首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
GAPA is an IQGAP-related protein and is involved in Dictyostelium cytokinesis. Since mammalian IQ-GAPs are effectors for Rac/Cdc42, GAPA is also predicted to bind to small GTPases, which are to be identified. In this study, mutant GAPAs were examined for functions in cytokinesis by genetic complementation of gapA- cells. Positively charged side chains of Arg442 and Lys474 of GAPA, predicted to be present on the surface of interaction with small GTPases, were found to be essential, suggesting an interaction between GAPA and putative small GTPase in cytokinesis. Also, results from truncated GAPAs indicated that almost the entire region of GAPA homologous to IQGAP is required for cytokinesis in Dictyostelium.  相似文献   

2.
RasG is the most abundant Ras protein in growing Dictyostelium cells and the closest relative of mammalian Ras proteins. We have generated null mutants in which expression of RasG is completely abolished. Unexpectedly, RasG cells are able to grow at nearly wild-type rates. However, they exhibit defective cell movement and a wide range of defects in the control of the actin cytoskeleton, including a loss of cell polarity, absence of normal lamellipodia, formation of unusual small, punctate polymerized actin structures, and a large number of abnormally long filopodia. Despite their lack of polarity and abnormal cytoskeleton, mutant cells perform normal chemotaxis. However, rasG cells are unable to perform normal cytokinesis, becoming multinucleate when grown in suspension culture. Taken together, these data suggest a principal role for RasG in coordination of cell movement and control of the cytoskeleton.  相似文献   

3.
Retinoblastoma-like proteins regulate cell differentiation and inhibit cell proliferation. The Dictyostelium discoideum retinoblastoma orthologue RblA affects the differentiation of cells during multicellular development, but it is unclear whether RblA has a significant effect on Dictyostelium cell proliferation, which is inhibited by the secreted proteins AprA and CfaD. We found that rblA cells in shaking culture proliferate to a higher density, die faster after reaching stationary density, and, after starvation, have a lower spore viability than wild-type cells, possibly because in shaking culture, rblA cells have both increased cytokinesis and lower extracellular accumulation of CfaD. However, rblA cells have abnormally slow proliferation on bacterial lawns. Recombinant AprA inhibits the proliferation of wild-type cells but not that of rblA cells, whereas CfaD inhibits the proliferation of both wild-type cells and rblA cells. Similar to aprA cells, rblA cells have a normal mass and protein accumulation rate on a per-nucleus basis, indicating that RblA affects cell proliferation but not cell growth. AprA also functions as a chemorepellent, and RblA is required for proper AprA chemorepellent activity despite the fact that RblA does not affect cell speed. Together, our data indicate that an autocrine proliferation-inhibiting factor acts through RblA to regulate cell density in Dictyostelium, suggesting that such factors may signal through retinoblastoma-like proteins to control the sizes of structures such as developing organs or tumors.  相似文献   

4.
G protein–coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein–coupled receptors, the cARs. In a strain where the cAR2 receptor gene is disrupted by homologous recombination, the developmental program arrests before tip formation. In a genetic screen for suppressors of this phenotype, a gene encoding a protein related to the Wiskott-Aldrich Syndrome protein was discovered. Loss of this protein, which we call SCAR (suppressor of cAR), restores tip formation and most later development to cAR2 strains, and causes a multiple-tip phenotype in a cAR2+ strain as well as leading to the production of extremely small cells in suspension culture. SCARcells have reduced levels of F-actin staining during vegetative growth, and abnormal cell morphology and actin distribution during chemotaxis. Uncharacterized homologues of SCAR have also been identified in humans, mouse, Caenorhabditis elegans, and Drosophila. These data suggest that SCAR may be a conserved negative regulator of G protein-coupled signaling, and that it plays an important role in regulating the actin cytoskeleton.  相似文献   

