共查询到20条相似文献,搜索用时 0 毫秒
1.
The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics 总被引:3,自引:0,他引:3
Elissa J. Chesler Darla R. Miller Lisa R. Branstetter Leslie D. Galloway Barbara L. Jackson Vivek M. Philip Brynn H. Voy Cymbeline T. Culiat David W. Threadgill Robert W. Williams Gary A. Churchill Dabney K. Johnson Kenneth F. Manly 《Mammalian genome》2008,19(6):382-389
2.
Wixon J 《Comparative and Functional Genomics》2004,5(6-7):491-496
This conference brought the microbial genomics community together to share their most up-to-the-minute achievements, so much so that several talks cannot be covered here, as the work discussed has not yet been published. This meeting report has details of a cross-section of the talks from the sessions on 'Genome analysis and comparative genomics', 'Computational genomics' and 'Functional genomics', ranging from studies on complex environmental samples, to specific pathogenic bacteria, to yeasts. 相似文献
3.
4.
Comparative analysis of comparative genomic hybridization microarray technologies: report of a workshop sponsored by the Wellcome Trust 总被引:6,自引:0,他引:6
BACKGROUND: Array-comparative genomic hybridization (CGH), although providing much higher resolution compared with conventional CGH, has not yet become a widely applied method for the analysis of genomic gains and losses. METHODS: In January 2002, the Wellcome Trust sponsored a workshop where many of the laboratories developing this technology met to compare different methodologies for array-CGH. Fourteen groups participated, comprising 11 from Europe and 3 from the United States. To facilitate objective analysis, each laboratory constructed arrays using the same anonymous clones and performed a series of test hybridizations using identical genomic DNAs. RESULTS: A figure of merit (FM) was developed to summarize entire collections of data from each laboratory in a single measurement. The FMs consistently showed that a few groups produced quantitative array hybridization data of high quality, whereas a majority achieved a lower standard. CONCLUSIONS: The conclusions of the workshop were that polymerase chain reaction-based methods for the amplification of large insert clones for arraying were effective for array-CGH. It was also concluded that hybridizations performed under coverslips or in automated hybridization apparatus were less effective than hybridizations performed in simple wells with gentle rocking. A common experience by the participants was the batch-to-batch variability of commercial Cot1 preparations in their ability to suppress hybridization to repeat sequences. (Supplementary material for this article can be found in the online issue, which is available at http://www.interscience.wiley.com/jpages/0196-4763/suppmat/49_2/v49.43.html or at http://www.sanger.ac.uk/HGP/Cytogenetics/Publications/Cytometry Sept 2002/Supplemental.pdf.) 相似文献
5.
Nelson MR Bryc K King KS Indap A Boyko AR Novembre J Briley LP Maruyama Y Waterworth DM Waeber G Vollenweider P Oksenberg JR Hauser SL Stirnadel HA Kooner JS Chambers JC Jones B Mooser V Bustamante CD Roses AD Burns DK Ehm MG Lai EH 《American journal of human genetics》2008,83(3):347-358
Technological and scientific advances, stemming in large part from the Human Genome and HapMap projects, have made large-scale, genome-wide investigations feasible and cost effective. These advances have the potential to dramatically impact drug discovery and development by identifying genetic factors that contribute to variation in disease risk as well as drug pharmacokinetics, treatment efficacy, and adverse drug reactions. In spite of the technological advancements, successful application in biomedical research would be limited without access to suitable sample collections. To facilitate exploratory genetics research, we have assembled a DNA resource from a large number of subjects participating in multiple studies throughout the world. This growing resource was initially genotyped with a commercially available genome-wide 500,000 single-nucleotide polymorphism panel. This project includes nearly 6,000 subjects of African-American, East Asian, South Asian, Mexican, and European origin. Seven informative axes of variation identified via principal-component analysis (PCA) of these data confirm the overall integrity of the data and highlight important features of the genetic structure of diverse populations. The potential value of such extensively genotyped collections is illustrated by selection of genetically matched population controls in a genome-wide analysis of abacavir-associated hypersensitivity reaction. We find that matching based on country of origin, identity-by-state distance, and multidimensional PCA do similarly well to control the type I error rate. The genotype and demographic data from this reference sample are freely available through the NCBI database of Genotypes and Phenotypes (dbGaP). 相似文献
6.
