首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lancaster CR 《FEBS letters》2003,555(1):21-28
The three-dimensional structure of Wolinella succinogenes quinol:fumarate reductase (QFR), a dihaem-containing member of the superfamily of succinate:quinone oxidoreductases (SQOR), has been determined at 2.2 A resolution by X-ray crystallography [Lancaster et al., Nature 402 (1999) 377-385]. The structure and mechanism of W. succinogenes QFR and their relevance to the SQOR superfamily have recently been reviewed [Lancaster, Adv. Protein Chem. 63 (2003) 131-149]. Here, a comparison is presented of W. succinogenes QFR to the recently determined structure of the mono-haem containing succinate:quinone reductase from Escherichia coli [Yankovskaya et al., Science 299 (2003) 700-704]. In spite of differences in polypeptide and haem composition, the overall topology of the membrane anchors and their relative orientation to the conserved hydrophilic subunits is strikingly similar. A major difference is the lack of any evidence for a 'proximal' quinone site, close to the hydrophilic subunits, in W. succinogenes QFR.  相似文献   

2.
3.
The epsilon-proteobacteria Helicobacter pylori and Campylobacter jejuni are both human pathogens. They colonize mucosal surfaces causing severe diseases. The membrane protein complex QFR (quinol:fumarate reductase) from H. pylori has previously been established as a potential drug target, and the same is likely for the QFR from C. jejuni. In the present paper, we describe the cloning of the QFR operons from the two pathogenic bacteria H. pylori and C. jejuni and their expression in Wolinella succinogenes, a non-pathogenic -proteobacterium. To our knowledge, this is the first documentation of heterologous membrane protein production in W. succinogenes. We demonstrate that the replacement of the homologous enzyme from W. succinogenes with the heterologous enzymes yields mutants where fumarate respiration is fully functional. We have isolated and characterized the heterologous QFR enzymes. The high quality of the enzyme preparation enabled us to determine unequivocally by analytical ultracentrifugation the homodimeric state of the three detergent-solubilized heterotrimeric QFR enzymes, to accurately determine the different oxidation-reduction ('redox') midpoint potentials of the six prosthetic groups, the Michaelis constants for the quinol substrate, maximal enzymatic activities and the characterization of three different anti-helminths previously suggested to be inhibitors of the QFR enzymes from H. pylori and C. jejuni. This characterization allows, for the first time, a detailed comparison of the QFR enzymes from C. jejuni and H. pylori with that of W. succinogenes.  相似文献   

4.
During growth with fumarate as the terminal electron transport acceptor and either formate or sulfide as the electron donor, Wolinella succinogenes induced a peri-plasmic protein (54 kDa) that reacted with an antiserum raised against the periplasmic fumarate reductase (Fcc) of Shewanella putrefaciens. However, the periplasmic cell fraction of W. succinogenes did not catalyze fumarate reduction with viologen radicals. W. succinogenes grown with polysulfide instead of fumarate contained much less (< 10%) of the 54-kDa antigen, and the antigen was not detectable in nitrate-grown bacteria. The antigen was most likely encoded by the fccA gene of W. succinogenes. The antigen was absent from a ΔfccABC mutant, and its size is close to that of the protein predicted by fccA. The fccA gene probably encodes a pre-protein carrying an N-terminal signal peptide. The sequence of the mature FccA (481 residues, 52.4 kDa) is similar (31% identity) to that of the C-terminal part (450 residues) of S. putrefaciens fumarate reductase. As indicated by Northern blot analysis, fccA is cotranscribed with fccB and fccC. The proteins predicted from the fccB and fccC gene sequences represent tetraheme cytochromes c. FccB is similar to the N-terminal part (150 residues) of S. putrefaciens fumarate reductase, while FccC resembles the tetraheme cytochromes c of the NirT/NapC family. The ΔfccABC mutant of W. succinogenes grew with fumarate and formate or sulfide, suggesting that the deleted proteins were not required for fumarate respiration with either electron donor. Received: 26 September 1997 / Accepted: 8 December  相似文献   

