首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BACKGROUND: The life cycle of most eukaryotic organisms includes a meiotic phase, in which diploid parental cells produce haploid gametes. During meiosis a single round of DNA replication is followed by two rounds of chromosome segregation. In the first, or reductional, division (meiosis I), which is unique to meiotic cells, homologous chromosomes segregate from one another, whereas in the second, or equational, division (Meiosis II) sister centromeres disjoin. Meiotic DNA replication precedes the initiation of recombination by programmed Spo11-dependent DNA double-strand breaks. Recent reports that meiosis-specific cohesion is established during meiotic S phase and that the length of S phase is modified by recombination factors (Spo11 and Rec8) raise the possibility that replication plays a fundamental role in the recombination process. RESULTS: To address how replication influences the initiation of recombination, we have used mutations in the B-type cyclin genes CLB5 and CLB6, which specifically prevent premeiotic replication in the yeast Saccharomyces cerevisiae. We find that clb5 and clb5 clb6 but not clb6 mutants are defective in DSB induction and prior associated changes in chromatin accessibility, heteroallelic recombination, and SC formation. The severity of these phenotypes in each mutant reflects the extent of replication impairment. CONCLUSIONS: This assemblage of phenotypes reveals roles for CLB5 and CLB6 not only in DNA replication but also in other key events of meiotic prophase. Links between the function of CLB5 and CLB6 in activating meiotic DNA replication and their effects on subsequent events are discussed.  相似文献   

2.
Farah JA  Cromie G  Davis L  Steiner WW  Smith GR 《Genetics》2005,171(4):1499-1511
Spo11 or a homologous protein appears to be essential for meiotic DNA double-strand break (DSB) formation and recombination in all organisms tested. We report here the first example of an alternative, mutationally activated pathway for meiotic recombination in the absence of Rec12, the Spo11 homolog of Schizosaccharomyces pombe. Rad2, a FEN-1 flap endonuclease homolog, is involved in processing Okazaki fragments. In its absence, meiotic recombination and proper segregation of chromosomes were restored in rec12Delta mutants to nearly wild-type levels. Although readily detectable in wild-type strains, meiosis-specific DSBs were undetectable in recombination-proficient rad2Delta rec12Delta strains. On the basis of the biochemical properties of Rad2, we propose that meiotic recombination by this alternative (Rec*) pathway can be initiated by non-DSB lesions, such as nicks and gaps, which accumulate during premeiotic DNA replication in the absence of Okazaki fragment processing. We compare the Rec* pathway to alternative pathways of homologous recombination in other organisms.  相似文献   

3.
Meiosis is a specialized form of cell division by which sexually reproducing diploid organisms generate haploid gametes. During a long prophase, telomeres cluster into the bouquet configuration to aid chromosome pairing, and DNA replication is followed by high levels of recombination between homologous chromosomes (homologs). This recombination is important for the reductional segregation of homologs at the first meiotic division; without further replication, a second meiotic division yields haploid nuclei. In the fission yeast Schizosaccharomyces pombe, we have deleted 175 meiotically upregulated genes and found seven genes not previously reported to be critical for meiotic events. Three mutants (rec24, rec25, and rec27) had strongly reduced meiosis-specific DNA double-strand breakage and recombination. One mutant (tht2) was deficient in karyogamy, and two (bqt1 and bqt2) were deficient in telomere clustering, explaining their defects in recombination and segregation. The moa1 mutant was delayed in premeiotic S phase progression and nuclear divisions. Further analysis of these mutants will help elucidate the complex machinery governing the special behavior of meiotic chromosomes.  相似文献   

4.
Checkpoints operate during meiosis to ensure the completion of DNA synthesis and programmed recombination before the initiation of meiotic divisions. Studies in the fission yeast Schizosaccharomyces pombe suggest that the meiotic response to DNA damage due to a failed replication checkpoint response differs substantially from the vegetative response, and may be influenced by the presence of homologous chromosomes. The checkpoint responses to DNA damage during fission yeast meiosis are not well characterized. Here we report that DNA damage induced during meiotic S-phase does not activate checkpoint arrest. We also find that in wild-type cells, markers for DNA breaks can persist at least to the first meiotic division. We also observe increased spontaneous S-phase damage in checkpoint mutants, which is repaired by recombination without activating checkpoint arrest. Our results suggest that fission yeast meiosis is exceptionally tolerant of DNA damage, and that some forms of spontaneous S-phase damage can be repaired by recombination without activating checkpoint arrest.  相似文献   