5.
The neuronal ceroid lipofuscinoses (NCL) are a group of inherited, severe neurodegenerative disorders also known as Batten disease. Juvenile NCL (JNCL) is caused by recessive loss-of-function mutations in CLN3, which encodes a transmembrane protein that regulates endocytic pathway trafficking, though its primary function is not yet known. The social amoeba Dictyostelium discoideum is increasingly utilized for neurological disease research and is particularly suited for investigation of protein function in trafficking. Therefore, here we establish new overexpression and knockout Dictyostelium cell lines for JNCL research. Dictyostelium Cln3 fused to GFP localized to the contractile vacuole system and to compartments of the endocytic pathway. cln3 cells displayed increased rates of proliferation and an associated reduction in the extracellular levels and cleavage of the autocrine proliferation repressor, AprA. Mid- and late development of cln3 cells was precocious and cln3 slugs displayed increased migration. Expression of either Dictyostelium Cln3 or human CLN3 in cln3 cells suppressed the precocious development and aberrant slug migration, which were also suppressed by calcium chelation. Taken together, our results show that Cln3 is a pleiotropic protein that negatively regulates proliferation and development in Dictyostelium. This new model system, which allows for the study of Cln3 function in both single cells and a multicellular organism, together with the observation that expression of human CLN3 restores abnormalities in Dictyostelium cln3 cells, strongly supports the use of this new model for JNCL research.  相似文献   

6.
Filamin and Cortexillin are F-actin crosslinking proteins in Dictyostelium discoideum allowing actin filaments to form three-dimensional networks. GAPA, an IQGAP related protein, is required for cytokinesis and localizes to the cleavage furrow during cytokinesis. Here we describe a novel interaction with Filamin which is required for cytokinesis and regulation of the F-actin content. The interaction occurs through the actin binding domain of Filamin and the GRD domain of GAPA. A similar interaction takes place with Cortexillin I. We further report that Filamin associates with Rac1a implying that filamin might act as a scaffold for small GTPases. Filamin and activated Rac associate with GAPA to regulate actin remodelling. Overexpression of filamin and GAPA in the various strains suggests that GAPA regulates the actin cytoskeleton through interaction with Filamin and that it controls cytokinesis through association with Filamin and Cortexillin.  相似文献   

7.
Deficient autophagy causes a distinct phenotype in Dictyostelium discoideum, characterized by the formation of multitips at the mound stage. This led us to analyze autophagy in a number of multitipped mutants described previously (tipA, tipB, tipC, and tipD). We found a clear autophagic dysfunction in tipC and tipD while the others showed no defects. tipD codes for a homolog of Atg16, which confirms the role of this protein in Dictyostelium autophagy and validates our approach. The tipC-encoded protein is highly similar to human VPS13A (also known as chorein), whose mutations cause the chorea-acanthocytosis syndrome. No member of the VPS13 protein family has been previously related to autophagy despite the presence of a region of similarity to Atg2 at the C terminus. This region also contains the conserved domain of unknown function DUF1162. Of interest, the expression of the TipC C-terminal coding sequence containing these 2 motifs largely complemented the mutant phenotype. Dictyostelium cells lacking TipC displayed a reduced number of autophagosomes visualized with the markers GFP-Atg18 and GFP-Atg8 and an impaired autophagic degradation as determined by a proteolytic cleavage assay. Downregulation of human VPS13A in HeLa cells by RNA interference confirmed the participation of the human protein in autophagy. VPS13A-depleted cells showed accumulation of autophagic markers and impaired autophagic flux.  相似文献   

8.
Background: Proteins of the IQGAP family have been identified as candidate effectors for the Rho family of GTPases; however, little is known about their cellular functions. The domain structures of IQGAP family members make them excellent candidates as regulators of the cytoskeleton: their sequences include an actin-binding domain homologous to that found in calponin, IQ motifs for interaction with calmodulin, and a GTPase-binding domain.Results: The genomic sequence of Saccharomyces cerevisiae revealed a single gene encoding an IQGAP family member (denoted IQGAP-related protein: Iqg1). Iqg1 and IQGAPs share similarity along their entire length, with an amino-terminal calponin-homology (CH) domain, IQ repeats, and a conserved carboxyl terminus. In contrast to IQGAPs, Iqg1 lacks an identifiable GAP motif, a WW domain, and IR repeats, although the functions of these domains in IQGAPs are not well defined. Deletion of the IQG1 gene resulted in lethality. Cellular defects included a deficiency in cytokinesis, altered actin organization, aberrant nuclear segregation, and cell lysis. The primary defect appeared to be a cytokinesis defect, and the other problems possibly arose as a consequence of this initial defect. Consistent with a role in cytokinesis, Iqg1 co-localizes with an actin ring encircling the mother–bud neck late in the cell cycle –a putative cytokinetic ring. IQG1 overexpression resulted in premature actin-ring formation, suggesting that Iqg1 activity temporally controls formation of this structure during the cell cycle.Conclusions: Yeast IQGAP-related protein, Iqg1, is an important regulator of cellular morphogenesis, inducing actin-ring formation in association with cytokinesis.  相似文献   

