首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A soluble inositolphospholipid-specific phospholipase C (PI-phospholipase C) has been purified 5,800-fold from the cytosolic fraction of calf thymocytes. The purification was achieved by sequential column chromatographies on DEAE-Sepharose CL-6B, heparin-Sepharose CL-6B, Sephacryl S-300, Mono S, and Superose 12, followed by column chromatography on Sephadex G-100 in the presence of 1% sodium cholate. The enzyme thus purified was found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the enzyme was estimated to be 68 kDa by SDS-PAGE. The enzyme is specific for inositol phospholipids. Phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate (PIP2) were hydrolyzed, but phosphatidylcholine and phosphatidylethanolamine were not affected by the enzyme. GTP gamma S-binding activity was detected in the enzyme fractions after all the purification steps, but not in the final enzyme preparation. The PI-phospholipase C and GTP gamma S-binding activities in the partially purified enzyme preparation could be separated by the column chromatography on Sephadex G-100 only in the presence of 1% sodium cholate. Thus, the soluble PI-phospholipase C has affinity to a GTP-binding protein. SDS-PAGE of the GTP-binding fractions eluted from the Sephadex G-100 column gave three visible bands of 54, 41, and 27 kDa polypeptide was specifically ADP-ribosylated by pertussis toxin. Furthermore, it was found that GTP and GTP gamma S (10 microM and 1 mM) could enhance the PIP2 hydrolysis activity of the partially purified enzyme in the presence of 3 mM EGTA, but the purified enzyme after separation from the GTP-binding activity was not affected by GTP and GTP gamma S. The soluble PI-phospholipase C of calf thymocytes may be not only physically but also functionally associated with a GTP-binding protein.  相似文献   

2.
A series of 28 adenosine analogs and 17 xanthines has been assessed as inhibitors of binding of N6-R-[3H]phenylisopropyladenosine binding to A1 adenosine receptors in membranes from rat, calf, and guinea pig brain. Potencies of N6-alkyl- and N6-cycloalkyladenosines are similar in the different species. However, the presence of an aryl or heteroaryl moiety in the N6 substituent results in marked species differences with certain such analogs being about 30-fold more potent at receptors in calf than in guinea pig brain. Potencies at receptors in rat brain are intermediate. Conversely, 2-chloroadenosine and 5'-N-ethylcarboxamidoadenosine are about 10-fold less potent at receptors in calf brain than in guinea pig brain. Potencies of xanthines, such as theophylline, caffeine and 1,3-dipropylxanthine are similar in the different species. However, the presence of an 8-phenyl or 8-cycloalkyl substituent results in marked species differences. For example, a xanthine amine conjugate of 1,3-dipropyl-8-phenylxanthine is 9-fold more potent at receptors in calf than in rat brain and 110-fold more potent in calf than in guinea pig brain. Such differences indicate that brain A1 adenosine receptors are not identical in recognition sites for either agonists or antagonists in different mammalian species.  相似文献   

3.
Characterization of A-2 Receptors in Postmortem Human Pineal Gland   总被引:1,自引:0,他引:1  
We have examined the binding of the adenosine agonist radioligands [3N]N6-cyclohexyladenosine ([3H]CHA) and [3H]5'-N-ethylcarboxamidoadenosine ([3H]NECA) to membranes prepared from postmortem human pineal glands. The results showed that the A-1-specific ligand CHA did not bind to membranes. By contrast, [3H]NECA, a nonselective A-1/A-2 ligand, gave 68% specific binding of the total binding. This specific binding was nearly insensitive to the N-ethyl-maleimide pretreatment method. To characterize this binding, we used cyclopentyladenosine (50 nM). Under those conditions [3H]NECA binding at 30 degrees C was rapid and reversible; the KD determined from the kinetic studies was 141 nM. In postmortem human pineal gland, the rank order of potency of adenosine analogues and drugs competing with [3H]NECA showed the specificity for an A-2 receptor: NECA greater than 2-chloroadenosine greater than L-N6(2-phenylisopropyl)adenosine greater than 8-phenyltheophylline greater than 3-isobutyl-1-methylxanthine greater than caffeine. Guanylylimidodiphosphate (100 microM) induced a decrease in the affinity of [3H]NECA, a result suggesting the involvement of a G protein mechanism in the coupling of the adenosine receptor to other components of the receptor complex. Scatchard analysis revealed one class of binding sites for [3H]NECA with KD and Bmax ranging from 175 to 268 nM and 11.0 to 14.1 pmol/mg protein, respectively. The binding of [3H]NECA was not affected by age, sex, or postmortem delay. [3H]NECA should be a useful tool to assess brain A-2 receptor density in a variety of neuropsychiatric disorders.  相似文献   

