首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 571 毫秒
1.
The flavanol (-)-epicatechin is known to protect against peroxynitrite-induced nitration and oxidation reactions. This study investigated the protection afforded by (-)-epicatechin against both these reaction types on one target molecule, the aminoacid tyrosine, in a hydrophilic milieu as well as with a lipophilic tyrosine derivative, N-t-BOC l-tyrosine tert-butyl ester (BTBE), bound to liposomes. The flavanol efficiently attenuated both tyrosine nitration and tyrosine dimerization (which is based on an initial oxidation reaction) and was active in the hydrophilic and hydrophobic systems at similar IC(50) values, approximately 0.02-0.05 mol (-)-epicatechin/mol peroxynitrite. Related procyanidin oligomers of different chain-length (dimer to octamer) were also tested for their protective properties, and exhibited protection that, on a monomer basis, was in the same order of magnitude as those for (-)-epicatechin.  相似文献   

2.
The effects of dopamine-melanin (DA-melanin), a synthetic model of neuromelanin, on peroxynitrite-mediated 3-nitrotyrosine formation, oxidation of tryptophan in bovine serum albumin and inactivation of erythrocyte membrane Ca(2+)-ATPase activity were investigated in the absence and in the presence of bicarbonate. DA-melanin inhibited nitration of free tyrosine, loss of tryptophan residues and Ca(2+)-ATPase inactivation by peroxynitrite in a dose dependent manner. In the presence of bicarbonate, this inhibitory effect was lower for nitration and insignificant for oxidative protein modifications. These results suggest that neuromelanin can protect against nitrating and oxidizing action of peroxynitrite but is a worse protector against the peroxynitrite-CO(2) adduct. As peroxynitrite may be a mediator of neurotoxic processes, the obtained results suggest that neuromelanin may be important as a physiological protector against peroxynitrite.  相似文献   

3.
Protection against peroxynitrite   总被引:11,自引:0,他引:11  
Arteel GE  Briviba K  Sies H 《FEBS letters》1999,445(2-3):226-230
Peroxynitrite formed in vivo from superoxide and nitric oxide can mediate oxidation, nitration, or nitrosation reactions, leading to impaired function, toxicity, and alterations in signaling pathways. Protection against peroxynitrite is important for defense of normal tissue, especially during inflammation. Biological protection against peroxynitrite is organized in three categories: prevention, interception, and repair. Prevention is the control of the formation of peroxynitrite precursors, nitric oxide and superoxide. Interception is by direct reaction with peroxynitrite, leading to non-toxic products. In this regard, organoselenium compounds, metalloporphyrin derivatives, and peroxidases (e.g. glutathione peroxidase and myeloperoxidase) exhibit high second-order rate constants with peroxynitrite. Ebselen, like glutathione peroxidase, protects in a catalytic fashion utilizing glutathione as reductant in the peroxynitrite reductase reaction. Protection by metalloporphyrins can be maintained through glutathione or ascorbate. Repair processes remove damaged products and restitute intact biomolecules.  相似文献   

4.
Tyrosine nitration is a common modification to proteins in vivo, but the reactive nitrogen species responsible for nitration are often studied in vitro using just the amino acid tyrosine in simple phosphate solutions. To investigate which reactive nitrogen species could nitrate proteins in a complex biological system, we exposed rat heart and brain homogenates to peroxynitrite, nitric oxide under aerobic conditions, and other putative nitrating agents. Peroxynitrite was by far the most efficient nitrating agent when alternative targets were available to compete with tyrosine. Curiously, proteins in heart homogenates were substantially more resistant to nitration than brain homogenates. Ultrafiltration to remove low molecular weight compounds made the heart proteins equally susceptible as the brain proteins to nitration. Endogenous ascorbate and free thiols had little effect on nitration by peroxynitrite in either heart or brain. However, accumulation of urate formed by the oxidation of hypoxanthine by xanthine dehydrogenase and oxidase in heart appeared to be the major inhibitor of nitration. Heart homogenates treated with uricase, which converts urate to allantoin, showed equivalent nitration as in brain homogenates. Urate, as assayed by HPLC, was 58 +/- 8 microM in heart but only 4 +/- 2 microM in brain homogenates. Although xanthine dehydrogenase conversion to a free radical-producing oxidase can serve as an important source of superoxide and hydrogen peroxide during ischemia/reperfusion, our results suggest that urate formation by xanthine dehydrogenase may provide a significant antioxidant defense against peroxynitrite and related nitric oxide-derived oxidants.  相似文献   