9.
GAPA is an IQGAP-related protein and is involved in Dictyostelium cytokinesis. Since mammalian IQ-GAPs are effectors for Rac/Cdc42, GAPA is also predicted to bind to small GTPases, which are to be identified. In this study, mutant GAPAs were examined for functions in cytokinesis by genetic complementation of gapA- cells. Positively charged side chains of Arg442 and Lys474 of GAPA, predicted to be present on the surface of interaction with small GTPases, were found to be essential, suggesting an interaction between GAPA and putative small GTPase in cytokinesis. Also, results from truncated GAPAs indicated that almost the entire region of GAPA homologous to IQGAP is required for cytokinesis in Dictyostelium.  相似文献   

10.
Tang Y  Gomer RH 《Eukaryotic cell》2008,7(10):1758-1770
An interesting but largely unanswered biological question is how eukaryotic organisms regulate the size of multicellular tissues. During development, a lawn of Dictyostelium cells breaks up into territories, and within the territories the cells aggregate in dendritic streams to form groups of ~20,000 cells. Using random insertional mutagenesis to search for genes involved in group size regulation, we found that an insertion in the cnrN gene affects group size. Cells lacking CnrN (cnrN) form abnormally small groups, which can be rescued by the expression of exogenous CnrN. Relayed pulses of extracellular cyclic AMP (cAMP) direct cells to aggregate by chemotaxis to form aggregation territories and streams. cnrN cells overaccumulate cAMP during development and form small territories. Decreasing the cAMP pulse size by treating cnrN cells with cAMP phosphodiesterase or starving cnrN cells at a low density rescues the small-territory phenotype. The predicted CnrN sequence has similarity to phosphatase and tensin homolog (PTEN), which in Dictyostelium inhibits cAMP-stimulated phosphatidylinositol 3-kinase signaling pathways. CnrN inhibits cAMP-stimulated phosphatidylinositol 3,4,5-trisphosphate accumulation, Akt activation, actin polymerization, and cAMP production. Our results suggest that CnrN is a protein with some similarities to PTEN and that it regulates cAMP signal transduction to regulate territory size.  相似文献   

11.
Chemotaxis and phagocytosis are basically similar in cells of the immune system and in Dictyostelium amebae. Deletion of the unique G protein β subunit in D. discoideum impaired phagocytosis but had little effect on fluid-phase endocytosis, cytokinesis, or random motility. Constitutive expression of wild-type β subunit restored phagocytosis and normal development. Chemoattractants released by cells or bacteria trigger typical transient actin polymerization responses in wild-type cells. In β subunit–null cells, and in a series of β subunit point mutants, these responses were impaired to a degree that correlated with the defect in phagocytosis. Image analysis of green fluorescent protein–actin transfected cells showed that β subunit– null cells were defective in reshaping the actin network into a phagocytic cup, and eventually a phagosome, in response to particle attachment. Our results indicate that signaling through heterotrimeric G proteins is required for regulating the actin cytoskeleton during phagocytic uptake, as previously shown for chemotaxis. Inhibitors of phospholipase C and intracellular Ca2+ mobilization inhibited phagocytosis, suggesting the possible involvement of these effectors in the process.  相似文献   

