首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Bidirectional signaling between the cytoskeleton and integrins   总被引:32,自引:0,他引:32  
Clustering of integrins into focal adhesions and focal complexes is regulated by the actin cytoskeleton. In turn, actin dynamics are governed by Rho family GTPases. Integrin-mediated adhesion activates these GTPases, triggering assembly of filopodia, lamellipodia and stress fibers. In the past few years, signaling pathways have begun to be identified that promote focal adhesion disassembly and integrin dispersal. Many of these pathways result in decreased myosin-mediated cell contractility.  相似文献   

2.
3.
Ephrins are cell-surface tethered guidance cues that bind to Eph receptor tyrosine kinases in trans on opposing cells. In the developing nervous system, the Eph-ephrin signaling system controls a large variety of cellular responses including contact-mediated attraction or repulsion, adhesion or de-adhesion, and migration. Eph-ephrin signaling can be bidirectional, and is subject to modulation by ectodomain cleavage of ephrins and by Eph-ephrin endocytosis. Recent work has highlighted the importance of higher-order clustering of functional Eph-ephrin complexes and the requirement for Rho GTPases as signal transducers. Co-expression of Ephs and ephrins within the same cellular membrane can result in Eph-ephrin cis interaction or in lateral segregation into distinct domains from where they signal opposing effects on the axon.  相似文献   

4.
Peroxiredoxins (Prdxs) are a family of small (22-27kDa) non-seleno peroxidases currently known to possess six mammalian isoforms. Although their individual roles in cellular redox regulation and antioxidant protection are quite distinct, they all catalyze peroxide reduction of H2O2, organic hydroperoxides and peroxynitrite. They are found to be expressed ubiquitously and in high levels, suggesting that they are both an ancient and important enzyme family. Prdxs can be divided into three major subclasses: typical 2-cysteine (2-Cys) Prdxs (Prdx1-4), atypical 2-Cys Prdx (Prdx 5) and 1-Cys Prdx (Prdx 6). Recent evidence suggests that 2-Cys peroxiredoxins are more than “just simple peroxidases”. This hypothesis has been discussed elegantly in recent review articles, considering “over”-oxidation of the protonated thiolate peroxidatic cysteine and post-translational modification of Prdxs as processes initiating a mechanistic switch from peroxidase to chaperon function. The process of over-oxidation of the peroxidatic cysteine (CP) occurs during catalysis in the presence of thioredoxin (Trx), thus rendering the sulfenic moiety to sulfinic acid , which can be reduced by sulfiredoxin (Srx). However, further oxidation to sulfonic acid is believed to promote Prdx degradation or, as recently shown, the formation of oligomeric peroxidase-inactive chaperones10 with questionable H2O2-scavenging capacity. In the light of this and given that Prdx1 has recently been shown by us and by others to interact directly with signaling molecules, we will explore the possibility that H2O2 regulates signaling in the cell in a temporal and spatial fashion via oxidizing Prdx1. Therefore, this review will focus on H2O2 modulating cell signaling via Prdxs by discussing: a) the activity of Prdxs towards H2O2; b) sub cellular localization and availability of other peroxidases, such as catalase or glutathione peroxidases; c) the availability of Prdxs reducing systems such as thioredoxin and sulfiredoxin and lastly, d) Prdx1 interacting signaling molecules.  相似文献   

5.
6.
Bone homeostasis requires a delicate balance between the activities of bone-resorbing osteoclasts and bone-forming osteoblasts. Various molecules coordinate osteoclast function with that of osteoblasts; however, molecules that mediate osteoclast-osteoblast interactions by simultaneous signal transduction in both cell types have not yet been identified. Here we show that osteoclasts express the NFATc1 target gene Efnb2 (encoding ephrinB2), while osteoblasts express the receptor EphB4, along with other ephrin-Eph family members. Using gain- and loss-of-function experiments, we demonstrate that reverse signaling through ephrinB2 into osteoclast precursors suppresses osteoclast differentiation by inhibiting the osteoclastogenic c-Fos-NFATc1 cascade. In addition, forward signaling through EphB4 into osteoblasts enhances osteogenic differentiation, and overexpression of EphB4 in osteoblasts increases bone mass in transgenic mice. These data demonstrate that ephrin-Eph bidirectional signaling links two major molecular mechanisms for cell differentiation--one in osteoclasts and the other in osteoblasts--thereby maintaining bone homeostasis.  相似文献   