5.
H Zhang  J Joseph  J Feix  N Hogg  B Kalyanaraman 《Biochemistry》2001,40(25):7675-7686
It has been reported that peroxynitrite will initiate both oxidation and nitration of tyrosine, forming dityrosine and nitrotyrosine, respectively. We compared peroxynitrite-dependent oxidation and nitration of a hydrophobic tyrosine analogue in membranes and tyrosine in aqueous solution. Reactions were carried out in the presence of either bolus addition or slow infusion of peroxynitrite, and also using the simultaneous generation of superoxide and nitric oxide. Results indicate that the level of nitration of the hydrophobic tyrosyl probe located in a lipid bilayer was significantly greater than its level of oxidation to the corresponding dimer. During slow infusion of peroxynitrite, the level of nitration of the membrane-incorporated tyrosyl probe was greater than that of tyrosine in aqueous solution. Evidence for hydroxyl radical formation from decomposition of peroxynitrite in a dimethylformamide/water mixture was obtained by electron spin resonance spin trapping. Mechanisms for nitration of the tyrosyl probe in the membrane are discussed. We conclude that nitration but not oxidation of a tyrosyl probe by peroxynitrite is a predominant reaction in the membrane. Thus, the local environment of target tyrosine residues is an important factor governing its propensity to undergo nitration in the presence of peroxynitrite. This work provides a new perspective on selective nitration of membrane-incorporated tyrosine analogues.  相似文献   

6.
Selenomethionine has been suggested to protect against peroxynitrite by quenching it in vivo. Selenomethionine is distributed randomly in the methionine pool. Albumin and IgG were purified from plasma of a human being before and after 28 days of supplementation with 400 microg selenium/day as selenomethionine. The albumin contained 1 selenium atom, presumably as selenomethionine, per 8000 methionine residues before supplementation and 1 per 2800 after supplementation. Although this ratio suggested that selenomethionine would not have as great an effect in quenching peroxynitrite as would methionine, direct testing of the albumin and IgG fractions was carried out to assess the ability of these proteins to prevent peroxynitrite oxidation of dihydrorhodamine 123 to rhodamine 123. The ability of the albumin preparations to resist nitration of tyrosine residues was also assessed. The high-selenomethionine preparations of the proteins had no greater effect in quenching the peroxynitrite than did the normal-selenomethionine preparations. These results do not support the proposal that selenomethionine in proteins contributes to in vivo protection against peroxynitrite.  相似文献   

7.
Although peroxynitrite stimulates apoptosis in many cell types, whether peroxynitrite acts directly as an oxidant or the induction of apoptosis is because of the radicals derived from peroxynitrite decomposition remains unknown. Before undergoing apoptosis because of trophic factor deprivation, primary motor neuron cultures become immunoreactive for nitrotyrosine. We show here using tyrosine-containing peptides that free radical processes mediated by peroxynitrite decomposition products were required for triggering apoptosis in primary motor neurons and in PC12 cells cultures. The same concentrations of tyrosine-containing peptides required to prevent the nitration and apoptosis of motor neurons induced by trophic factor deprivation and of PC12 cells induced by peroxynitrite also prevented peroxynitrite-mediated nitration of motor neurons, brain homogenates, and PC12 cells. The heat shock protein 90 chaperone was nitrated in both trophic factor-deprived motor neurons and PC12 cells incubated with peroxynitrite. Tyrosine-containing peptides did not affect the induction of PC12 cell death by hydrogen peroxide. Tyrosine-containing peptides should protect by scavenging peroxynitrite-derived radicals and not by direct reactions with peroxynitrite as they neither increase the rate of peroxynitrite decomposition nor decrease the bimolecular peroxynitrite-mediated oxidation of thiols. These results reveal an important role for free radical-mediated nitration of tyrosine residues, in apoptosis induced by endogenously produced and exogenously added peroxynitrite; moreover, tyrosine-containing peptides may offer a novel strategy to neutralize the toxic effects of peroxynitrite.  相似文献   