5.
The meiotic cell division reduces the chromosome number from diploid to haploid to form gametes for sexual reproduction. Although much progress has been made in understanding meiotic recombination and the two meiotic divisions, the processes leading up to recombination, including the prolonged pre-meiotic S phase (meiS) and the assembly of meiotic chromosome axes, remain poorly defined. We have used genome-wide approaches in Saccharomyces cerevisiae to measure the kinetics of pre-meiotic DNA replication and to investigate the interdependencies between replication and axis formation. We found that replication initiation was delayed for a large number of origins in meiS compared to mitosis and that meiotic cells were far more sensitive to replication inhibition, most likely due to the starvation conditions required for meiotic induction. Moreover, replication initiation was delayed even in the absence of chromosome axes, indicating replication timing is independent of the process of axis assembly. Finally, we found that cells were able to install axis components and initiate recombination on unreplicated DNA. Thus, although pre-meiotic DNA replication and meiotic chromosome axis formation occur concurrently, they are not strictly coupled. The functional separation of these processes reveals a modular method of building meiotic chromosomes and predicts that any crosstalk between these modules must occur through superimposed regulatory mechanisms.  相似文献   

6.
It has been established that meiotic recombination and chromosome segregation are inhibited when meiotic DNA replication is blocked. Here we demonstrate that early meiotic gene (EMG) expression is also inhibited by a block in replication. Since early meiotic genes are required to promote meiotic recombination and DNA division, the low expression of these genes may contribute to the block in meiotic progression. We have identified three Hur- (HU reduced recombination) mutants that fail to couple meiotic recombination and gene expression with replication. One of these mutations is in RPD3, a gene required to maintain meiotic gene repression in mitotic cells. Complete deletions of RPD3 and the repression adapter SIN3 permitted recombination and early meiotic gene expression when replication was inhibited with hydroxyurea (HU). Biochemical analysis showed that the Rpd3p-Sin3p-Ume6p repression complex does exist in meiotic cells. These observations suggest that repression of early meiotic genes by SIN3 and RPD3 is critical for the normal response to inhibited replication. A second response to inhibited replication has also been discovered. HU-inhibited replication reduced the accumulation of phospho-Ume6p in meiotic cells. Phosphorylation of Ume6p normally promotes interaction with the meiotic activator Ime1p, thereby activating EMG expression. Thus, inhibited replication may also reduce the Ume6p-dependent activation of EMGs. Taken together, our data suggest that both active repression and reduced activation combine to inhibit EMG expression when replication is inhibited.  相似文献   

7.
Among genes conserved from bacteria to mammals are those involved in replicating and repairing DNA. Following the complete sequencing of four hemiascomycetous yeast species during the course of the Genolevures 2 project, we have studied the conservation of 106 genes involved in replication, repair, and recombination in Candida glabrata, Kluyveromyces lactis, Debaryomyces hansenii, and Yarrowia lipolytica and compared them with their Saccharomyces cerevisiae orthologues. We found that proteins belonging to the replication fork and to the nucleotide excision repair pathway were-on the average-more conserved than proteins involved in the checkpoint response to DNA damage or in meiotic recombination. The meiotic recombination proteins Spo11p and Mre11p-Rad50p, involved in making meiotic double-strand breaks (DSBs), are conserved as is Mus81p, involved in resolving meiotic recombination intermediates. Interestingly, genes found in organisms in which DSB-repair is required for proper synapsis during meiosis are also found in C. glabrata, K. lactis, and D. hansenii but not in Y. lipolytica, suggesting that two modes of meiotic recombination have been selected during evolution of the hemiascomycetous yeasts. In addition, we found that SGS1 and TOP1, respectively, a DEAD/DEAH helicase and a type I topoisomerase, are duplicated in C. glabrata and that SRS2, a helicase involved in homologous recombination, is tandemly duplicated in K. lactis. Phylogenetic analyses show that the duplicated SGS1 gene evolved faster than the original gene, probably leading to a specialization of function of the duplicated copy.  相似文献   

