首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
We report here that reduced pyridine nucleotides and reduced glutathione result in an oxidation of Amplex Red by dioxygen that is dependent on the presence of horseradish peroxidase (HRP). Concentrations of NADH and glutathione typically found in biological systems result in the oxidation of Amplex Red at a rate comparable to that produced, for example, by respiring mitochondria. The effects of NADH and glutathione in this assay system are likely to be the result of H(2)O(2) generation via a superoxide intermediate because both catalase and superoxide dismutase prevent the oxidation of Amplex Red. These results suggest caution in the assay of H(2)O(2) production in biological systems using the Amplex Red/HRP because the assay will also report the mobilization of NADH or glutathione. However, the interruption of this process by the addition of superoxide dismutase offers a simple and reliable method for establishing the source of the oxidant signal.  相似文献   

2.
The Amplex Red assay, a fluorescent assay for the detection of H(2)O(2), relies on the reaction of H(2)O(2) and colorless, nonfluorescent Amplex Red with a 1:1 stoichiometry to form colored, fluorescent resorufin, catalyzed by horseradish peroxidase (HRP). We have found that resorufin is artifactually formed when Amplex Red is exposed to light. In the absence of H(2)O(2) and HRP, the absorption and fluorescence spectra of Amplex Red changed during exposure to ambient room light or instrumental excitation light, clearly indicating that the fluorescent product resorufin had formed. This photochemistry was initiated by trace amounts of resorufin that are present in Amplex Red stock solutions. ESR spin-trapping studies demonstrated that superoxide radical was an intermediate in this process. Oxygen consumption measurements further confirmed that superoxide and H(2)O(2) were artifactually produced by the photooxidation of Amplex Red. The artifactual formation of resorufin was also significantly increased by the presence of superoxide dismutase or HRP. This photooxidation process will result in a less sensitive assay for H(2)O(2) under ambient light exposure and potentially invalid measurements under high energy exposure such as UVA irradiation. In general, precautions should be taken to minimize exposure to light during measurement of oxidative stress with Amplex Red.  相似文献   

3.
Lysyl oxidase catalyzes the final known enzymatic step required for collagen and elastin cross-linking in the biosynthesis of normal mature functional insoluble extracellular matrices. In addition, lysyl oxidase has been identified as a possible tumor suppressor. Lysyl oxidase activity in biological samples is traditionally and most reliably assessed by tritium release end-point assays using radiolabeled collagen or elastin substrates involving laborious vacuum distillation of the released tritiated water. In addition, a less sensitive fluorometric method exists that employs nonpeptidyl amine lysyl oxidase substrates and measures hydrogen peroxide production with horseradish peroxidase coupled to homovanillate oxidation. The present study describes a more sensitive fluorescent assay for lysyl oxidase activity that utilizes 1,5-diaminopentane as substrate, and released hydrogen peroxide is detected using Amplex red in horseradish peroxidase-coupled reactions. This method allows the detection of 40 ng of enzyme per 2 ml assay at 37 degrees C and is 7.5 times more sensitive than the currently available fluorometric assay for enzyme activity. This method eliminates the interference that occurs in some biological samples and can be successfully used to detect lysyl oxidase activity in cell culture experiments.  相似文献   

4.
Oxidation of Amplex Red by hydrogen peroxide in the presence of horseradish peroxidase (HRP) gives rise to an intensely colour product, resorufin. This reaction has been frequently employed for measurements based on enzyme-coupled reactions that detect hydrogen peroxide as a final reaction product. In the current study, we show that the presence of dietary antioxidants at biological concentrations in the reaction medium produced interferences in the Amplex Red/HRP catalyzed reaction that result in an over quantification of the hydrogen peroxide produced. The interference observed showed a dose-dependent manner, and a possible mechanism of interaction of dietary antioxidants with HRP in the Amplex Red-coupled-fluorescent assay is proposed.  相似文献   

5.
A fluorometric method for the assay of cholesterol reductase activity from pea leaves (Pisum sativum) is presented. This method is based on the decrease in relative fluorescence occurring as a result of the oxidation of NADH when cholesterol is reduced catalytically to coprostanol by cholesterol reductase. The reaction mixture consisted of micellar cholesterol, NADH, and cytosol of pea leaves in a phosphate buffer. After incubation for 1 h, the reaction mixture were diluted with 2-(N-cyclohexylamino)ethanesulfonic acid buffer (50 mM, pH 10.0) to an appropriate concentration for NADH quantification. The relative fluorescence was measured at an excitation wavelength of 360 nm and at an emission wavelength of 460 nm. This fluorometric method is relatively rapid, simple, and inexpensive. The results obtained show close correlation (R = 0.997) with those obtained by the more time-consuming and expensive radiometric method for assay of cholesterol reductase activity. Results suggest that the fluorometric method is useful for the accurate determination of cholesterol reductase activity in biological specimens.  相似文献   