5.
The structure of the respiratory membrane protein complex quinol:fumarate reductase (QFR) from Wolinella succinogenes has been determined by X-ray crystallography at 2.2-A resolution [Nature 402 (1999) 377]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulfur clusters, and two haem b groups), a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. The structure of the membrane-integral dihaem cytochrome b reveals that all transmembrane helical segments are tilted with respect to the membrane normal. The "four-helix" dihaem binding motif is very different from other dihaem-binding transmembrane four-helix bundles, such as the "two-helix motif" of the cytochrome bc(1) complex and the "three-helix motif" of the formate dehydrogenase/hydrogenase group. The gamma-hydroxyl group of Ser C141 has an important role in stabilising a kink in transmembrane helix IV. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which was found to be essential for menaquinol oxidation [Proc. Natl. Acad. Sci. U. S. A. 97 (2000) 13051]. The distal location of this residue in the structure indicates that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could in principle be associated with the generation of a transmembrane electrochemical potential. However, it is suggested here that in W. succinogenes QFR, this electrogenic effect is counterbalanced by the transfer of two protons via a proton transfer pathway (the "E-pathway") in concert with the transfer of two electrons via the membrane-bound haem groups. According to this "E-pathway hypothesis", the net reaction catalysed by W. succinogenes QFR does not contribute directly to the generation of a transmembrane electrochemical potential.  相似文献   

6.
The fumarate reductase complex of the anaerobic bacterium Wolinella succinogenes catalyzes the electron transfer from menaquinol to fumarate. Two structural genes coding for subunits of the enzyme have been cloned in Escherichia coli. The genes were isolated from a lambda EMBL3 phage gene bank by immunological screening and subcloned in an expression vector. The genes frdA and frdB, which encode the FAD protein (Frd A, Mr 79,000) and the iron-sulfur protein (Frd B, Mr 31,000) of the fumarate reductase complex, were cloned together with a W. succinogenes promoter. The gene order was promoter-frdA-frdB. The FAD protein and the iron-sulfur protein were expressed in the correct molar mass in E. coli from the clones. The identity of the frdA gene and the suggested polarity were confirmed by comparing the amino-terminal sequence of the Frd A protein with that predicted from the 5'-terminal nucleotide sequence of frdA. The frdA and frdB genes are present only once in the genome. A region downstream of frdB, possibly a gene encoding cytochrome b of the fumarate reductase complex, hybridizes with a second site in the genome.  相似文献   

7.
Calibration relationships were derived for cartilage proteoglycan subunit (PGS) that relate the inverse z-average hydrodynamic radius (Rs) and the weight-average Mr (Mw) to the partition coefficient (Kav.) for PGS when chromatographed on a Sepharose CL-2B column. PGS isolated from chick limb-bud chondrocyte cell cultures was fractionated chromatographically into eight pools, for which Mw and Rs were determined by total-intensity and dynamic light-scattering measurements. These data were found to be related to Kav. through the following empirical equations: log Mw = -(1.65 +/- 0.27)Kav. +(6.58 +/- 0.08); log Rs = -(0.69 +/- 0.04)Kav. +(2.75 +/- 0.01). Application of these relationships to the chromatographic data led to Mw = 1.48 X 10(6) and Rs = 38.7 nm (387 A) for the unfractionated specimens compared with values of Mw = 1.46 X 10(6) and Rs = 38.2 nm (382 A) determined by light-scattering. Our results were found to be consistent with previously proposed phenomenological models for the gel-filtration mechanism. Application of these calibration relationships to Kav. for several unfractionated specimens led to predicted values of Mw and Rs that are accurate to within 10%.  相似文献   

