共查询到20条相似文献,搜索用时 15 毫秒
1.
The cholesterol content of human erythrocyte membranes has been modified by incubation of intact cells with sonicated egg phosphatidylcholine/cholesterol vesicles and with egg phosphatidylcholine vesicles. (Na+ + K+)-ATPase ATP hydrolyzing activity was measured as a function of membrane cholesterol content. High membrane cholesterol inhibits the ATPase activity of the enzyme and low membrane cholesterol activates that enzyme activity. The most likely mechanism of inhibition is suggested to comprise direct cholesterol-protein interactions which lead to a low activity conformation. Ouabain binding studies show that the inhibition is not due to a loss of enzyme from the membrane. 相似文献
2.
Acidocalcisomes are dense, acidic organelles with a high concentration of phosphorus present as pyrophosphate and polyphosphate complexed with calcium and other cations. Acidocalcisomes have been linked to the contractile vacuole complex in Chlamydomonas reinhardtii, Dictyostelium discoideum, and Trypanosoma cruzi. A microtubule- and cyclic AMP-mediated fusion of acidocalcisomes to the contractile vacuole complex in T. cruzi results in translocation of aquaporin and the resulting water movement which, in addition to swelling of acidocalcisomes, is responsible for the volume reversal not accounted for by efflux of osmolytes. Polyphosphate hydrolysis occurs during hyposmotic stress, probably increasing the osmotic pressure of the contractile vacuole and facilitating water movement. 相似文献
3.
Grellier P Vendeville S Joyeau R Bastos IM Drobecq H Frappier F Teixeira AR Schrével J Davioud-Charvet E Sergheraert C Santana JM 《The Journal of biological chemistry》2001,276(50):47078-47086
Trypanosoma cruzi is an intracellular protozoan parasite able to invade a wide variety of mammalian cells. To have access to the target organs/cells, the parasite must cross the basal laminae and the extracellular matrix (ECM). We previously characterized an 80-kDa proteinase (Tc80) secreted by the infective trypomastigotes that hydrolyzes native collagens and might be involved in infection by degrading ECM components. Here, we present evidence indicating a role for Tc80 in the invasion of nonphagocytic cells. Tc80 was classified as a member of the prolyl oligopeptidase (POP) family of serine proteases and was also found to hydrolyze fibronectin. Selective inhibitors for POP Tc80 were synthesized that blocked parasite entry into cells. Blockage occurred when trypomastigotes were preincubated with irreversible inhibitors but not after host cell preincubation, and the blockage correlated with inhibition of POP Tc80 activity in treated parasites. These data and the enzyme location inside a vesicular compartment close to the flagellar pocket, a specialized domain in endocytosis/exocytosis, strongly suggest a role for POP Tc80 in the maturation of parasite protein(s) and/or, after secretion, in a local action on parasite or host cell/ECM components required for invasion. 相似文献
4.
M A Barbieri E M Lammel E L Isola F Bertini 《Biochemical and biophysical research communications》1992,187(1):108-113
Metacyclogenesis of Trypanosoma cruzi epimastigotes was evaluated in a medium supplemented with Triatoma infestans intestinal homogenate in the presence of sugars and derivates as are mannose, galactose, fucose, N-acetylglucosamine, mannose 6-P, and fructose 1,6-P at a concentration of 25 mM. Only mannose significantly inhibited metacyclogenesis. Sodium metaperiodate and trypsin treatment of the intestinal homogenate also inhibited differentiation. In our opinion there exists a proteinic factor in the intestine of the vector that promotes metacyclogenesis and is incorporated by the parasite. Treatment of the intestinal homogenate with alkaline phosphatase had no effect. Instead, high ionic strength in the medium (0.4 M NaCl) strongly inhibited metacyclogenesis indicating that, in these conditions, the possible binding of the differentiation factor to the parasite surface was inhibited. 相似文献
5.