8.
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity, but meiotic cells deliberately introduce them into their genome in order to initiate homologous recombination, which ensures proper homologous chromosome segregation. To minimize the risk of deleterious effects, meiotic DSB formation, processing and repair are tightly regulated in order to occur only at the right time and place. Furthermore, a highly conserved signal-transduction pathway, called meiotic recombination checkpoint, coordinates DSB repair with meiotic progression and promotes meiotic recombination.  相似文献   

9.
Farah JA  Cromie G  Steiner WW  Smith GR 《Genetics》2005,169(3):1261-1274
DNA palindromes are rare in humans but are associated with meiosis-specific translocations. The conserved Mre11/Rad50/Nbs1 (MRN) complex is likely directly involved in processing palindromes through the homologous recombination pathway of DNA repair. Using the fission yeast Schizosaccharomyces pombe as a model system, we show that a 160-bp palindrome (M-pal) is a meiotic recombination hotspot and is preferentially eliminated by gene conversion. Importantly, this hotspot depends on the MRN complex for full activity and reveals a new pathway for generating meiotic DNA double-strand breaks (DSBs), separately from the Rec12 (ortholog of Spo11) pathway. We show that MRN-dependent DSBs are formed at or near the M-pal in vivo, and in contrast to the Rec12-dependent breaks, they appear early, during premeiotic replication. Analysis of mrn mutants indicates that the early DSBs are generated by the MRN nuclease activity, demonstrating the previously hypothesized MRN-dependent breakage of hairpins during replication. Our studies provide a genetic and physical basis for frequent translocations between palindromes in human meiosis and identify a conserved meiotic process that constantly selects against palindromes in eukaryotic genomes.  相似文献   

10.
DNA double-strand breaks arise accidentally upon exposure of DNA to radiation and chemicals or result from faulty DNA metabolic processes. DNA breaks can also be introduced in a programmed manner, such as during the maturation of the immune system, meiosis, or cancer chemo- or radiotherapy. Cells have developed a variety of repair pathways, which are fine-tuned to the specific needs of a cell. Accordingly, vegetative cells employ mechanisms that restore the integrity of broken DNA with the highest efficiency at the lowest cost of mutagenesis. In contrast, meiotic cells or developing lymphocytes exploit DNA breakage to generate diversity. Here, we review the main pathways of eukaryotic DNA double-strand break repair with the focus on homologous recombination and its various subpathways. We highlight the differences between homologous recombination and end-joining mechanisms including non-homologous end-joining and microhomology-mediated end-joining and offer insights into how these pathways are regulated. Finally, we introduce noncanonical functions of the recombination proteins, in particular during DNA replication stress.  相似文献   

11.
In the budding yeast Saccharomyces cerevisiae initiation and progression through the mitotic cell cycle are determined by the sequential activity of the cyclin-dependent kinase Cdc28. The role of this kinase in entry and progression through the meiotic cycle is unclear, since all cdc28 temperature-sensitive alleles are leaky for meiosis. We used a "heat-inducible Degron system" to construct a diploid strain homozygous for a temperature-degradable cdc28-deg allele. We show that this allele is nonleaky, giving no asci at the nonpermissive temperature. We also show, using this allele, that Cdc28 is not required for premeiotic DNA replication and commitment to meiotic recombination. IME2 encodes a meiosis-specific hCDK2 homolog that is required for the correct timing of premeiotic DNA replication, nuclear divisions, and asci formation. Moreover, in ime2Delta diploids additional rounds of DNA replication and nuclear divisions are observed. We show that the delayed premeiotic DNA replication observed in ime2Delta diploids depends on a functional Cdc28. Ime2Delta cdc28-4 diploids arrest prior to initiation of premeiotic DNA replication and meiotic recombination. Ectopic overexpression of Clb1 at early meiotic times advances premeiotic DNA replication, meiotic recombination, and nuclear division, but the coupling between these events is lost. The role of Ime2 and Cdc28 in initiating the meiotic pathway is discussed.  相似文献   