8.
9.
10.
Nitrate respiration catalysed by the ε-proteobacterium Wolinella succinogenes relies on the NapAGHBFLD system that comprises periplasmic nitrate reductase (NapA) and various other Nap proteins required for electron transport from menaquinol to NapA or maturation of Nap components. The W. succinogenes Nap system is unusual as electron transfer to NapA was shown previously to depend on both subunits of the predicted menaquinol dehydrogenase complex NapGH but did not require a cytochrome c of the NapC/NrfH family. Nonetheless, minor residual growth by nitrate respiration was observed in napG and napH gene inactivation mutants. Here, the question is addressed whether alternative membrane-bound menaquinol dehydrogenases, like NrfH and NosGH, involved in nitrite or N2O reduction systems, are able to functionally replace NapGH. The phenotypes of various gene deletion mutants as well as strains expressing chimeric nap / nos operons demonstrate that NosH is able to donate electrons to the respiratory chain of nitrate respiration at a physiologically relevant rate, whereas NrfH and NosG are not. The iron-sulphur protein NapG was shown to form a complex with NapH in the membrane but was detected in the periplasmic cell fraction in the absence of NapH. Likewise, NosH is able to bind NapG. Each of the eight poly-cysteine motifs present in either NapG or NapH was shown to be essential for nitrate respiration. The NapG homologue NosG could not substitute for NapG, even after adjusting the cysteine spacing to that of NapG, implying that NapG and NosG are specific adapter proteins that channel electrons into either the Nap or Nos system. The current model on the structure and function of the NapGH menaquinol dehydrogenase complex is presented and the composition of the electron transport chains that deliver electrons to periplasmic reductases for either nitrate, nitrite or N2O is discussed.  相似文献   

11.
The fumarate reductase from Wolinella succinogenes contains two haem groups with markedly different midpoint potentials (-20 mV and -200 mV). The enzyme is made up of three subunits, the lipophilic one of which (cytochrome b) ligates the haems. Circular dichroism (CD) spectroscopy has been applied to the reductase in order to obtain information on the structure of the haems and of their environment. This approach is integrated with amino acid sequence comparison of the cytochrome b with other quinone-reacting membrane haemoproteins for predicting the axial ligands of the haems as well as their location relative to the membrane. The following results have been obtained: (1) the CD spectra in the Soret region show exciton coupling indicating haem-haem interaction, which is particularly evident in the reduced state and disappears upon denaturation of the enzyme; (2) The apoprotein of cytochrome b is predicted to consist of five hydrophobic helices (helices A-D and cd), four of which should span the membrane. Helices A, B, C and cd contain a histidine residue each which possibly forms one of the ligands of the haems. It is proposed that haem b (-20 mV) is ligated by H44 and H93, and haem b (-200 mV) by H143 and H182.  相似文献   

12.
Haas AH  Sauer US  Gross R  Simon J  Mäntele W  Lancaster CR 《Biochemistry》2005,44(42):13949-13961
Electrochemically induced static FTIR difference spectroscopy has been employed to investigate redox-driven protonation changes of individual amino acid residues in the quinol:fumarate reductase (QFR) from Wolinella succinogenes. The difference spectra presented were taken in the mid-infrared region from 1800 to 1000 cm(-1), and the signals obtained represent transitions between the reduced and oxidized states of the enzyme. Analysis of the difference spectra shows evidence for structural reorganizations of the polypeptide backbone upon the induced redox reaction. Furthermore, spectral contributions were found above 1710 cm(-1) where stretching vibrations of protonated carboxyl groups from aspartic or glutamic acid side chains absorb. With the help of site-directed mutagenesis and hydrogen/deuterium isotope exchange, it was possible to identify amino acid residue Glu C180, which is located in the membrane-spanning, diheme-containing subunit C of QFR, as being partially responsible for the derivative-shaped spectral feature with a peak/trough at 1741/1733 cm(-1) in the reduced-minus-oxidized difference spectrum. This signal pattern is interpreted as a superposition of a protonation/deprotonation and a change of the hydrogen-bonding environment of Glu C180. This residue is the principal constituent of the recently proposed "E-pathway hypothesis" of coupled transmembrane proton and electron transfer in QFR [Lancaster, C. R. D. (2002) Biochim. Biophys. Acta 1565, 215-231]. Thus, the study presented yields experimental evidence which supports a key role of Glu C180 within the framework of the E-pathway hypothesis.  相似文献   