7.
Polarized cell migration results from the transduction of extra-cellular cues promoting the activation of Rho GTPases with the intervention of multidomain proteins, including guanine exchange factors. P-Rex1 and P-Rex2 are Rac GEFs connecting Gbetagamma and phosphatidylinositol 3-kinase signaling to Rac activation. Their complex architecture suggests their regulation by protein-protein interactions. Novel mechanisms of activation of Rho GTPases are associated with mammalian target of rapamycin (mTOR), a serine/threonine kinase known as a central regulator of cell growth and proliferation. Recently, two independent multiprotein complexes containing mTOR have been described. mTORC1 links to the classical rapamycin-sensitive pathways relevant for protein synthesis; mTORC2 links to the activation of Rho GTPases and cytoskeletal events via undefined mechanisms. Here we demonstrate that P-Rex1 and P-Rex2 establish, through their tandem DEP domains, interactions with mTOR, suggesting their potential as effectors in the signaling of mTOR to Rac activation and cell migration. This possibility was consistent with the effect of dominant-negative constructs and short hairpin RNA-mediated knockdown of P-Rex1, which decreased mTOR-dependent leucine-induced activation of Rac and cell migration. Rapamycin, a widely used inhibitor of mTOR signaling, did not inhibit Rac activity and cell migration induced by leucine, indicating that P-Rex1, which we found associated to both mTOR complexes, is only active when in the mTORC2 complex. mTORC2 has been described as the catalytic complex that phosphorylates AKT/PKB at Ser-473 and elicits activation of Rho GTPases and cytoskeletal reorganization. Thus, P-Rex1 links mTOR signaling to Rac activation and cell migration.  相似文献   

8.
Inactivating mutations in the neurofibromatosis 2 (NF2) tumor suppressor gene results in the development of schwannomas and meningiomas. Using NF2-deficient meningioma cells and tumors, together with the normal cellular counterparts that meningiomas derive, arachnoid cells, we identified merlin as a novel negative regulator of mTOR complex 1 (mTORC1). We now show that merlin positively regulates the kinase activity of mTORC2, a second functionally distinct mTOR complex, and that downstream phosphorylation of mTORC2 substrates, including Akt, is reduced upon acute merlin deficiency in cells. In response to general growth factor stimulation, Akt signaling is attenuated in merlin RNA interference-suppressed human arachnoid and Schwann cells by mechanisms mediated by hyperactive mTORC1 and impaired mTORC2. Moreover, Akt signaling is impaired differentially in a cell type-dependent manner in response to distinct growth factor stimuli. However, contrary to activation of mTORC1, the attenuated mTORC2 signaling profiles exhibited by normal arachnoid and Schwann cells in response to acute merlin loss were not consistently reflected in NF2-deficient meningiomas and schwannomas, suggesting additional genetic events may have been acquired in tumors after initial merlin loss. This finding contrasts with another benign tumor disorder, tuberous sclerosis complex, which exhibits attenuated mTORC2 signaling profiles in both cells and tumors. Finally, we examined rapamycin, as well as the mTOR kinase inhibitor, Torin1, targeting both mTOR complexes to identify the most efficacious class of compounds for blocking mTOR-mediated signaling and proliferation in merlin-deficient meningioma cells. These studies may ultimately aid in the development of suitable therapeutics for NF2-associated tumors.  相似文献   