The genetics of host-pathogen coevolution: implications for genetic resource conservation 总被引:2,自引:0,他引:2
R W Allard 《The Journal of heredity》1990,81(1):1-6
The results of long-term studies of coevolution in the Hordeum vulgare-Rhynchosporium secalis pathosystem are summarized. The genetic systems of barley (host) and R. secalis (pathogen) are complementary: Gene-for-gene interactions among loci affect many traits, leading to self-regulating adjustments over generations between host and pathogen populations. Different pathotypes differ widely in their ability to damage the host, and different host-resistance alleles differ widely in their ability to protect the host from the pathogen. Among 29 resistance loci in the specific host population studied, several played major roles in providing stable resistance, but many had net detrimental effects on the yield and reproductive ability of the host. Resistance alleles that protected against the most damaging pathotypes increased sharply in frequency in the host populations. It is concluded that the evolutionary processes that take place in genetically variable populations propagated under conditions of cultivation can be highly effective in increasing the frequency of desirable alleles and useful multilocus genotypes. This enhances the value of the evolving populations as sources of genetic variability in breeding for disease resistance and other characters that affect adaptedness. 相似文献
7.
Allison R. Rogala Andrew P. Morgan Alexis M. Christensen Terry J. Gooch Timothy A. Bell Darla R. Miller Virginia L. Godfrey Fernando Pardo-Manuel de Villena 《Mammalian genome》2014,25(3-4):95-108
Inflammatory bowel disease (IBD) is an immune-mediated condition driven by improper responses to intestinal microflora in the context of environmental and genetic background. GWAS in humans have identified many loci associated with IBD, but animal models are valuable for dissecting the underlying molecular mechanisms, characterizing environmental and genetic contributions and developing treatments. Mouse models rely on interventions such as chemical treatment or introduction of an infectious agent to induce disease. Here, we describe a new model for IBD in which the disease develops spontaneously in 20-week-old mice in the absence of known murine pathogens. The model is part of the Collaborative Cross and came to our attention due to a high incidence of rectal prolapse in an incompletely inbred line. Necropsies revealed a profound proliferative colitis with variable degrees of ulceration and vasculitis, splenomegaly and enlarged mesenteric lymph nodes with no discernible anomalies of other organ systems. Phenotypic characterization of the CC011/Unc mice with homozygosity ranging from 94.1 to 99.8 % suggested that the trait was fixed and acted recessively in crosses to the colitis-resistant C57BL/6J inbred strain. Using a QTL approach, we identified four loci, Ccc1, Ccc2, Ccc3 and Ccc4 on chromosomes 12, 14, 1 and 8 that collectively explain 27.7 % of the phenotypic variation. Surprisingly, we also found that minute levels of residual heterozygosity in CC011/Unc have significant impact on the phenotype. This work demonstrates the utility of the CC as a source of models of human disease that arises through new combinations of alleles at susceptibility loci. 相似文献
8.
Yuan R Peters LL Paigen B 《ILAR journal / National Research Council, Institute of Laboratory Animal Resources》2011,52(1):4-15
Mice are an ideal mammalian model for studying the genetics of aging: considerable resources are available, the generation time is short, and the environment can be easily controlled, an important consideration when performing mapping studies to identify genes that influence lifespan and age-related diseases. In this review we highlight some salient contributions of the mouse in aging research: lifespan intervention studies in the Interventions Testing Program of the National Institute on Aging; identification of the genetic underpinnings of the effects of calorie restriction on lifespan; the Aging Phenome Project at the Jackson Laboratory, which has submitted multiple large, freely available phenotyping datasets to the Mouse Phenome Database; insights from spontaneous and engineered mouse mutants; and complex traits analyses identifying quantitative trait loci that affect lifespan. We also show that genomewide association peaks for lifespan in humans and lifespan quantitative loci for mice map to homologous locations in the genome. Thus, the vast bioinformatic and genetic resources of the mouse can be used to screen candidate genes identified in both mouse and human mapping studies, followed by functional testing, often not possible in humans, to determine their influence on aging. 相似文献
9.