4.
The effects of adenosine 3' : 5'-monophosphate (cyclic AMP), guanosine 3' : 5'-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P). While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10(-5) M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP. Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10(-8) M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10(-8) M, while with cyclic AMP a concentration of 10(-5) M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P. These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

5.
A receptor which recognizes glycoproteins bearing terminal mannose residues has been isolated from human placental membranes. Washed membranes were solubilized with buffer containing 1% Triton X-100 and applied to a mannose-Sepharose affinity column. The column was eluted with buffer containing 200 mM mannose and 1% cholate. The major protein eluted exhibited a molecular weight of 175 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The protein binds 125I-labeled mannosylated bovine serum albumin in a saturable fashion with a dissociation constant of 4 nM. Ligand binding is pH-dependent with maximal binding above pH 6.5. This binding can be inhibited with EDTA, mannose, fucose, mannan, beta-glucuronidase, and bovine serum albumin conjugated to fucose. Polyclonal antibodies generated against the mannose binding protein immunoprecipitate a single 175-kDa protein species from both surface-iodinated and biosynthetically labeled human monocyte-derived macrophages.  相似文献   

6.
Good evidence exists to indicate that the vasodilating effect of adenosine is mediated by cell surface receptors on vascular smooth muscle cells. The mechanism of transmembrane signal transduction for adenosine, however, is not fully understood. Since cGMP is a second messenger known to mediate vasodilation, I have examined the effect of adenosine on the intracellular concentration of cGMP in vascular smooth muscle cells from rat aorta. I found that adenosine at 10(-9) to 10(-5) M led to an increase in intracellular cGMP levels in a dose-dependent fashion. The effect of adenosine on cyclic guanosine inorganic monophosphate (cGMP) could be mimicked by the A-type receptor agonists N6-cyclohexyladenosine and 5'-N-ethylcarboxamidoadenosine and was attenuated by the A-receptor antagonist theophylline. The order of potency of the adenosine analogues was N6-cyclohexyladenosine greater than 5'-N-ethylcarboxamidoadenosine greater than adenosine. These findings suggest that the effect of adenosine on cGMPi is mediated by A1-type cell surface receptors. Concerning the mechanism by which adenosine could elevate cGMPi, I found that the effect of adenosine on cGMPi was potentiated by the cGMP phosphodiesterase-specific inhibitor M & B 22948. Moreover, I found that N6-cyclohexyladenosine, 5'-N-ethylcarboxamidoadenosine, and adenosine stimulated a guanylate cyclase in homogenates of the cultured smooth muscle cells in a dose-dependent fashion with the same order of potency as their effects on cGMPi. Further evidence was obtained to indicate that adenosine and its analogues stimulated a particulate guanylate cyclase activity, whereas they did not alter soluble guanylate cyclase activity. Since cGMP is known as a second messenger mediating relaxation of vascular smooth muscle cells, the results obtained in this study could suggest that adenosine exerts its vasorelaxing effect by activating an Ai-receptor-linked guanylate cyclase.  相似文献   

7.
Abstract— The activity profiles of the solubilized protein kinases from the microsomal and myelin fractions of bovine brain were examined by column chromatography and sucrose density gradient centrifugation. The main peak of adenosine 3',5'-monophosphate (cyclic AMP)-dependent activity with histone as substrate for each membrane enzyme was eluted with about 0.2 m -NaCl on a DEAE-cellulose column. A peak of activity stimulated with cyclic AMP was also eluted with about 0.1 m -NaCl for the microsomal enzyme. A peak with protamine and casein as substrate for the microsomal or myelin enzyme, respectively, was larger than that with histone as substrate for each enzyme. The first peak with histone as substrate on a DEAE–cellulose column appeared as two peaks on the Sepharose 6B column. The second peak with histone as substrate on DEAE–cellulose column was shown to be a holoenzyme consisting of regulatory and catalytic subunits. The holoenzyme and subunits were eluted at similar positions to each other between both membrane enzymes on Sepharose 6B column. The holoenzyme sedimented as two peaks of activity on sucrose density gradient centrifugation, both of which were stimulated with cyclic AMP. The preincubation of the holoenzyme with cyclic AMP resulted in shifting to a position of a smaller molecular size.
The results indicate the occurrence of multiple forms of protein kinases in membrane fractions of brain with respect to substrate specificity and physical property.  相似文献   