9.
10.
Recently, we demonstrated that an early event in the CTL-target cell (TC) interaction is loss of TC adherence to substrate. This loss of adhesion is Ag-specific, but distinct from the lytic event because it can ensue in nominally Ca2+-free medium. In this study, we examine further the mechanism of CTL-induced loss of adhesion, concentrating mainly on the signal transduction pathway. Based on the differential sensitivity of CTL to extracellular Ca2+, protein kinase C activation/depletion and inhibition by anti-Lyt-2 (CD8) or anti-CTL receptor (TCR) reagents, we demonstrate that CTL-induced loss of adhesion can be initiated through multiple activation pathways. Although CTL-mediated lysis is restricted to a Ca2+ and protein kinase C-dependent signaling mechanism, CTL-induced loss of adhesion is initiated in the presence or absence of extracellular Ca2+ or functional protein kinase C activity. Furthermore, although under physiologic conditions, anti-CD8 or anti-TCR reagents strongly block both CTL activities, under non-lytic conditions, they fail to inhibit the ability of CTL to promote loss of adhesion. These findings implicate the participation of additional CTL-TC ligand interactions resulting in loss of adhesion, and thus, provide further evidence to support the hypothesis that CTL-induced loss of adhesion can be initiated through multiple triggering pathways.  相似文献   

11.
12.
Incomplete urethral tubularization (hypospadias) and anorectal abnormalities are two common and poorly understood birth defects that affect the extreme caudal midline of the human embryo. We now show that cell surface molecules essential for proper axon pathfinding in the developing nervous system, namely ephrin-B2 and the ephrin receptors EphB2 and EphB3, also play major roles in cell adhesion events that tubularize the urethra and partition the urinary and alimentary tracts. Mice carrying mutations which disrupt the bidirectional signals that these molecules transduce develop with variably penetrant severe hypospadias and incomplete midline fusion of the primitive cloaca. We further show that animals completely lacking ephrin-B2 reverse signaling present a fully penetrant failure in cloacal septation. This results in severe anorectal malformations characterized by an absence of the terminal-most hindgut (rectum) and formation of a fistula that aberrantly connects the intestines to the urethra at the base of the bladder. Consistent with an apparent requisite for both forward and reverse signaling in these caudal remodeling events, EphB2 and ephrin-B2 are coexpressed at the midline in the fusing urethral/cloacal endoderm and underlying lateral mesoderm of the urorectal septum that migrates toward the caudal midline as the cloaca septates. Our data thus indicate that B-subclass Eph and ephrin molecules play an important role in these clinically significant midline cell-cell adhesion and fusion events.  相似文献   

13.
Different signals in addition to the antigenic signal are required to initiate an immunological reaction. In the context of sulfamethoxazole allergy, the Ag is thought to be derived from its toxic nitroso metabolite, but little is known about the costimulatory signals, including those associated with dendritic cell maturation. In this study, we demonstrate increased CD40 expression, but not CD80, CD83, or CD86, with dendritic cell surfaces exposed to sulfamethoxazole (250-500 microM) and the protein-reactive metabolite nitroso sulfamethoxazole (1-10 microM). Increased CD40 expression was not associated with apoptosis or necrosis, or glutathione depletion. Covalently modified intracellular proteins were detected when sulfamethoxazole was incubated with dendritic cells. Importantly, the enzyme inhibitor 1-aminobenzotriazole prevented the increase in CD40 expression with sulfamethoxazole, but not with nitroso sulfamethoxazole or LPS. The enzymes CYP2C9, CYP2C8, and myeloperoxidase catalyzed the conversion of sulfamethoxazole to sulfamethoxazole hydroxylamine. Myeloperoxidase was expressed at high levels in dendritic cells. Nitroso sulfamethoxazole immunogenicity was inhibited in mice with a blocking anti-CD40L Ab. In addition, when a primary nitroso sulfamethoxazole-specific T cell response using drug-naive human cells was generated, the magnitude of the response was enhanced when cultures were exposed to a stimulatory anti-CD40 Ab. Finally, increased CD40 expression was 5-fold higher on nitroso sulfamethoxazole-treated dendritic cells from an HIV-positive allergic patient compared with volunteers. These data provide evidence of a link between localized metabolism, dendritic cell activation, and drug immunogenicity.  相似文献   