6.
Phosphatidylserine (PS) is a quantitatively minor membrane phospholipid involved in diverse cellular functions. In this study, we developed a new fluorometric method for measuring PS using combinations of specific enzymes and Amplex Red. The calibration curve for PS measurement was linear and hyperbolic at low (0-50 μM) and high (50-1000 μM) concentrations, respectively, and the detection limit was 5 μM (50 pmol in the reaction mixture). This assay quantified PS regardless of the chain length and the number of double bonds. We applied this new method to the determination of PS content in HEK293 cells, which was validated by a recovery study and comparison with TLC-phosphorus assay. We showed that the PS content was high in sparse cells. The overexpression of PS synthase 1 elevated not only the cellular PS content but also the phosphatidylcholine (PC) and phosphatidylethanolamine (PE) contents, suggesting the conversion of PS into PE and the enhancement of PC production. This new assay for PS measurement is simple, specific, sensitive, and high throughput, and it will be useful to clarify the metabolism and biological functions of PS.  相似文献   

7.
Current cell-based assays for determining the functional properties of high-density lipoproteins (HDL) have limitations. We report here the development of a new, robust fluorometric cell-free biochemical assay that measures HDL lipid peroxidation (HDLox) based on the oxidation of the fluorochrome Amplex Red. HDLox correlated with previously validated cell-based (r = 0.47, p<0.001) and cell-free assays (r = 0.46, p<0.001). HDLox distinguished dysfunctional HDL in established animal models of atherosclerosis and Human Immunodeficiency Virus (HIV) patients. Using an immunoaffinity method for capturing HDL, we demonstrate the utility of this novel assay for measuring HDLox in a high throughput format. Furthermore, HDLox correlated significantly with measures of cardiovascular diseases including carotid intima media thickness (r = 0.35, p<0.01) and subendocardial viability ratio (r = −0.21, p = 0.05) and physiological parameters such as metabolic and anthropometric parameters (p<0.05). In conclusion, we report the development of a new fluorometric method that offers a reproducible and rapid means for determining HDL function/quality that is suitable for high throughput implementation.  相似文献   

8.
A direct measurement method for the enzymatic determination of cholesteryl esters (CEs) without measuring total cholesterol (TC) and free cholesterol (FC) is described. In the first step, hydrogen peroxide generated by cholesterol oxidase from FC was decomposed by catalase. In the second step, CE was measured by enzymatic determination using a colorimetric method or a fluorometric method. The measurement sensitivity of the fluorometric method was more than 20 times that of the colorimetric method. Optimal conditions of the assay were determined, and examples of measured CE in human plasma, rat liver, and cultured cells are indicated. The method of directly measuring CE was simple and has exceptional reproducibility compared with the technique of subtracting FC from TC using each measured TC and FC.  相似文献   

9.
We report on the development of a sensitive real-time assay for monitoring the activity of l-asparaginase that hydrolyzes l-asparagine to l-aspartate and ammonia. In this method, l-aspartate is oxidized by l-aspartate oxidase to iminoaspartate and hydrogen peroxide (H2O2), and in the detection step horseradish peroxidase uses H2O2 to convert the colorless, nonfluorescent reagent Amplex Red to the red-colored and highly fluorescent product resorufin. The assay was validated in both the absorbance and the fluorescence modes. We show that, due to its high sensitivity and substrate selectivity, this assay can be used to measure enzymatic activity in human serum containing l-asparaginase.  相似文献   

10.
The successive methylation of phosphatidylethanolamine to phosphatidylcholine (phospholipid methylation) has been measured by the incorporation of S-[methyl-3H]adenosylmethionine or colorimetric assay of phosphatidylcholine extracted from adipocyte plasma membranes. A fluorometric assay for phosphatidylcholine was developed to measure phospholipid methylation. This assay is 10 times more sensitive than the colorimetric assay and demonstrates no significant interference with other methylated phospholipids. The fluorometric assay was used to determine a biphasic insulin dose response in adipocyte plasma membranes. This fluorometric assay for phosphatidylcholine represents an alternative method for monitoring phospholipid methylation, especially when increased sensitivity is required.  相似文献   

11.
A new method for extracting soil enzymes is described and a microplate method for assaying soil β-1,4-glucanases (cellulases) and β-1,3-glucanases (laminarinases). Soil samples were mechanically disrupted to produce crude enzyme extracts, and diluted preps incubated in microplates containing either carboxymethyl cellulose (CMC) to determine cellulase activity or laminarin substrate to determine laminarinase activity. The resulting glucose was measured using the fluorometric Amplex Red® glucose assay. The method was reproducible, could be completed in 1 day and measured twice as much enzyme activity than the standard passive soil enzyme extraction procedure. The method described herein facilitates the development of high-throughput soil multiplex enzymatic assays from several soil samples at one time, and is well suited to the study of functional microbial ecology.  相似文献   