13.
It is shown that the oxidized form of the hexa-haem nitrite reductase of Wolinella succinogenes exists in two structurally and functionally distinct forms, termed 'resting' and 'redox-cycled'. The nitrite reductase as initially isolated, termed 'resting', has five low-spin ferrihaem groups and one high-spin ferrihaem group. The reduction of these haem groups by Na2S2O4 occurs in two kinetically and spectrally distinct phases. In the slower phase the haem groups are reduced by dithionite with a limiting rate of 4 s-1. If the enzyme is re-oxidized after reduction with dithionite or with methyl viologen, the resulting ferric form, termed 'redox-cycled', possesses only low-spin haem centres and a rate of reduction in the slower phase that is no longer limited. In the resting form of the enzyme the high-spin ferrihaem group is weakly exchange-coupled to a low-spin haem group. It is proposed that in the redox-cycled form the exchange coupling occurs between two low-spin ferric haem groups. This change in spin state allows a more rapid rate of electron transfer to the coupled pair.  相似文献   

14.
Conditions promoting maximal in vitro activity of the particulate NADH:fumarate reductase from Fibrobacter succinogenes were determined. This system showed a pH optimum of 6.0 in K+ MES buffer only when salt (NaCl or KCl) was present. Salt stimulated the activity eightfold at the optimal concentration of 150m M. This effect was due to stimulation of fumarate reductase activity as salt had little effect on NADH: decylubiquinone oxidoreductase (NADH dehydrogenase). The stimulation of fumarate reductase by salt at pH 6.0 was not due to removal of oxaloacetate from the enzyme. Kinetic parameters for several inhibitors were also measured. NADH dehydrogenase was inhibited by rotenone at a single site with a K i of 1 M. 2-Heptyl-4-hydroxyquinonline-N-oxide (HOQNO) inhibited NADH: fumarate reductase with a K i of 0.006 M, but NADH dehydrogenase exhibited two HOQNO inhibition constants of approximately 1 M and 24 M. Capsaicin and laurylgallate each inhibited NADH dehydrogenase by only 20% at 100 M. NADH dehydrogenase gave K m values of 1 M for NADH and 4 M for reduced hypoxanthine adenine dinucleotide.Published with the approval of the Director of the Agricultural Experiment Station, North Dakota State University, as journal article no. 2201  相似文献   

15.
16.
The majority of bacterial membrane-bound NiFe-hydrogenases and formate dehydrogenases have homologous membrane-integral cytochrome b subunits. The prototypic NiFe-hydrogenase of Wolinella succinogenes (HydABC complex) catalyzes H2 oxidation by menaquinone during anaerobic respiration and contains a membrane-integral cytochrome b subunit (HydC) that carries the menaquinone reduction site. Using the crystal structure of the homologous FdnI subunit of Escherichia coli formate dehydrogenase-N as a model, the HydC protein was modified to examine residues thought to be involved in menaquinone binding. Variant HydABC complexes were produced in W. succinogenes, and several conserved HydC residues were identified that are essential for growth with H2 as electron donor and for quinone reduction by H2. Modification of HydC with a C-terminal Strep-tag II enabled one-step purification of the HydABC complex by Strep-Tactin affinity chromatography. The tagged HydC, separated from HydAB by isoelectric focusing, was shown to contain 1.9 mol of heme b/mol of HydC demonstrating that HydC ligates both heme b groups. The four histidine residues predicted as axial heme b ligands were individually replaced by alanine in Strep-tagged HydC. Replacement of either histidine ligand of the heme b group proximal to HydAB led to HydABC preparations that contained only one heme b group. This remaining heme b could be completely reduced by quinone supporting the view that the menaquinone reduction site is located near the distal heme b group. The results indicate that both heme b groups are involved in electron transport and that the architecture of the menaquinone reduction site near the cytoplasmic side of the membrane is similar to that proposed for E. coli FdnI.  相似文献   

17.
Wolinella succinogenes grown with nitrate as terminal electron acceptor contains two nitrite reductases as measured with the donor viologen radical, one in the cytoplasm and the other integrated in the cytoplasmic membrane. The fumarate-grown bacteria contain only the membraneous species.The isolated membraneous enzyme consists of a single polypeptide chain (M r 63,000) carrying 4 hemeC groups and probably an iron-sulphur cluster as prosthetic groups. The enzyme amounts to about 1% of the total membrane protein.The isolated enzyme catalyses the reduction of nitrite to ammonium without accumulation of significant amounts of intermediates or alternative products. The Michaelis constant for nitrite was 0.1 mM and the turnover number of the hemeC 1.5 · 105 electrons per min at 37°C.The viologen-reactive site of the enzyme in the membrane is oriented towards the cytoplasm. When the isolated enzyme is incorporated into liposomes, the viologen-as well as the nitrite-reactive site is exposed to thooutside.The cytoplasmic membrane contains a second hemeC protein (M r 22,000) which may represent a cytochrome c.Abbreviations NQNO 2-(n-nonyl)-4-hydroxyquinoline-N-oxide - MES 2-(N-morpholino)ethanesulfonate - MOPS 3-(N-morpholino)propanesulfonate - HEPES N-2-Hydroxyethylpiperazine-N-2-ethanesulfonate - TES N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate - MK menaquinone  相似文献   