12.
Developing Dictyostelium cells aggregate to form fruiting bodies containing typically 2 × 104 cells. To prevent the formation of an excessively large fruiting body, streams of aggregating cells break up into groups if there are too many cells. The breakup is regulated by a secreted complex of polypeptides called counting factor (CF). Countin and CF50 are two of the components of CF. Disrupting the expression of either of these proteins results in cells secreting very little detectable CF activity, and as a result, aggregation streams remain intact and form large fruiting bodies, which invariably collapse. We find that disrupting the gene encoding a third protein present in crude CF, CF45-1, also results in the formation of large groups when cells are grown with bacteria on agar plates and then starve. However, unlike countin and cf50 cells, cf45-1 cells sometimes form smaller groups than wild-type cells when the cells are starved on filter pads. The predicted amino acid sequence of CF45-1 has some similarity to that of lysozyme, but recombinant CF45-1 has no detectable lysozyme activity. In the exudates from starved cells, CF45-1 is present in a ~450-kDa fraction that also contains countin and CF50, suggesting that it is part of a complex. Recombinant CF45-1 decreases group size in colonies of cf45-1 cells with a 50% effective concentration (EC50) of ~8 ng/ml and in colonies of wild-type and cf50 cells with an EC50 of ~40 ng/ml. Like countin and cf50 cells, cf45-1 cells have high levels of cytosolic glucose, high cell-cell adhesion, and low cell motility. Together, the data suggest that CF45-1 participates in group size regulation in Dictyostelium.  相似文献   

13.
During the aggregation of Dictyostelium cells, signaling through RasG is more important in regulating cyclic AMP (cAMP) chemotaxis, whereas signaling through RasC is more important in regulating the cAMP relay. However, RasC is capable of substituting for RasG for chemotaxis, since rasG cells are only partially deficient in chemotaxis, whereas rasC/rasG cells are totally incapable of chemotaxis. In this study we have examined the possible functional overlap between RasG and RasC in vegetative cells by comparing the vegetative cell properties of rasG, rasC, and rasC/rasG cells. In addition, since RasD, a protein not normally found in vegetative cells, is expressed in vegetative rasG and rasC/rasG cells and appears to partially compensate for the absence of RasG, we have also examined the possible functional overlap between RasG and RasD by comparing the properties of rasG and rasC/rasG cells with those of the mutant cells expressing higher levels of RasD. The results of these two lines of investigation show that RasD is capable of totally substituting for RasG for cytokinesis and growth in suspension, whereas RasC is without effect. In contrast, for chemotaxis to folate, RasC is capable of partially substituting for RasG, but RasD is totally without effect. Finally, neither RasC nor RasD is able to substitute for the role that RasG plays in regulating actin distribution and random motility. These specificity studies therefore delineate three distinct and none-overlapping functions for RasG in vegetative cells.The Ras subfamily proteins are monomeric GTPases that act as molecular switches, cycling between an active GTP-bound and an inactive GDP-bound state (17). Activation is controlled by guanine nucleotide exchange factors (GEFs), which catalyze the exchange of GDP for GTP, and inactivation regulated by GTPase-activating proteins (GAPs) that stimulate the hydrolysis of bound GTP to GDP (17). Activated Ras proteins stimulate numerous downstream signaling pathways that regulate a wide range of cellular processes, including proliferation, cytoskeletal function, chemotaxis, and differentiation (4). The complexity of this regulation has been emphasized by the discovery of the presence of a large number of Ras subfamily homologues in metazoan organisms (19) and elucidation of the roles played by each protein remains a formidable challenge. An important approach to this problem is an analysis of Ras protein function in organisms amenable to genetic analysis.The Dictyostelium genome encodes 14 Ras subfamily members, an unusually large number for such a relatively simple organism (6, 25). Six of these have been partially characterized and have been shown to be involved in a wide variety of processes, including cell movement, polarity, growth, cytokinesis, chemotaxis, macropinocytosis, and multicellular development (5, 15, 23, 25). They exhibit considerable functional specificity, and even the two highly related proteins, RasD and RasG, perform different functions (23, 26). RasC and RasG are the best characterized of these proteins, and both are activated in response to cyclic AMP (cAMP) during aggregation (11). Although both proteins are involved in aggregation, signaling through RasC is more important for the regulation of the cAMP relay, whereas signaling through RasG is more important for cAMP-dependent chemotaxis, but there is some overlap of function (2, 3). Disruption of both the rasC and rasG genes results in a total loss of cAMP-mediated signaling, suggesting that all cAMP signal transduction in early development is partitioned between pathways that use either RasC or RasG (2, 3).In addition to their roles in early development, both RasG and RasC have vegetative cell functions. Cells with a disrupted rasG gene were found to exhibit a reduced growth rate, which was most apparent when cells were grown in suspension, and were multinucleate, indicating a defect in cytokinesis (13, 23). In addition, rasG cells exhibited reduced motility and polarity and an altered actin distribution. Vegetative rasC cells had a less pronounced phenotype: changes in actin distribution and motility but normal growth and cytokinesis (16). Given that there was evidence for some overlap of function between RasG and RasC during early development, it was important to determine the extent of their functional overlap in vegetative cells.In the present study, we have compared the potential overlap of RasG and RasC requirements for vegetative cell function in the recently generated isogenic rasC, rasG, and rasC/rasG strains (2, 3). In addition, the availability of stable rasG and rasC/rasG strains has enabled us to determine to what extent RasD, a protein that is highly related to RasG but not present in wild-type vegetative cells, can substitute for loss of function of RasG.  相似文献   