12.
Reported herein is a method that can be used to study the role of cholesterol in the microclustering of a ubiquitous class of membrane receptors, termed integrins. Integrin microclustering was measured using a fluorescence resonance energy transfer assay that does not require direct attachment of fluorescent donors or acceptors onto the integrins, and thus minimizes unwanted perturbations to integrin clustering. Membrane cholesterol levels were reduced using methyl-β-cyclodextrin (mβCD), as confirmed by Amplex Red assays of total cellular lipid or plasma membrane lipid extract. Subsequent changes in integrin microclustering were measured in cells expressing wild-type (WT) or mutant integrins. Although less integrin microclustering was measured after 27% membrane cholesterol depletion in a cell line expressing WT integrins, there was no statistically significant change for cells expressing α-cytoplasmic integrin mutants after a 45% reduction in plasma membrane cholesterol, and a significant increase in clustering for cells expressing ligand-binding domain integrin mutants after a 57% decrease in membrane cholesterol. These results are explained by differences in WT and mutant integrin partitioning into lipid nanodomains. Restoration of original cholesterol levels was used to confirm that the measured changes in membrane properties were cholesterol-dependent. No correlations between lipid diffusion and integrin microclustering were measured by means of fluorescence recovery after photobleaching using a fluorescent lipid mimetic. Similar lipid diffusion coefficients were measured after cholesterol depletion, irrespective of the integrins being expressed.  相似文献   

13.
Features that alter the glycolipid sugar headgroup accessibility at the membrane interface have been studied in bilayer lipid model vesicles using a fluorescence technique with the enzyme galactose oxidase. The effects on oxidation caused by variation in the hydrophobic moiety of galactosylceramide or the membrane environment for galactosylceramide, monogalactosyldiacylglycerol and digalactosyldiacylglycerol were studied. For this study we combined the galactose oxidase method for determining the oxidizability of galactose containing glycolipids, and the fluorescence method for determining enzymatic hydrogen peroxide production. Exposed galactose residues with a free hydroxymethyl group at position 6 in the headgroup of glycolipids were oxidized with galactose oxidase and subsequently the resultant hydrogen peroxide was determined by a combination of horseradish peroxidase and 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red). Amplex Red reacts with hydrogen peroxide in the presence of horseradish peroxidase with a 1:1 stoichiometry to form resorufin. With this coupled enzyme approach it is also possible to determine the galactolipid transbilayer membrane distribution (inside-outside) in bilayer vesicles.  相似文献   

14.
The highly sensitive, convenient fluorescence assay, based on the oxidation of nonfluorescent 10-acetyl-3,7-dihydroxyphenoxazine (Amplex Red) to highly fluorescent resorufin, is becoming increasingly popular for hydrogen peroxide quantitation. Yet, the intricacies of the horseradish peroxidase-catalyzed oxidation of the reductant substrate Amplex Red by hydrogen peroxide and the resulting resorufin could complicate the assay design and data interpretation. In particular, substrate inhibition and enzyme inactivation at higher hydrogen peroxide concentrations were known to affect the enzyme kinetics and end-point fluorescence. In addition, here we report the spontaneous transformation of resorufin to less or nonfluorescent product(s) in the absence of hydrogen peroxide and horseradish peroxidase. This spontaneous decay of resorufin fluorescence is most prominent in the pH range 6.2-7.7, likely due to general base-catalyzed de-N-acetylation and polymerization of resorufin. From a practical point of view, precautions for properly designing assays for hydrogen peroxide or characterizing hydrogen peroxide-generating systems are discussed based on the spontaneous transformation of resorufin to less fluorescent compound(s), substrate inhibition and enzyme inactivation at higher (>100 microM) hydrogen peroxide concentrations, and enzymatic oxidation of resorufin to nonfluorescent resazurin.  相似文献   

15.
Reactive oxygen species (ROS) play a crucial role in many cellular responses and signaling pathways, including the oxidative burst defense response to pathogens. We have examined very early events in cryptogein-induced ROS production in tobacco (Nicotiana tabacum) Bright Yellow-2 suspension cells. Using Amplex Red and Amplex Ultra Red reagents, which report real-time H2O2 accumulation in cell populations, we show that the internal signal for H2O2 develops more rapidly than the external apoplastic signal. Subcellular accumulation of H2O2 was also followed in individual cells using the 2',7'-dichlorofluorescein diacetate fluorescent probe. Major accumulation was detected in endomembrane, cytoplasmic, and nuclear compartments. When cryptogein was added, the signal developed first in the nuclear region and, after a short delay, in the cell periphery. Interestingly, isolated nuclei were capable of producing H2O2 in a calcium-dependent manner, implying that nuclei can serve as a potential active source of ROS production. These results show complex spatial compartmentalization for ROS accumulation and an unexpected temporal sequence of events that occurs after cryptogein application, suggesting novel intricacy in ROS-signaling cascades.  相似文献   