8.
Potential mechanisms underlying zinc's capacity to protect membranes from lipid oxidation were examined in liposomes. Using lipid oxidation initiators with different chemical and physical properties (transition metals, lipid- or water-soluble azo compounds, ultraviolet radiation c (UVc), superoxide radical anion (O2*-), and peroxynitrite (ONOO-) we observed that zinc only prevented copper (Cu2+)- and iron (Fe2+)-initiated lipid oxidation. In the presence of Fe2+, the antioxidant action of zinc depended directly on the negative charge density of the membrane bilayer. An inverse correlation (r2: 0.96) was observed between the capacity of zinc to prevent iron binding to the membrane and the inhibitory effect of zinc on Fe2+-initiated lipid oxidation. The interaction of zinc with the bilayer did not affect physical properties of the membrane, including rigidification and lateral phase separation known to increase lipid oxidation rates. The interactions between zinc and the lipid- (alpha-tocopherol) and water- (epicatechin) soluble antioxidants were studied. The inhibition of Fe2+-induced lipid oxidation by either alpha-tocopherol or epicatechin was increased by the simultaneous addition of zinc. The combined actions of alpha-tocopherol (0.01 mol%), epicatechin (0.5 microM) and zinc (5-50 microM) almost completely prevented Fe2+ (25 microM)-initiated lipid oxidation. These results show that zinc can protect membranes from iron-initiated lipid oxidation by occupying negatively charged sites with potential iron binding capacity. In addition, the synergistic actions of zinc with lipid and water-soluble antioxidants to prevent lipid oxidation, suggests that zinc is a pivotal component of the antioxidant defense network that protects membranes from oxidation.  相似文献   

9.
Peroxynitrite, a potent oxidant formed in vivo from the reaction of nitric oxide with superoxide, can mediate low-density liprotein (LDL) oxidation which is thought to increase the risk of atherosclerosis. This study investigates the inhibitory effect of the isoflavones, genistein and daidzein, together with their glycosidic forms, genistin and daidzin, on the peroxynitrite-mediated LDL oxidation and nitration of tyrosine. Genistein and daidzein were observed to dose-dependently inhibit peroxynitrite-mediated LDL oxidation, while their glucoside conjugates showed less activity. Moreover, all the isoflavones used in this study were found to be potent peroxynitrite scavengers, preventing the nitration of tyrosine. The ability of the isoflavones at 50 microM to decrease the tyrosine nitration induced by peroxynitrite (1 mM) was in the ratios of genistein (49%), daidzein (40%), daidzin (41%) and genistin (42%) when compared to the control (tyrosine incubated only with peroxynitrite). These results suggest that an intake of isoflavones could contribute to protecting against cardiovascular diseases and chronic inflammatory diseases.  相似文献   

10.
Schieke SM  Briviba K  Klotz LO  Sies H 《FEBS letters》1999,448(2-3):301-303
Peroxynitrite is a mediator of toxicity in pathological processes in vivo and causes damage by oxidation and nitration reactions. Here, we report a differential induction of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells by peroxynitrite. For the exposure of cultured cells with peroxynitrite, we employed a newly developed infusion method. At 6.5 microM steady-state concentration, the activation of p38 MAPK was immediate, while JNK1/2 and ERK1/2 were activated 60 min and 15 min subsequent to 3 min of exposure to peroxynitrite, respectively. Protein-bound 3-nitrotyrosine was detected. When cells were grown in a medium supplemented with sodium selenite (1 microM) for 48 h, complete protection was afforded against the activation of p38 and against nitration of tyrosine residues. These data suggest a new role for peroxynitrite in activating signal transduction pathways capable of modulating gene expression. Further, the abolition of the effects of peroxynitrite by selenite supplementation suggests a protective role of selenium-containing proteins.  相似文献   