18.
The bacterium Wolinella succinogenes produces a nitrite reductase enzyme that can be purified to homogeneity in high yield by a combination of detergent extraction, hydroxyapatite chromatography and Mr fractionation. Nitrite reductase activity is found to be present in both a high- and a low-Mr fraction. The high-Mr fraction has been shown to consist of the low-Mr nitrite reductase enzyme associated with a hydrophobic 'binding protein'. The amino acid composition for both proteins is reported. The nitrite reductase enzyme shows spectral characteristics indicative of the presence of c-type haem groups. Measurements at 610 nm indicate the presence of some high-spin haem groups at neutral pH. This haem subgroup undergoes a pH-linked high-spin - low-spin transition at alkaline pH. Approximately two of the six haem groups present within the enzyme bind CO with low affinity (KD = 0.4 mM). The enzyme also shows a range of redox activities with various inorganic reagents. The enzyme has been shown to exhibit dithionite reductase, oxygen reductase and CO2 reductase activities.  相似文献   

19.
Cytochrome c nitrite reductase catalyzes the 6-electron reduction of nitrite to ammonia. This second part of the respiratory pathway of nitrate ammonification is a key step in the biological nitrogen cycle. The x-ray structure of the enzyme from the epsilon-proteobacterium Wolinella succinogenes has been solved to a resolution of 1.6 A. It is a pentaheme c-type cytochrome whose heme groups are packed in characteristic motifs that also occur in other multiheme cytochromes. Structures of W. succinogenes nitrite reductase have been obtained with water bound to the active site heme iron as well as complexes with two inhibitors, sulfate and azide, whose binding modes and inhibitory functions differ significantly. Cytochrome c nitrite reductase is part of a highly optimized respiratory system found in a wide range of Gram-negative bacteria. It reduces both anionic and neutral substrates at the distal side of a lysine-coordinated high-spin heme group, which is accessible through two different channels, allowing for a guided flow of reaction educt and product. Based on sequence comparison and secondary structure prediction, we have demonstrated that cytochrome c nitrite reductases constitute a protein family of high structural similarity.  相似文献   

20.
Nitrous oxide reductase from Wolinella succinogenes, an enzyme containing one heme c and four Cu atoms/subunit of Mr = 88,000, was studied by electron paramagnetic resonance (EPR) at 9.2 GHz from 6 to 80 K. In the oxidized state, low spin ferric cytochrome c was observed with gz = 3.10 and an axial Cu resonance was observed with g parallel = 2.17 and g perpendicular = 2.035. No signals were detected at g values greater than 3.10. For the Cu resonance, six hyperfine lines each were observed in the g parallel and g perpendicular regions with average separations of 45.2 and 26.2 gauss, respectively. The hyperfine components are attributed to Cu(I)-Cu(II) S = 1/2 (half-met) centers. Reduction of the enzyme with dithionite caused signals attributable to heme c and Cu to disappear; exposure of that sample to N2O for a few min caused the reappearance of the g = 3.10 component and a new Cu signal with g parallel = 2.17 and g perpendicular = 2.055 that lacked the simple hyperfine components attributed to a single species of half-met center. The enzyme lost no activity as the result of this cycle of reduction and reoxidation. EPR provided no evidence for a Cu-heme interaction. The EPR detectable Cu in the oxidized and reoxidized forms of the enzyme comprised about 23 and 20% of the total Cu, respectively, or about one spin/subunit. The enzyme offers the first example of a nitrous oxide reductase which can have two states of high activity that present very different EPR spectra of Cu. These two states may represent enzyme in two different stages of the catalytic cycle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号