14.
Proper regulation of the actin cytoskeleton is essential for cell function and ultimately for survival. Tight control of actin dynamics is required for many cellular processes, including differentiation, proliferation, adhesion, chemotaxis, endocytosis, exocytosis, and multicellular development. Here we describe a putative p21-activated protein kinase, PakD, that regulates the actin cytoskeleton in Dictyostelium discoideum. We found that cells lacking pakD are unable to aggregate and thus unable to develop. Compared to the wild type, cells lacking PakD have decreased membrane extensions, suggesting defective regulation of the actin cytoskeleton. pakD cells show poor chemotaxis toward cyclic AMP (cAMP) but normal chemotaxis toward folate, suggesting that PakD mediates some but not all chemotaxis responses. pakD cells have decreased polarity when placed in a cAMP gradient, indicating that the chemotactic defects of the pakD cells may be due to an impaired cytoskeletal response to cAMP. In addition, while wild-type cells polymerize actin in response to global stimulation by cAMP, pakD cells exhibit F-actin depolymerization under the same conditions. Taken together, the results suggest that PakD is part of a pathway coordinating F-actin organization during development.  相似文献   

15.
Spatiotemporal cytoskeleton remodeling is pivotal for cell adhesion and migration. Here we investigated the function of Gas2-related protein on chromosome 22 (GAR22β), a poorly characterized protein that interacts with actin and microtubules. Primary and immortalized GAR22β/ Sertoli cells moved faster than wild-type cells. In addition, GAR22β/ cells showed a more prominent focal adhesion turnover. GAR22β overexpression or its reexpression in GAR22β/ cells reduced cell motility and focal adhesion turnover. GAR22β–actin interaction was stronger than GAR22β–microtubule interaction, resulting in GAR22β localization and dynamics that mirrored those of the actin cytoskeleton. Mechanistically, GAR22β interacted with the regulator of microtubule dynamics end-binding protein 1 (EB1) via a novel noncanonical amino acid sequence, and this GAR22β–EB1 interaction was required for the ability of GAR22β to modulate cell motility. We found that GAR22β is highly expressed in mouse testes, and its absence resulted in reduced spermatozoa generation, lower actin levels in testes, and impaired motility and ultrastructural disorganization of spermatozoa. Collectively our findings identify GAR22β as a novel regulator of cell adhesion and migration and provide a foundation for understanding the molecular basis of diverse cytoskeleton-dependent processes.  相似文献   

16.
17.
This study, using mouse embryonic fibroblast (MEF) cells derived from ROCK1−/− and ROCK2−/− mice, is designed to dissect roles for ROCK1 and ROCK2 in regulating actin cytoskeleton reorganization induced by doxorubicin, a chemotherapeutic drug. ROCK1−/− MEFs exhibited improved actin cytoskeleton stability characterized by attenuated periphery actomyosin ring formation and preserved central stress fibers, associated with decreased myosin light chain 2 (MLC2) phosphorylation but preserved cofilin phosphorylation. These effects resulted in a significant reduction in cell shrinkage, detachment, and predetachment apoptosis. In contrast, ROCK2−/− MEFs showed increased periphery membrane folding and impaired cell adhesion, associated with reduced phosphorylation of both MLC2 and cofilin. Treatment with inhibitor of myosin (blebbistatin), inhibitor of actin polymerization (cytochalasin D), and ROCK pan-inhibitor (Y27632) confirmed the contributions of actomyosin contraction and stress fiber instability to stress-induced actin cytoskeleton reorganization. These results support a novel concept that ROCK1 is involved in destabilizing actin cytoskeleton through regulating MLC2 phosphorylation and peripheral actomyosin contraction, whereas ROCK2 is required for stabilizing actin cytoskeleton through regulating cofilin phosphorylation. Consequently, ROCK1 and ROCK2 can be functional different in regulating stress-induced stress fiber disassembly and cell detachment.  相似文献   