10.
11.
Circadian cycles affect a variety of physiological processes, and disruptions of normal circadian biology therefore have the potential to influence a range of disease-related pathways. The genetic basis of circadian rhythms is well studied in model organisms and, more recently, studies of the genetic basis of circadian disorders has confirmed the conservation of key players in circadian biology from invertebrates to humans. In addition, important advances have been made in understanding how these molecules influence physiological functions in tissues throughout the body. Together, these studies set the scene for applying our knowledge of circadian biology to the understanding and treatment of a range of human diseases, including cancer and metabolic and behavioural disorders. 相似文献
12.
13.
The advances obtained through the genetic tools available in yeast for studying the oxidative phosphorylation (OXPHOS) biogenesis and in particular the role of the mtDNA encoded genes, strongly contrast with the very limited benefits that similar approaches have generated for the study of mammalian mtDNA. Here we review the use of the genetic manipulation in mammalian mtDNA, its difficulty and the main types of mutants accumulated in the past 30 years and the information derived from them. We also point out the need for a substantial improvement in this field in order to obtain new tools for functional genetic studies and for the generation of animal models of mtDNA-linked diseases. 相似文献
14.
Draft genome of the medaka fish: A comprehensive resource for medaka developmental genetics and vertebrate evolutionary biology 总被引:1,自引:0,他引:1
Hiroyuki Takeda 《Development, growth & differentiation》2008,50(S1):S157-S166
The medaka Oryzias latipes is a small egg-laying freshwater teleost, and has become an excellent model system for developmental genetics and evolutionary biology. The medaka genome is relatively small in size, ∼800 Mb, and the genome sequencing project was recently completed by Japanese research groups, providing a high-quality draft genome sequence of the inbred Hd-rR strain of medaka. In this review, I present an overview of the medaka genome project including genome resources, followed by specific findings obtained with the medaka draft genome. In particular, I focus on the analysis that was done by taking advantage of the medaka system, such as the sex chromosome differentiation and the regional history of medaka species using single nucleotide polymorphisms as genomic markers. 相似文献
15.
Haab BB Paulovich AG Anderson NL Clark AM Downing GJ Hermjakob H Labaer J Uhlen M 《Molecular & cellular proteomics : MCP》2006,5(10):1996-2007
On the basis of discussions with representatives from all sectors of the cancer research community, the National Cancer Institute (NCI) recognizes the immense opportunities to apply proteomics technologies to further cancer research. Validated and well characterized affinity capture reagents (e.g. antibodies, aptamers, and affibodies) will play a key role in proteomics research platforms for the prevention, early detection, treatment, and monitoring of cancer. To discuss ways to develop new resources and optimize current opportunities in this area, the NCI convened the "Proteomic Technologies Reagents Resource Workshop" in Chicago, IL on December 12-13, 2005. The workshop brought together leading scientists in proteomics research to discuss model systems for evaluating and delivering resources for reagents to support MS and affinity capture platforms. Speakers discussed issues and identified action items related to an overall vision for and proposed models for a shared proteomics reagents resource, applications of affinity capture methods in cancer research, quality control and validation of affinity capture reagents, considerations for target selection, and construction of a reagents database. The meeting also featured presentations and discussion from leading private sector investigators on state-of-the-art technologies and capabilities to meet the user community's needs. This workshop was developed as a component of the NCI's Clinical Proteomics Technologies Initiative for Cancer, a coordinated initiative that includes the establishment of reagent resources for the scientific community. This workshop report explores various approaches to develop a framework that will most effectively fulfill the needs of the NCI and the cancer research community. 相似文献
16.
17.