8.
The effects of adenosine 3′ : 5′-monophosphate (cyclic AMP), guanosine 3′ : 5′-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P).While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10?5 M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP.Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10?8 M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10?8 M, while with cyclic AMP a concentration of 10?5 M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P.These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

9.
At least two GTP-binding proteins (G proteins) with Mr values of about 20,000 were extracted from bovine aortic smooth muscle membranes by sodium cholate. The most abundant G protein (22K G) was purified to near homogeneity by successive column chromatographies of Ultrogel AcA-44, phenyl-Sepharose CL-4B, hydroxyapatite and Mono Q HR5/5. 22K G showed kinetic and physical properties very similar to those of smg p21, a G protein recently isolated from bovine brain and human platelet membranes, having the same effector domain as ras p21s. Moreover, 22K G was recognized specifically by the anti-smg p21 antibody. These results indicate that the major G protein in bovine aortic smooth muscle membranes is smg p21.  相似文献   

10.
Adenosine plays many significant roles both as a metabolic precursor and cell communicator. This report describes the preliminary characterization of two adenosine binding proteins isolated from bovine brain membranes. By using N6-9-aminononane adenosine labeled Sepharose 4B two major affinity bound proteins were purified having apparent molecular weights of 16 and 35 kDa. Either or both of the proteins could be selectively eluted from the affinity column with N6-9-aminononane adenosine, adenosine, cAMP, AMP, ADP, ATP, R-/S-phenylisopropyladenosine and NAD(H). By contrast, no proteins were eluted with caffeine, adenine, deoxyadenosine, 2',3'-AMP, inosine, IMP, xanthine, XMP, GMP, GTP or 5'-N-ethylcarboxamideadenosine. The selectivity of elution and lack of apparent enzymatic activity suggests that these proteins are novel membrane bound adenosine binding proteins.  相似文献   

11.
An approximate 140-fold purification of the A1 adenosine receptor of bovine cerebral cortex has been obtained via affinity chromatography. The affinity column consists of Affi-Gel 10 coupled through an amide linkage to XAC, a high-affinity A1 adenosine receptor antagonist. As assessed by [3H]XAC binding, bovine brain membranes solubilized with the detergent CHAPS had a specific binding activity of 1.1 pmol/mg protein. Interaction of solubilized A1 adenosine receptors with the XAC-Affi-Gel was biospecific and 30% of the receptor activity was bound by the gel. Demonstration of [3H]XAC binding in the material eluted from the column with R-PIA required insertion of receptor into phospholipid vesicles. The specific activity of the affinity column purified receptor was 146 +/- 22 pmol/mg protein with typically 5-15% of the bound receptor recovered. The purified receptor displayed high-affinity antagonist binding and bound agonists with the potency order expected of the bovine brain A1 adenosine receptor: R-PIA greater than S-PIA greater than NECA. In purified preparations, the photoaffinity probe [125I]PAPAXAC-SANPAH specifically labelled a protein of molecular mass 38,000 which has previously been shown to be the A1 adenosine receptor binding subunit.  相似文献   