18.
Wiskott-Aldrich Syndrome protein (WASP) is a key regulator of the actin cytoskeleton in hematopoietic cells. Defective expression of WASP leads to multiple abnormalities in different hematopoietic cells. Despite severe impairment of T cell function, WAS patients exhibit a high prevalence of autoimmune disorders. We attempted to induce EAE, an animal model of organ-specific autoimmunity affecting the CNS that mimics human MS, in Was−/− mice. We describe here that Was−/− mice are markedly resistant against EAE, showing lower incidence and milder score, reduced CNS inflammation and demyelination as compared to WT mice. Microglia was only poorly activated in Was−/− mice. Antigen-induced T-cell proliferation, Th-1 and -17 cytokine production and integrin-dependent adhesion were increased in Was−/− mice. However, adoptive transfer of MOG-activated T cells from Was−/− mice in WT mice failed to induce EAE. Was−/− mice were resistant against EAE also when induced by adoptive transfer of MOG-activated T cells from WT mice. Was+/− heterozygous mice developed an intermediate clinical phenotype between WT and Was−/− mice, and they displayed a mixed population of WASP-positive and -negative T cells in the periphery but not in their CNS parenchyma, where the large majority of inflammatory cells expressed WASP. In conclusion, in absence of WASP, T-cell responses against a CNS autoantigen are increased, but the ability of autoreactive T cells to induce CNS autoimmunity is impaired, most probably because of an inefficient T-cell transmigration into the CNS and defective CNS resident microglial function.  相似文献   

19.
Cell migration is involved in various physiological and pathogenic events, and the complex underlying molecular mechanisms have not been fully elucidated. The simple eukaryote Dictyostelium discoideum displays chemotactic locomotion in stages of its life cycle. By characterizing a Dictyostelium mutant defective in chemotactic responses, we identified a novel actin-binding protein serving to modulate cell migration and named it actin-binding protein G (AbpG); this 971–amino acid (aa) protein contains an N-terminal type 2 calponin homology (CH2) domain followed by two large coiled-coil regions. In chemoattractant gradients, abpG cells display normal directional persistence but migrate significantly more slowly than wild-type cells; expressing Flag-AbpG in mutant cells eliminates the motility defect. AbpG is enriched in cortical/lamellipodial regions and colocalizes well with F-actin; aa 401–600 and aa 501–550 fragments of AbpG show the same distribution as full-length AbpG. The aa 501–550 region of AbpG, which is essential for AbpG to localize to lamellipodia and to rescue the phenotype of abpG cells, is sufficient for binding to F-actin and represents a novel actin-binding protein domain. Compared with wild-type cells, abpG cells have significantly higher F-actin levels. Collectively our results suggest that AbpG may participate in modulating actin dynamics to optimize cell locomotion.  相似文献   

20.
Cytokinesis is the final step of cell division that completes the separation of two daughter cells. We found that the human discs large (hDlg) tumor suppressor homologue is functionally involved in cytokinesis. The guanylate kinase (GUK) domain of hDlg mediates the localization of hDlg to the midbody during cytokinesis, and over-expression of the GUK domain in U2OS and HeLa cells impaired cytokinesis. Mouse embryonic fibroblasts (MEFs) derived from dlg mutant mice contained an increased number of multinucleated cells and showed reduced proliferation in culture. A kinesin-like motor protein, GAKIN, which binds directly to the GUK domain of hDlg, exhibited a similar intracellular distribution pattern with hDlg throughout mitosis and localized to the midbody during cytokinesis. However, the targeting of hDlg and GAKIN to the midbody appeared to be independent of each other. The midbody localization of GAKIN required its functional kinesin-motor domain. Treatment of cells with the siRNA specific for hDlg and GAKIN caused formation of multinucleated cells and delayed cytokinesis. Together, these results suggest that hDlg and GAKIN play functional roles in the maintenance of midbody architecture during cytokinesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号