Aoki Mdel P Cano RC Pellegrini AV Tanos T Guiñazú NL Coso OA Gea S 《Microbes and infection / Institut Pasteur》2006,8(7):1723-1731
We have recently reported that Trypanosoma cruzi infection protects cardiomyocytes against apoptosis induced by growth factor deprivation. Cruzipain, a major parasite antigen, reproduced this survival effect by a Bcl-2-dependent mechanism. In this study, we have investigated the molecular mechanisms of cruzipain-induced cardiomyocyte protection. Neonatal BALB/c mouse cardiac myocytes were cultured under minimum serum conditions in the presence of cruzipain or T. cruzi (Tulahuen strain). Some cultures were pretreated with the phosphatidylinositol 3-kinase (PI3K) inhibitor Ly294002 or specific inhibitors of the mitogen-activated protein kinase (MAPK) family members such as the mitogen-activated protein kinase kinase (MEK1) inhibitor PD098059, Jun N-terminal kinase (JNK) inhibitor SP600125, p38 MAPK inhibitor SB203580. Inhibition of PI3K and MEK1 but not JNK or p38 MAPK increased the apoptotic rate of cardiomyocytes treated with cruzipain. Phosphorylation of Akt, a major target of PI3K, and ERK1/2, MEK1-targets, was achieved at 15 min and 5 min, respectively. In parallel, these kinases were strongly phosphorylated by T. cruzi infection. In cultures treated with cruzipain, cleavage of caspase 3 was considerably diminished after serum starvation; Bcl-2 overexpression was inhibited by PD098059 but not by Ly294002, whereas Bad phosphorylation and Bcl-xL expression were increased and differentially modulated by both inhibitors. The results suggest that cruzipain exerts its anti-apoptotic property in cardiac myocytes at least by PI3K/Akt and MEK1/ERK1/2 signaling pathways. We further identified a differential modulation of Bcl-2 family members by these two signaling pathways. 相似文献
6.
Nagajyothi F Weiss LM Silver DL Desruisseaux MS Scherer PE Herz J Tanowitz HB 《PLoS neglected tropical diseases》2011,5(2):e953
Background
Trypanosoma cruzi, an intracellular protozoan parasite that infects humans and other mammalian hosts, is the etiologic agent in Chagas disease. This parasite can invade a wide variety of mammalian cells. The mechanism(s) by which T. cruzi invades its host cell is not completely understood. The activation of many signaling receptors during invasion has been reported; however, the exact mechanism by which parasites cross the host cell membrane barrier and trigger fusion of the parasitophorous vacuole with lysosomes is not understood.Methodology/Principal Findings
In order to explore the role of the Low Density Lipoprotein receptor (LDLr) in T. cruzi invasion, we evaluated LDLr parasite interactions using immunoblot and immunofluorescence (IFA) techniques. These experiments demonstrated that T. cruzi infection increases LDLr levels in infected host cells, inhibition or disruption of LDLr reduces parasite load in infected cells, T. cruzi directly binds recombinant LDLr, and LDLr-dependent T. cruzi invasion requires PIP2/3. qPCR analysis demonstrated a massive increase in LDLr mRNA (8000 fold) in the heart of T. cruzi infected mice, which is observed as early as 15 days after infection. IFA shows a co-localization of both LDL and LDLr with parasites in infected heart.Conclusions/Significance
These data highlight, for the first time, that LDLr is involved in host cell invasion by this parasite and the subsequent fusion of the parasitophorous vacuole with the host cell lysosomal compartment. The model suggested by this study unifies previous models of host cell invasion for this pathogenic protozoon. Overall, these data indicate that T. cruzi targets LDLr and its family members during invasion. Binding to LDL likely facilitates parasite entry into host cells. The observations in this report suggest that therapeutic strategies based on the interaction of T. cruzi and the LDLr pathway should be pursued as possible targets to modify the pathogenesis of disease following infection. 相似文献7.
The increase in mannose receptor recycling favors arginase induction and Trypanosoma cruzi survival in macrophages 总被引:1,自引:0,他引:1
Garrido VV Dulgerian LR Stempin CC Cerbán FM 《International journal of biological sciences》2011,7(9):1257-1272
The macrophage mannose receptor (MR) is a pattern recognition receptor of the innate immune system that binds to microbial structures bearing mannose, fucose and N-acetylglucosamine on their surface. Trypanosoma cruzi antigen cruzipain (Cz) is found in the different developmental forms of the parasite. This glycoprotein has a highly mannosylated C-terminal domain that participates in the host-antigen contact. Our group previously demonstrated that Cz-macrophage (Mo) interaction could modulate the immune response against T. cruzi through the induction of a preferential metabolic pathway. In this work, we have studied in Mo the role of MR in arginase induction and in T. cruzi survival using different MR ligands. We have showed that pre-incubation of T. cruzi infected cells with mannose-Bovine Serum Albumin (Man-BSA, MR specific ligand) biased nitric oxide (NO)/urea balance towards urea production and increased intracellular amastigotes growth. The study of intracellular signals showed that pre-incubation with Man-BSA in T. cruzi J774 infected cells induced down-regulation of JNK and p44/p42 phosphorylation and increased of p38 MAPK phosphorylation. These results are coincident with previous data showing that Cz also modifies the MAPK phosphorylation profile induced by the parasite. In addition, we have showed by confocal microscopy that Cz and Man-BSA enhance MR recycling. Furthermore, we studied MR behavior during T. cruzi infection in vivo. MR was up-regulated in F4/80+ cells from T. cruzi infected mice at 13 and 15 days post infection. Besides, we investigated the effect of MR blocking antibody in T. cruzi infected peritoneal Mo. Arginase activity and parasite growth were decreased in infected cells pre-incubated with anti-MR antibody as compared with infected cells treated with control antibody. Therefore, we postulate that during T. cruzi infection, Cz may contact with MR, increasing MR recycling which leads to arginase activity up-regulation and intracellular parasite growth. 相似文献
8.