12.
During meiosis, DNA replication is followed by two successive rounds of chromosome segregation (meiosis I and II), which give rise to genetically diverse haploid gametes. The prophase of the first meiotic division is highly regulated and alignment and synapsis of the homologous chromosomes during this stage are mediated by the synaptonemal complex. Incorrect assembly of the synaptonemal complex results in cell death, impaired meiotic recombination and aneuploidy. Oocytes with meiotic defects often survive the first meiotic prophase and give rise to aneuploid gametes. Similarly affected spermatocytes, on the other hand, almost always undergo apoptosis at a male-specific meiotic checkpoint, located specifically at epithelial stage IV during spermatogenesis. Many examples of this stage IV-specific arrest have been described for several genetic mouse models in which DNA repair or meiotic recombination are abrogated. Interestingly, in C. elegans, meiotic recombination and synapsis are monitored by two separate checkpoint pathways. Therefore we studied spermatogenesis in several knockout mice (Sycp1(-/-), Sycp3(-/-), Smc1beta(-/-) and Sycp3/Sycp1 and Sycp3/Smc1beta double-knockouts) that are specifically defective in meiotic pairing and synapsis. Like for recombination defects, we found that all these genotypes also specifically arrest at epithelial stage IV. It seems that the epithelial stage IV checkpoint eliminates spermatocytes that fail a certain quality check, being either synapsis or DNA damage related.  相似文献   

13.
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.  相似文献   

14.
The Saccharomyces cerevisiae MUM2 gene is essential for meiotic, but not mitotic, DNA replication and thus sporulation. Genetic interactions between MUM2 and a component of the origin recognition complex and polymerase alpha-primase suggest that MUM2 influences the function of the DNA replication machinery. Early meiotic gene expression is induced to a much greater extent in mum2 cells than in meiotic cells treated with the DNA synthesis inhibitor hydroxyurea. This result indicates that the mum2 meiotic arrest is downstream of the arrest induced by hydroxyurea and suggests that DNA synthesis is initiated in the mutant. Genetic analyses indicate that the recombination that occurs in mum2 mutants is dependent on the normal recombination machinery and on synaptonemal complex components and therefore is not a consequence of lesions created by incompletely replicated DNA. Both meiotic ectopic and allelic recombination are similarly reduced in the mum2 mutant, and the levels are consistent with the levels of meiosis-specific DSBs that are generated. Cytological analyses of mum2 mutants show that chromosome pairing and synapsis occur, although at reduced levels compared to wild type. Given the near-wild-type levels of meiotic gene expression, pairing, and synapsis, we suggest that the reduction in DNA replication is directly responsible for the reduced level of DSBs and meiotic recombination.  相似文献   

15.
The budding yeast Saccharomyces cerevisiae has been the principal organism used in experiments to examine genetic recombination in eukaryotes. Studies over the past decade have shown that meiotic recombination and probably most mitotic recombination arise from the repair of double-strand breaks (DSBs). There are multiple pathways by which such DSBs can be repaired, including several homologous recombination pathways and still other nonhomologous mechanisms. Our understanding has also been greatly enriched by the characterization of many proteins involved in recombination and by insights that link aspects of DNA repair to chromosome replication. New molecular models of DSB-induced gene conversion are presented. This review encompasses these different aspects of DSB-induced recombination in Saccharomyces and attempts to relate genetic, molecular biological, and biochemical studies of the processes of DNA repair and recombination.  相似文献   

16.
A novel gene, prom-1, was isolated in a screen for Caenorhabditis elegans mutants with increased apoptosis in the germline. prom-1 encodes an F-box protein with limited homology to the putative human tumor suppressor FBXO47. Mutations in the prom-1 locus cause a strong reduction in bivalent formation, which results in increased embryonic lethality and a Him phenotype. Furthermore, retarded and asynchronous nuclear reorganization as well as reduced homologous synapsis occur during meiotic prophase. Accumulation of recombination protein RAD-51 in meiotic nuclei suggests disturbed repair of double-stranded DNA breaks. Nuclei in prom-1 mutant gonads timely complete mitotic proliferation and premeiotic replication, but they undergo prolonged delay upon meiotic entry. We, therefore, propose that prom-1 regulates the timely progression through meiotic prophase I and that in its absence the recognition of homologous chromosomes is strongly impaired.  相似文献   