11.
The biological targets of peroxynitrite toxicity include wide array of biomolecules. Although several enzymes are found to be important components of cellular defense against peroxynitrite, the complete scenario is not totally understood. Yeast flavohemoglobin (YHB) and glutathione-dependent formaldehyde dehydrogenase (GS-FDH) confers resistance against nitric oxide and related reactive nitrogen species. In the present study, when subtoxic dose of peroxynitrite was applied to wild type, Δyhb1 and Δsfa1 strains of Saccharomyces cerevisiae, induction of cytosolic catalase was found at activity as well as gene expression level in mutants but not in wild type. Such induction was not due to intracellular reactive oxygen species (ROS) formation. Our in vitro studies confirmed the role of catalase in protection against peroxynitrite-mediated oxidation and nitration and also in peroxynitrite catabolism. This report is first of its kind regarding the novel role of catalase in peroxynitrite detoxification in Δyhb1 and Δsfa1 strains of S. cerevisiae.  相似文献   

12.
Nerve growth factor (NGF) overexpression and increased production of peroxynitrite occur in several neurodegenerative diseases. We investigated whether NGF could undergo posttranslational oxidative or nitrative modifications that would modulate its biological activity. Compared to native NGF, peroxynitrite-treated NGF showed an exceptional ability to induce p75(NTR)-dependent motor neuron apoptosis at physiologically relevant concentrations. Whereas native NGF requires an external source of nitric oxide (NO) to induce motor neuron death, peroxynitrite-treated NGF induced motor neuron apoptosis in the absence of exogenous NO. Nevertheless, NO potentiated the apoptotic activity of peroxynitrite-modified NGF. Blocking antibodies to p75(NTR) or downregulation of p75(NTR) expression by antisense treatment prevented motor neuron apoptosis induced by peroxynitrite-treated NGF. We investigated what oxidative modifications were responsible for inducing a toxic gain of function and found that peroxynitrite induced tyrosine nitration in a dose-dependent manner. Moreover, peroxynitrite triggered the formation of stable high-molecular-weight oligomers of NGF. Preventing tyrosine nitration by urate abolished the effect of peroxynitrite on NGF apoptotic activity. These results indicate that the oxidation of NGF by peroxynitrite enhances NGF apoptotic activity through p75(NTR) 10,000-fold. To our knowledge, this is the first known posttranslational modification that transforms a neurotrophin into an apoptotic agent.  相似文献   

13.
Peroxynitrite is implicated in many diseases. Hence, there is considerable interest in potential therapeutic peroxynitrite scavengers. Diet-derived phenolics have been claimed to be powerful peroxynitrite scavengers. However, the reactivity of peroxynitrite can be significantly modified by bicarbonate and this has not been considered in evaluations of the scavenging activity of phenols. Bicarbonate (25 mM) significantly decreased the ability of several phenolic compounds (caffeic acid, o- and p-coumaric acid, gallic acid, ferulic acid) but not others (catechin and epicatechin) to inhibit peroxynitrite-mediated tyrosine nitration. Bicarbonate (25 mM) also decreased the ability of catechin, epicatechin, quercetin and ferulic acid but not chlorogenic acid, gallic acid, caffeic acid and o-coumaric acid to inhibit peroxynitrite-mediated alpha(1)-antiproteinase inactivation. These results show that physiological concentrations of bicarbonate substantially modify the ability of dietary phenolics to prevent peroxynitrite-mediated reactions. When assessing compounds for peroxynitrite scavenging, experiments should be conducted in the presence of bicarbonate to avoid misleading results.  相似文献   