Autophagy is involved in nutritional stress response and differentiation in Trypanosoma cruzi 总被引:2,自引:0,他引:2
Alvarez VE Kosec G Sant'Anna C Turk V Cazzulo JJ Turk B 《The Journal of biological chemistry》2008,283(6):3454-3464
Autophagy is the major mechanism used by eukaryotic cells to degrade and recycle proteins and organelles. Bioinformatics analysis of the genome of the protozoan parasite Trypanosoma cruzi revealed the presence of all components of the Atg8 conjugation system, whereas Atg12, Atg5, and Atg10 as the major components of the Atg12 pathway could not be identified. The two TcATG4 (autophagin) homologs present in the genome were found to correctly process the two ATG8 homologs after the conserved Gly residue. Functional studies revealed that both ATG4 homologues but only one T. cruzi ATG8 homolog (TcATG8.1) complemented yeast deletion strains. During starvation of the parasite, TcAtg8.1, but not TcAtg8.2, was found by immunofluorescence to be located in autophagosome-like vesicles. This confirms its function as an Atg8/LC3 homolog and its potential to be used as an autophagosomal marker. Most importantly, autophagy is involved in differentiation between developmental stages of T. cruzi, a process that is essential for parasite maintenance and survival. These findings suggest that the autophagy pathway could represent a target for a novel chemotherapeutic strategy against Chagas disease. 相似文献
9.
Secretion by Trypanosoma cruzi of a peptidyl-prolyl cis-trans isomerase involved in cell infection. 总被引:2,自引:0,他引:2
下载免费PDF全文

Macrophage infectivity potentiators are membrane proteins described as virulence factors in bacterial intracellular parasites, such as Legionella and Chlamydia. These factors share amino acid homology to eukaryotic peptidyl-prolyl cis-trans isomerases that are inhibited by FK506, an inhibitor of signal transduction in mammalian cells with potent immunosuppressor activity. We report here the characterization of a protein released into the culture medium by the infective stage of the protozoan intracellular parasite Trypanosoma cruzi. The protein possesses a peptidyl-prolyl cis-trans isomerase activity that is inhibited by FK506 and its non-immunosuppressing derivative L-685,818. The corresponding gene presents sequence homology with bacterial macrophage infectivity potentiators. The addition of the protein, produced heterologously in Escherichia coli, to cultures of trypomastigotes and simian epithelial or HeLa cells enhances invasion of the mammalian cells by the parasites. Antibodies raised in mice against the T.cruzi isomerase greatly reduce infectivity. A similar reduction of infectivity is obtained by addition to the cultures of FK506 and L-685,818. We concluded that the T.cruzi isomerase is involved in cell invasion. 相似文献
10.
11.
Signal transduction events triggered in mammalian host cells by the obligate intracellular parasite Trypanosoma cruzi are required for invasion. Infective T. cruzi trypomastigotes elicit Ca2+ signaling in mammalian host cells and activate transforming growth factor-beta receptor signaling pathways. The elevation of Ca2+ in T. cruzi, induced by host-cell contact, is also required for invasion, extending the concept of host-pathogen 'cross-talk' to invasive protozoan pathogens. 相似文献
12.
Gallo G Ramos TC Tavares F Rocha AA Machi E Schenkman S Bahia D Pesquero JB Würtele M 《Biochemical and biophysical research communications》2011,(3):427-431
Protein tyrosine phosphatases (PTPs) form a large family of enzymes involved in the regulation of numerous cellular functions in eukaryotes. Several protein tyrosine phosphatases have been recently identified in trypanosomatides. Here we report the purification and biochemical characterization of TcPTP1, a protein tyrosine phosphatase from Trypanosoma cruzi, the causing agent of Chagas’ disease. The enzyme was cloned and expressed recombinantly in Escherichia coli and purified by Ni-affinity chromatography. Biochemical characterization of recombinant TcPTP1 with the PTP pseudo-substrate pNPP allowed the estimation of a Michaelis–Menten constant Km of 4.5 mM and a kcat of 2.8 s−1. We were able to demonstrate inhibition of the enzyme by the PTP1b inhibitor BZ3, which on its turn was able to accelerate the differentiation of epimastigotes into metacyclic forms of T. cruzi induced by nutritional stress. Additionally, this compound was able to inhibit by 50% the infectivity of T. cruzi trypomastigotes in a separate cellular assay. In conclusion our results indicate that TcPTP1 is of importance for cellular differentiation and invasivity of this parasite and thus is a valid target for the rational drug design of potential antibiotics directed against T. cruzi. 相似文献
13.