16.
In this work we report the development of a highly sensitive fluorescent multienzymatic biosensor for quantitative xanthine detection. This biosensor is built by the simultaneous encapsulation of three enzymes, xanthine oxidase, superoxide dismutase and peroxidase, in a single sol-gel matrix coupled to the Amplex Red probe. The sol-gel chemistry yields a porous, optically transparent matrix that retains the natural conformation and the reactivity of the three co-immobilized proteins. Xanthine determination is based on a sequence of reactions, namely catalytic oxidation of xanthine to uric acid and superoxide radical, and subsequent catalytic dismutation of the radical, resulting in the formation of hydrogen peroxide, which reacts stoichiometrically with non-fluorescent Amplex Red to produce highly fluorescent resorufin. The optimal operational conditions for the biosensor were investigated. Linearity was observed for xanthine concentrations up to 3.5 microM, with a detection limit of 20 nM, which largely improved the sensitivity of the current xanthine biosensors. The developed biosensor is reusable and remains stable for 2 weeks under adequate storage conditions.  相似文献   

17.
The organization and dynamics of the hydrophobic fluorescent probe Nile Red incorporated in DOPC vesicles containing varying amounts of cholesterol has been monitored utilizing fluorescence-based approaches which include the red edge excitation shift (REES) approach and the parallax method for depth determination. Our results show that the fluorescence emission maximum, intensity, polarization, and lifetime of Nile Red vary with the cholesterol content of the membrane. Interestingly, Nile Red exhibits significant REES independent of the presence of cholesterol. This indicates that Nile Red is localized in a motionally restricted environment in the membrane. This is supported by analysis of membrane penetration depth of Nile Red using the parallax method which points out to a membrane interfacial localization of Nile Red. These results could be useful in analyzing membrane organization and heterogeneity in natural membranes using Nile Red.  相似文献   

18.
The organization and dynamics of the hydrophobic fluorescent probe Nile Red incorporated in DOPC vesicles containing varying amounts of cholesterol has been monitored utilizing fluorescence-based approaches which include the red edge excitation shift (REES) approach and the parallax method for depth determination. Our results show that the fluorescence emission maximum, intensity, polarization, and lifetime of Nile Red vary with the cholesterol content of the membrane. Interestingly, Nile Red exhibits significant REES independent of the presence of cholesterol. This indicates that Nile Red is localized in a motionally restricted environment in the membrane. This is supported by analysis of membrane penetration depth of Nile Red using the parallax method which points out to a membrane interfacial localization of Nile Red. These results could be useful in analyzing membrane organization and heterogeneity in natural membranes using Nile Red.  相似文献   

19.
A sensitive and specific fluorimetric assay for the determination of pyruvate is reported here. This assay is based on the oxidation of pyruvate in the presence of pyruvate oxidase. Hydrogen peroxide generated by pyruvate oxidase reacts with nonfluorescent Amplex Red at a 1:1 stoichiometry to form the fluorescent product, resorufin. The assay is optimized with respect to pH of reaction buffer, enzyme concentration, dye concentration, and the time course. The usefulness of the assay is demonstrated by the accurate measurement of intracellular and extracellular pyruvate concentrations. The limit of detection of the assay is 5 nM.  相似文献   

20.
The conversion of xanthine dehydrogenase to a free radical producing oxidase is an important component of oxygen-mediated tissue injury. Current assays for these enzymes are of limited sensitivity, making it difficult to analyze activities in organ biopsies or cultured cells. The xanthine oxidase-catalyzed conversion of pterin (2-amino-4-hydroxypteridine) to isoxanthopterin provides the basis for a fluorometric assay which is 100-500 times more sensitive than the traditional spectrophotometric assay of urate formation from xanthine. Enzyme activity as low as 0.1 pmol min-1 ml-1 can be measured with the fluorometric pterin assay. Xanthine oxidase is assayed in the presence of pterin only, while combined xanthine dehydrogenase plus oxidase activity is determined with methylene blue which replaces NAD+ as an electron acceptor. The relative proportions and specific activities of xanthine oxidase and dehydrogenase determined by the fluorometric pterin assay are comparable with the spectrophotometric measurement of activities present in rat liver, intestine, kidney, and plasma. The assay has been successfully applied to brain, human kidney, and cultured mammalian cells, where xanthine dehydrogenase and oxidase activities are too low to detect spectrophotometrically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号