14.
15.
Targeting of cancer stem cells (CSCs) has the potential to address the recalcitrance of pancreatic cancer to chemotherapy. In this issue of Cell Stem Cell, Lonardo et al. (2011) demonstrate that Nodal/Activin signaling is crucial for the maintenance and tumor-initiating capacity of pancreatic CSCs.  相似文献   

16.
Notch signaling as a therapeutic target   总被引:7,自引:0,他引:7  
  相似文献   

17.
We used cDNA microarray analysis to screen for FGF target genes in Xenopus embryos treated with the FGFR1 inhibitor SU5402, and identified neurotrophin receptor homolog (NRH) as an FGF target. Causing gain of NRH function by NRH mRNA or loss of NRH function using a Morpholino antisense-oligonucleotide (Mo) led to gastrulation defects without affecting mesoderm differentiation. Depletion of NRH by the Mo perturbed the polarization of cells in the dorsal marginal zone (DMZ), thereby inhibiting the intercalation of the cells during convergent extension as well as the filopodia formation on DMZ cells. Deletion analysis showed that the carboxyl-terminal region of NRH, which includes the "death domain," was necessary and sufficient to rescue gastrulation defects and to induce the protrusive cell morphology. Furthermore, we found that the FGF signal was both capable of inducing filopodia in animal cap cells, where they do not normally form, and necessary for filopodia formation in DMZ cells. Finally, we demonstrated that FGF required NRH function to induce normal DMZ cell morphology. This study is the first to identify an in vivo role for FGF in the regulation of cell morphology, and we have linked this function to the control of gastrulation cell movements via NRH.  相似文献   

18.
Ubiquitylation and cell signaling   总被引:19,自引:0,他引:19  
Haglund K  Dikic I 《The EMBO journal》2005,24(19):3353-3359
  相似文献   

19.
The endoplasmic reticulum (ER) and acidic organelles (endo-lysosomes) act as separate Ca2+ stores that release Ca2+ in response to the second messengers IP3 and cADPR (ER) or NAADP (acidic organelles). Typically, trigger Ca2+ released from acidic organelles by NAADP subsequently recruits IP3 or ryanodine receptors on the ER, an anterograde signal important for amplification and Ca2+ oscillations/waves. We therefore investigated whether the ER can signal back to acidic organelles, using organelle pH as a reporter of NAADP action. We show that Ca2+ released from the ER can activate the NAADP pathway in two ways: first, by stimulating Ca2+-dependent NAADP synthesis; second, by activating NAADP-regulated channels. Moreover, the differential effects of EGTA and BAPTA (slow and fast Ca2+ chelators, respectively) suggest that the acidic organelles are preferentially activated by local microdomains of high Ca2+ at junctions between the ER and acidic organelles. Bidirectional organelle communication may have wider implications for endo-lysosomal function as well as the generation of Ca2+ oscillations and waves.  相似文献   

20.

Background

Frontline treatment of small cell lung carcinoma (SCLC) relies heavily on chemotherapeutic agents and radiation therapy. Though SCLC patients respond well to initial cycles of chemotherapy, they eventually develop resistance. Identification of novel therapies against SCLC is therefore imperative.

Methods and Findings

We have designed a bioluminescence-based cell viability assay for high-throughput screening of anti-SCLC agents. The assay was first validated via standard pharmacological agents and RNA interference using two human SCLC cell lines. We then utilized the assay in a high-throughput screen using the LOPAC1280 compound library. The screening identified several drugs that target classic cancer signaling pathways as well as neuroendocrine markers in SCLC. In particular, perturbation of dopaminergic and serotonergic signaling inhibits SCLC cell viability.

Conclusions

The convergence of our pharmacological data with key SCLC pathway components reiterates the importance of neurotransmitter signaling in SCLC etiology and points to possible leads for drug development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号