12.
K A Hutchison  B Nevins  F Perini  I H Fox 《Biochemistry》1990,29(21):5138-5144
A low-affinity adenosine binding protein has recently been distinguished from the adenosine A2 receptor and purified from human placental membranes. Soluble human placental extracts contain an adenosine binding activity that has properties similar to those of the membrane low-affinity adenosine binding protein. The binding protein was purified from soluble human placental extracts 134-fold to 89% purity with a Bmax of 2.5 nmol/mg. It comprises 0.7-0.9% of the soluble protein. The major purified soluble protein has a subunit molecular mass of 98 kDa and a Stokes radius identical with that of the membrane-bound adenosine binding protein. Competition analysis of the soluble protein revealed similar affinities and an identical potency order for displacement of 5'-(N-ethylcarbamoyl)[2,8-3H]adenosine ([3H]NECA) as follows: NECA greater than 2-chloroadenosine greater than adenosine greater than (R)-N6-(2-phenylisopropyl)adenosine. The soluble binding protein was more acidic than the membrane binding protein as revealed by a comparison of the elution properties during ion exchange chromatography. A second form of soluble adenosine binding activity comprised 17% of the major form and had a charge similar to that of the membrane binding protein, a smaller Stokes radius, and a subunit molecular mass of 74 kDa. Carbohydrate composition analysis revealed that the major soluble form has 4.3% carbohydrate by weight as compared to the membrane-associated form, which has 5.5% carbohydrate by weight.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
Identification of a retina-specific MEKA protein as a 33 K protein   总被引:1,自引:0,他引:1  
A photoreceptor-specific MEKA protein was purified from bovine retinal soluble fraction. The purified sample was eluted as a single peak of 74 kDa protein from a Superose column, which was dissolved into three components, MEKA protein (32 kDa), beta-(36 kDa) and gamma-(10 kDa) subunits of transducin on a SDS-PAGE. From several lines of evidence, we concluded that MEKA protein is identical with a 33k phosphoprotein reported by Lee et al (1).  相似文献   

14.
Taurodeoxycholate 7α-monooxygenase was partially purified from rat liver microsomes. The enzyme was solubilized with cholate, fractionated with polyethylene glycol and chromatographed on a Sepharose 4B column with cholate as ligand. The enzyme activity was eluted from the column into the fraction eluted with 50 mM phosphate buffer containing cholate and KCl, whereas the benzphetamine demethylase activity was eluted in the non-bound fraction. Thus it was established that both enzymes are different entities. The taurodeoxycholate 7α-monooxygenase activity was reconstituted from the partially purified cytochrome P-450, highly purified NADPH-cytochrome P-450 reductase, dilauroylglyceryl-3-phosphorylcholine and NADPH.  相似文献   

15.
Adenosine Ri receptors and inhibitory guanine-nucleotide-regulatory components were solubilized from rat cerebral-cortical membranes with sodium cholate. (-)-N6-Phenylisopropyl[2,8-3H]adenosine [( 3H]PIA) binds with high affinity to the soluble receptors, which retain the pharmacological specificity of adenosine Ri receptors observed in membranes. The binding is regulated by bivalent cations and guanine nucleotides. Bivalent cations increase [3H]PIA binding by increasing both the affinity and the apparent number of receptors. Guanine nucleotides decrease agonist binding by increasing the dissociation of the ligand-receptor complex. Adenosine agonists stabilize the high-affinity form of the soluble receptor. The hydrodynamic properties of the adenosine receptor were determined with cholate extracts of membranes that were treated with [3H]PIA. Sucrose-gradient-centrifugation analysis indicates that the receptor has a sedimentation coefficient of 7.7 S. The receptor is eluted from Sepharose 6B columns with an apparent Stokes radius of 7.2 nm. Labelling of either sucrose-gradient or gel-filtration-column fractions with pertussis toxin and [32P]-NAD+ reveals that both the 41,000- and 39,000-Mr substrates overlap with the receptor activity. These studies suggest that the high-affinity adenosine-receptor-binding activity in the cholate extract represents a stable R1-N complex.  相似文献   

16.
The sodium- and potassium-coupled L-glutamate transporter from rat brain has been solubilized with cholate and 10-20-fold purified using Wheat Germ Agglutinin-Sepharose 4B. Transport activity--as determined upon reconstitution of the fraction into liposomes--was retained on the column and eluted by N-acetylglucosamine. When the glycoprotein fraction was depleted of the N-acetylglucosamine and applied to a second round of lectin-chromatography, the L-glutamate transport activity was retained and again could be eluted by the sugar. The transporter activity reconstituted from the glycoprotein fraction exhibited the same features as that in synaptic plasma membranes, including electrogenicity, an absolute dependence on external sodium and internal potassium, affinity and stereospecificity. Furthermore, efflux and exchange properties of the reconstituted preparation were also unchanged by the solubilisation and lectin-chromatography. These observations indicate that the sodium- and potassium-coupled L-glutamate transporter is a glycoprotein and is predominantly reconstituted in the 'right-side-out' conformation.  相似文献   