14.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100-300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( - )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity.  相似文献   

15.
We describe an altered membrane band 3 protein-mediated anion transport in erythrocytes exposed to peroxynitrite, and relate the loss of anion transport to cell damage and to band 3 oxidative modifications. We found that peroxynitrite down-regulate anion transport in a dose dependent relation (100–300 μmoles/l). Hemoglobin oxidation was found at all peroxynitrite concentrations studied. A dose-dependent band 3 protein crosslinking and tyrosine nitration were also observed. Band 3 protein modifications were concomitant with a decrease in transport activity. ( ? )-Epicatechin avoids band 3 protein nitration but barely affects its transport capacity, suggesting that both processes are unrelated. N-acetyl cysteine partially reverted the loss of band 3 transport capacity. It is concluded that peroxynitrite promotes a decrease in anion transport that is partially due to the reversible oxidation of band 3 cysteine residues. Additionally, band 3 tyrosine nitration seems not to be relevant for the loss of its anion transport capacity.  相似文献   

16.
Lipid oxidation and nitration represents a novel area of research of relevance in the understanding of inflammatory processes. Peroxynitrite, the product of the diffusion-limited reaction between nitric oxide and superoxide anion, mediates oxidative modifications in lipid systems including cell membranes and lipoproteins. In this review, we discuss the mechanisms of lipid oxidation and nitration by peroxynitrite as well as the influence of physiological molecules and cell targets to redirect peroxynitrite reactivity. We also provide evidence to support that oxidation/nitration of lipids results in the formation of novel signaling modulators of key lipid-metabolizing enzymes.  相似文献   

17.
The interaction between peroxynitrite and dopamine and the inhibition of this reaction by plant-derived antioxidants have been investigated. Peroxynitrite promoted the oxidation of dopamine to 6-hydroxyindole-5-one as characterised by HPLC and photodiode array spectra, akin to the products of the tyrosinase-dopamine reaction, but no evidence of dopamine nitration was obtained. Although peroxynitrite did not cause nitration of dopamine in vitro, the catecholamine is capable of inhibiting the formation of 3-nitrotyrosine from peroxynitrite-mediated nitration of tyrosine. The plant-derived phenolic compounds, caffeic acid and catechin, inhibited peroxynitrite-mediated oxidation of dopamine. This effect is attributed to the ability of catechol-containing antioxidants to reduce peroxynitrite through electron donation, resulting in their oxidation to the corresponding o-quinones. The antioxidant effect of caffeic acid and catechin was comparable to that of the endogenous antioxidant, glutathione. In contrast, the structurally related monohydroxylated hydroxycinnamates, p-coumaric acid and ferulic acid, which inhibit tyrosine nitration through a mechanism of competitive nitration, did not inhibit peroxynitrite-induced dopamine oxidation. The findings of the present study suggest that certain plant-derived phenolics can inhibit dopamine oxidation.  相似文献   

