured polyamine. Aminoglycoside-induced inhibition of Pb2+-mediated tRNA(Phe) cleavage yielded IC50 values of: 5 microM for Neo-Neo, 100 microM for neomycin B, > 1 mM for kanamycin A, and > 10 mM for spermine. Enzymatic and chemical footprinting indicate that the anticodon stem as well as the junction of the TpsiC and D loops are preferred aminoglycoside binding sites.  相似文献   

17.
Crystallographic studies of the aspartyl-tRNA synthetase-tRNA(Asp)complex from yeast identified on the enzyme a number of residues potentially able to interact with tRNA(Asp). Alanine replacement of these residues (thought to disrupt the interactions) was used in the present study to evaluate their importance in tRNA(Asp)recognition and acylation. The results showed that contacts with the acceptor A of tRNA(Asp)by amino acid residues interacting through their side-chain occur only in the acylation transition state, whereas those located near the G73 discriminator base occur also during initial binding of tRNA(Asp). Interactions with the anticodon bases provide the largest free energy contribution to stability of the enzyme-tRNA complex in its ground state. These contacts also favour catalysis, by acting connectively with each other and with those of G73, as shown by multiple mutant analysis. This implies structural communication transmitting the anticodon recognition signal to the distally located acylation site. This signal might be conveyed via tRNA(Asp)as suggested by the observed conformational change of this molecule upon interaction with AspRS. From binding free energy values corresponding to the different AspRS-tRNA(Asp)interaction domains, it might be concluded that upon complex formation, the anticodon interacts first. Finally, acylation efficiencies of AspRS mutants in the presence of pure tRNA(Asp)and non-fractionated tRNAs indicate that residues involved in the binding of identity bases also discriminate against non-cognate tRNAs.  相似文献   

18.
The heat effects involved in thermal unfolding of tRNAPhe from yeast have been determined in various buffer systems by direct differential scanning calorimetry. Perfect reversibility of the melting process has been demonstrated for measurements in the absence of Mg2+ ions. The overall molar transition enthalpy, delta Ht = 298 +/- 15 kcal mol-1 (1247 +/- 63 kJ mol-1), has been shown to be independent of the NaCl concentration and the nature of the buffers used in this study. Delta Ht is identical in the presence and in the absence of Mg2+ ions within the margin of experimental error. This experimental result implies a vanishing or very small heat capacity change to be associated with melting. Decomposition of the calorimetrically determined complex transition curves, on the assumption that the experimental melting profile represents the sum of independent two-state transitions, results in five transitions which have been assigned to melting of different structural domains of the tRNA.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号