17.
—Injection of a soluble protein fraction from mouse brain into rabbits gave rise to an antibody which was specific for galactocerebroside. The antigen had the following characteristics: (1) it was present in the soluble fraction of a mouse brain homogenate but absent from the soluble fraction of homogenates of mouse liver, spleen, kidney and testis; (2) it was non-dialysable; (3) it voided from a Sephadex G200 column; (4) on immunodiffusion with antibody directed against it, it gave a sharp single precipitin band; (5) it bound to DEAE cellulose column and was eluted with high salt. Given these characteristics the antigen might have been identified as a ‘brain specific protein’. However, the lipid nature of the antigen was revealed when it was found that it was not destroyed by Pronase digestion and could be quantitatively extracted with chloroform-methanol. The antigen has been identified as a galaetocerebroside and is 100 times more abundant in the myelin fraction than in the soluble fraction of the mouse brain homogenates. The antigen could have been falsely identified as a ‘brain specific protein’ if the antigenicity and macromolecular behaviour of lipids was overlooked.  相似文献   

18.
Protein kinases were separated from rat kidney nuclear extract by hydroxylapatite column chromatography. Five (I-V) different protein kinases were isolated when histone was used as a substrate. Two (I and III) of them stimulated phosphorylation of c-erb A-beta protein (50 kDa) expressed in Escherichia coli. The c-erb A product has an activity of high affinity T3 binding. One (I) of the kinases was dependent on cyclic adenosine 3',5'-monophosphate (cyclic AMP). The other kinase (III) was not dependent on cyclic nucleotides. The latter kinase was eluted from hydroxylapatite column with 0.05 M PO4 at pH 7.4. The sedimentation coefficient(s) estimated by continuous sucrose density gradient centrifugation was approximately 6.0 Km values for ATP were estimated by double reciprocal analyses, which gave 110.0 microM in the protein kinase I (in the presence of 10(-6) M cyclic AMP) and 25 microM in the protein kinase III, respectively. The data showed that 1.0 mol phosphate was incorporated into 80 mol of c-erb A protein (50 kDa) either in the presence of protein kinase I (with 10(-6) M cyclic AMP) or in the presence of protein kinase III. These results suggested that there are protein kinases for c-erb A protein, whose functional properties are similar to those of nuclear T3 receptor, in rat kidney nuclei.  相似文献   

19.
本文报告一种新的腺苷亲和层析凝胶的合成方法。利用这种凝胶可从大鼠心脏、肝脏及小牛主动脉平滑肌的水溶部份分离出几种腺苷结合蛋白质,其亚基分子量(据SDS-PAGE)分别为35,000、37,000、46,000、43,000及15,300Dal。现已证明,35,000Dal蛋白质是乳酸脱氢酶及苹果酸脱氢酶,43,000Dal蛋白质是腺苷激酶,46,000Dal蛋白质可能是S-腺苷同型半胱氨酸水解酶。15,000Dal蛋白质前人未有报道。它对腺苷具有高度特导性和亲和力,推测是腺苷的细胞内受体和/或载体。测定了这种低分子量腺苷结合蛋白质的氨基酸组成及某些物理常数:pI=6.5;沉降系数2.42S,微分比容0.727cm~3/g,与腺苷复合物的解离常数K_D=2.3μM。  相似文献   

20.
Renal cortical plasma membranes were solubilized with sodium deoxycholate. The membrane-bound cyclic AMP receptors retained biologic activity in the detergent-dispersed state exhibiting the properties of high affinity for cyclic AMP, saturability and specificity. Half-maximal binding of cycle [3H]-AMP to these receptors was found to occur at 0.06 muM and 1.5 pmol of cyclic [3H]AMP was bound per mg membrane protein at saturation (0.5 muM cyclic [3H]AMP). Sodium deoxycholate-solubilized membrane proteins were chromatographed on Biogel A-5m. Cyclic [3H]AMP receptors eluted in the internal volume at positions equivalent to molecular sizes of 50 000 and 20 000 daltons and in the void volume at molecular size greater than 450 000. After photoaffinity labeling the renal membrane receptors with cyclic [3H]AMP, we found peaks of tritium radioactivity which eluted at similar molecular size positions on this Bogel A-5m column. Further treatment of photoaffinity labeled membranes with sodium dodecyl sulfate, mercaptoethanol and urea, followed by polyacrylamide gel electrophoresis, showed bands of tritium-labeled receptor protein with relative mobilities corresponding to molecular sizes of 26 000 and 21 000 daltons. This study shows that porcine renal cortical membranes contain at least two molecular species of cyclic AMP receptors which may be associated with regulation of the membrane-bound cyclic AMP-dependent protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号