18.
Tyrosine hydroxylase (TH), the initial and rate-limiting enzyme in the biosynthesis of the neurotransmitter dopamine, is inactivated by peroxynitrite. The sites of peroxynitrite-induced tyrosine nitration in TH have been identified by matrix-assisted laser desorption time-of-flight mass spectrometry and tyrosine-scanning mutagenesis. V8 proteolytic fragments of nitrated TH were analyzed by matrix-assisted laser desorption time-of-flight mass spectrometry. A peptide of 3135.4 daltons, corresponding to residues V410-E436 of TH, showed peroxynitrite-induced mass shifts of +45, +90, and +135 daltons, reflecting nitration of one, two, or three tyrosines, respectively. These modifications were not evident in untreated TH. The tyrosine residues (positions 423, 428, and 432) within this peptide were mutated to phenylalanine to confirm the site(s) of nitration and assess the effects of mutation on TH activity. Single mutants expressed wild-type levels of TH catalytic activity and were inactivated by peroxynitrite while showing reduced (30-60%) levels of nitration. The double mutants Y423F,Y428F, Y423F,Y432F, and Y428F,Y432F showed trace amounts of tyrosine nitration (7-30% of control) after exposure to peroxynitrite, and the triple mutant Y423F,Y428F,Y432F was not a substrate for nitration, yet peroxynitrite significantly reduced the activity of each. When all tyrosine mutants were probed with PEO-maleimide activated biotin, a thiol-reactive reagent that specifically labels reduced cysteine residues in proteins, it was evident that peroxynitrite resulted in cysteine oxidation. These studies identify residues Tyr(423), Tyr(428), and Tyr(432) as the sites of peroxynitrite-induced nitration in TH. No single tyrosine residue appears to be critical for TH catalytic function, and tyrosine nitration is neither necessary nor sufficient for peroxynitrite-induced inactivation. The loss of TH catalytic activity caused by peroxynitrite is associated instead with oxidation of cysteine residues.  相似文献   

19.
Considerable evidence both in vitro and in vivo implicates protein damage by peroxynitrite as a probable mechanism of cell death. Herein, we report that treatment of bovine brain microtubule protein, composed of tubulin and microtubule-associated proteins, with peroxynitrite led to a dose-dependent inhibition of microtubule polymerization. The extent of cysteine oxidation induced by peroxynitrite correlated well with inhibition of microtubule polymerization. Disulfide bonds between the subunits of the tubulin heterodimer were detected by Western blot as a result of peroxynitrite-induced cysteine oxidation. Addition of disulfide reducing agents including dithiothreitol and beta-mercaptoethanol restored a significant portion of the polymerization activity that was lost following peroxynitrite addition. Thus, peroxynitrite-induced disulfide bonds are at least partially responsible for the observed inhibition of polymerization. Sodium bicarbonate protected microtubule protein from the peroxynitrite-induced inhibition of polymerization. Tyrosine nitration of microtubule protein by 1 mM peroxynitrite increased approximately twofold when sodium bicarbonate was present whereas the extent of cysteine oxidation decreased from 7.5 to 6.3 mol cysteine/mol tubulin. These results indicate that cysteine oxidation of tubulin by peroxynitrite, rather than tyrosine nitration, is the primary mechanism of inhibition of microtubule polymerization.  相似文献   

20.
Alpha-lipoic acid (LA) and dihydrolipoic acid (DHLA) may have a role as antioxidants against nitric oxide-derived oxidants. We previously reported that peroxynitrite reacts with LA and DHLA with second-order rate constants of 1400 and 500 M(-1) s(-1), respectively, but indicated that these direct reactions are not fast enough to protect against peroxynitrite-mediated damage in vivo. Moreover, the mechanism of the reaction of peroxynitrite with LA has been recently challenged (J. Biol. Chem.279:9693-9697; 2004). Pulse radiolysis studies indicate that LA and DHLA react with peroxynitrite-derived nitrogen dioxide (*NO2) (k2 = 1.3 x 10(6) and 2.9 x 10(7) M(-1) s(-1), respectively) and carbonate radicals (CO(3-)) (k2 = 1.6 x 10(9) and 1.7 x 10(8) M(-1) s(-1), respectively). Carbonate radical-mediated oxidation of LA led to the formation of the potent one-electron oxidant LA radical cation. LA inhibited peroxynitrite-mediated nitration of tyrosine and of a hydrophobic tyrosine analog, N-t-BOC L-tyrosine tert-butyl ester (BTBE), incorporated into liposomes but enhanced tyrosine dimerization. Moreover, while LA competitively inhibited the direct oxidation of glutathione by peroxynitrite, it was poorly effective against the radical-mediated thiol oxidation. The mechanisms of reaction defined herein allow to rationalize the biochemistry of peroxynitrite based on direct and free radical-mediated processes and contribute to the understanding of the antioxidant actions of LA and DHLA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号