17.
Meiosis is a specialized eukaryotic cell division, in which diploid cells undergo a single round of DNA replication and two rounds of nuclear division to produce haploid gametes. In most eukaryotes, the core events of meiotic prophase I are chromosomal pairing,synapsis and recombination. To ensure accurate chromosomal segregation, homologs have to identify and align along each other at the onset of meiosis. Although much progress has been made in elucidating meiotic processes, information on the mechanisms underlying chromosome pairing is limited in contrast to the meiotic recombination and synapsis events. Recent research in many organisms indicated that centromere interactions during early meiotic prophase facilitate homologous chromosome pairing, and functional centromere is a prerequisite for centromere pairing such as in maize. Here, we summarize the recent achievements of chromosome pairing research on plants and other organisms, and outline centromere interactions, nuclear chromosome orientation,and meiotic cohesin, as main determinants of chromosome pairing in early meiotic prophase.  相似文献   

18.
Recombinational repair is a well conserved DNA repair mechanism present in all living organisms. Repair by homologous recombination is generally accurate as it uses undamaged homologous DNA molecule as a repair template. In Escherichia coli homologous recombination repairs both the double-strand breaks and single-strand gaps in DNA. DNA double-strand breaks (DSB) can be induced upon exposure to exogenous sources such as ionizing radiation or endogenous DNA-damaging agents including reactive oxygen species (ROS) as well as during natural biological processes like conjugation. However, the bulk of double strand breaks are formed during replication fork collapse encountering an unrepaired single strand gap in DNA. Under such circumstances DNA replication on the damaged template can be resumed only if supported by homologous recombination. This functional cooperation of homologous recombination with replication machinery enables successful completion of genome duplication and faithful transmission of genetic material to a daughter cell. In eukaryotes, homologous recombination is also involved in essential biological processes such as preservation of genome integrity, DNA damage checkpoint activation, DNA damage repair, DNA replication, mating type switching, transposition, immune system development and meiosis. When unregulated, recombination can lead to genome instability and carcinogenesis.  相似文献   

19.
Homologous recombination is a high fidelity, template-dependent process that is used in repair of damaged DNA, recovery of broken replication forks, and disjunction of homologous chromosomes in meiosis. Much of what is known about recombination genes and mechanisms comes from studies on baker's yeast. Ustilago maydis, a basidiomycete fungus, is distant evolutionarily from baker's yeast and so offers the possibility of gaining insight into recombination from an alternative perspective. Here we have surveyed the genome of U. maydis to determine the composition of its homologous recombination system. Compared to baker's yeast, there are fundamental differences in the function as well as in the repertoire of dedicated components. These include the use of a BRCA2 homolog and its modifier Dss1 rather than Rad52 as a mediator of Rad51, the presence of only a single Rad51 paralog, and the absence of Dmc1 and auxiliary meiotic proteins.  相似文献   

20.
Replication protein A is sequentially phosphorylated during meiosis   总被引:1,自引:0,他引:1       下载免费PDF全文
Phosphorylation of the cellular single-stranded DNA-binding protein, replication protein A (RPA), occurs during normal mitotic cell cycle progression and also in response to genotoxic stress. In budding yeast, these reactions require the ATM homolog Mec1, a central regulator of the DNA replication and DNA damage checkpoint responses. We now demonstrate that the middle subunit of yeast RPA (Rfa2) becomes phosphorylated in two discrete steps during meiosis. Primary Rfa2 phosphorylation occurs early in meiotic progression and is independent of DNA replication, recombination and Mec1. In contrast, secondary Rfa2 phosphorylation is activated upon initiation of recombination and requires Mec1. While the primary Rfa2 phosphoisomer is detectable throughout most of meiosis, the secondary Rfa2 phosphoisomer is only transiently generated and begins to disappear soon after recombination is complete. Extensive secondary Rfa2 phosphorylation is observed in a recombination mutant defective for the pachytene checkpoint, indicating that Mec1-dependent Rfa2 phosphorylation does not function to maintain meiotic delay in response to DNA double-strand breaks. Our results suggest that Mec1-dependent RPA phosphorylation could be involved in regulating recombination rather than cell cycle or meiotic progression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号