ASHG activities relative to education: Human genetics as a component of medical school curricula: A report to the American society of human genetics 总被引:1,自引:7,他引:1
下载免费PDF全文

In recent years, there has been a remarkable increase in both the rate of acquiring new information about human genetics and the importance of human genetics for modern health care. As a result, human genetics educators have queried whether the teaching of human genetics in North-American medical schools has kept pace with these increases. To address this question, a survey of these medical schools was undertaken to assess how human geneticists perceive the teaching of human genetics in their respective institutions. The results of the survey, begun and completed in 1985, indicate the following: (1) the teaching of human genetics in medical schools is extremely variable from one institution to another, with some schools having no identifiable human genetics teaching at all; (2) the relevance of human genetics to other basic science and clinical disciplines apparently leads to noncategorical or fragmented teaching of human genetics, which may also contribute to the absence of a specific medical school course in the subject; and (3) there is a need for closer collaboration between human genetics educators and their respective medical school administrators and curriculum committees. 相似文献
18.
Wopke van der Werf Karel Keesman Paul Burgess Anil Graves David Pilbeam L.D. Incoll Klaas Metselaar Martina Mayus Roel Stappers Herman van Keulen Joo Palma Christian Dupraz 《Ecological Engineering》2007,29(4):419-433
- 1. Silvoarable agroforestry (SAF) is the cultivation of trees and arable crops on the same parcel of land. SAF may contribute to modern diversified land use objectives in Europe, such as enhanced biodiversity and productivity, reduced leaching of nitrogen, protection against flooding and erosion, and attractiveness of the landscape. Long-term yield predictions are needed to assess long-term economic profitability of SAF.
- 2. A model for growth, resource sharing and productivity in agroforestry systems was developed to act as a tool in forecasts of yield, economic optimization of farming enterprises and exploration of policy options for land use in Europe. The model is called Yield-SAFE; from “YIeld Estimator for Long term Design of Silvoarable AgroForestry in Europe”. The model was developed with as few equations and parameters as possible to allow model parameterization under constrained availability of data from long-term experiments.
- 3. The model consists of seven state equations expressing the temporal dynamics of: (1) tree biomass; (2) tree leaf area; (3) number of shoots per tree; (4) crop biomass; (5) crop leaf area index; (6) heat sum; and (7) soil water content. The main outputs of the model are the growth dynamics and final yields of trees and crops. Daily inputs are temperature, radiation and precipitation. Planting densities, initial biomasses of tree and crop species, and soil parameters must be specified.
- 4. A parameterization of Yield-SAFE is generated, using published yield tables for tree growth and output from the comprehensive crop simulation model STICS. Analysis of tree and crop growth data from two poplar agroforestry stands in the United Kingdom demonstrates the validity of the modelling concept and calibration philosophy of Yield-SAFE. A sensitivity analysis is presented to elucidate which biological parameters most influence short and long-term productivity and land equivalent ratio.
- 5. The conceptual model, elaborated in Yield-SAFE, in combination with the outlined procedure for model calibration, offers a valid tool for exploratory land use studies.
Keywords: Agroforestry model; Competition; Parameter estimation; Resource use; Land use; Land equivalent ratio; Long-term yield prediction 相似文献
19.
Disciplinary baptisms: a comparison of the naming stories of genetics, molecular biology, genomics, and systems biology 总被引:1,自引:0,他引:1
Powell A O'Malley MA Müller-Wille S Calvert J Dupré J 《History and philosophy of the life sciences》2007,29(1):5-32
Understanding how scientific activities use naming stories to achieve disciplinary status is important not only for insight into the past, but for evaluating current claims that new disciplines are emerging. In order to gain a historical understanding of how new disciplines develop in relation to these baptismal narratives, we compare two recently formed disciplines, systems biology and genomics, with two earlier related life sciences, genetics and molecular biology. These four disciplines span the twentieth century, a period in which the processes of disciplinary demarcation fundamentally changed from those characteristic of the nineteenth century. We outline how the establishment of each discipline relies upon an interplay of factors that include paradigmatic achievements, technological innovation, and social formations. Our focus, however, is the baptism stories that give the new discipline a founding narrative and articulate core problems, general approaches and constitutive methods. The highly plastic process of achieving disciplinary identity is further marked by the openness of disciplinary definition, tension between technological possibilities and the ways in which scientific issues are conceived and approached, synthesis of reductive and integrative strategies, and complex social interactions. The importance--albeit highly variable--of naming stories in these four cases indicates the scope for future studies that focus on failed disciplines or competing names. Further attention to disciplinary histories could, we suggest, give us richer insight into scientific development. 相似文献