14.
Covarrubias C Cortez M Ferreira D Yoshida N 《International journal for parasitology》2007,37(14):1609-1616
Outbreaks of severe acute Chagas’ disease acquired by oral infection, leading to death in some cases, have occurred in recent years. Using the mouse model, we investigated the basis of such virulence by analyzing a Trypanosoma cruzi isolate, SC, from a patient with severe acute clinical symptoms, who was infected by oral route. It has previously been shown that, upon oral inoculation into mice, T. cruzi metacyclic trypomastigotes invade the gastric mucosal epithelium by engaging the stage-specific surface glycoprotein gp82, whereas the surface molecule gp90 functions as a down-modulator of cell invasion. We found that, when orally inoculated into mice, metacyclic forms of the SC isolate, which express high levels of gp90, produced high parasitemias and high mortality, in sharp contrast with the reduced infectivity in vitro. Upon recovery from the mouse stomach 1 h after oral inoculation, the gp90 molecule of the parasites was completely degraded, and their entry into HeLa cells, as well as into Caco-2 cells, was increased. The gp82 molecule was more resistant to digestive action of the gastric juice. Host cell invasion of SC isolate metacyclic trypomastigotes was augmented in the presence of gastric mucin. No alteration in infectivity was observed in T. cruzi strains CL and G which were used as references and which express gp90 molecules resistant to degradation by gastric juice. Taken together, our findings suggest that the exacerbation of T. cruzi infectivity, such as observed upon interaction of the SC isolate with the mouse stomach components, may be responsible for the severity of acute Chagas’ disease that has been reported in outbreaks of oral T. cruzi infection. 相似文献
15.
M de N de Meirelles T C de Araujo Jorge W de Souza A L Moreira H S Barbosa 《Cell structure and function》1987,12(4):387-393
Parasite-containing endocytic vacuoles are formed during the process of in vitro interiorization of the trypomastigote forms of Trypanosoma cruzi by primary culture of mouse fibroblasts, heart and skeletal muscle cells. Fusion of these vacuoles with host cell lysosomes takes place. The process of T. cruzi-muscle cell interaction was analysed by ultrastructural cytochemistry. Two lysosomal enzymes, acid phosphatase and aryl sulphatase and the fusion of peroxidase-labeled secondary lysosomes with the parasitophorus vacuoles were studied. These finding indicate that the basic mechanism of interaction of T. cruzi with the so called non phagocytic cells is similar to that which occurs with phagocytic cells. 相似文献
16.
17.
Concepcion JL Acosta H Quiñones W Dubourdieu M 《Memórias do Instituto Oswaldo Cruz》2001,96(5):697-701
alpha-glycerophosphate dehydrogenase (alpha-GPDH-EC.1.1.1.8) has been considered absent in Trypanosoma cruzi in contradiction with all other studied trypanosomatids. After observing that the sole malate dehydrogenase can not maintain the intraglycosomal redox balance, GPDH activity was looked for and found, although in very variable levels, in epimastigotes extracts. GPDH was shown to be exclusively located in the glycosome of T. cruzi by digitonin treatment and isopycnic centrifugation. Antibody against T. brucei GPDH showed that this enzyme seemed to be present in an essentially inactive form at the beginning of the epimastigotes growth. GPDH is apparently linked to a salicylhydroxmic-sensitive glycerophosphate reoxidizing system and plays an essential role in the glycosome redox balance. 相似文献
18.
Regulation of immunity in Trypanosoma cruzi infection 总被引:3,自引:0,他引:3
R L Tarleton 《Experimental parasitology》1991,73(1):106-109
Immunity to T. cruzi is complex, involving among other components, antibody production, CD4+ helper cells, CD8+ T cells as both regulators and effectors of immunity, and possibly, double-negative T cells. In addition, several of these components have been implicated in pathogenesis in the chronic infection. Although the immunosuppression observed in the infection seems quite severe, it also appears to provide for a sufficient level of immune responsiveness to control the infection in most hosts. At the same time, immunosuppression may provide the regulatory control necessary to prevent massive chronic pathogenesis in all hosts. Continued study of the relative roles of lymphocyte populations and the products they secrete in immunity and pathogenesis may provide the understanding necessary to enhance immunity to T. cruzi without the feared consequence of increased pathogenesis. 相似文献
19.
Oligopeptidase B-dependent signaling mediates host cell invasion by Trypanosoma cruzi. 总被引:8,自引:0,他引:8
下载免费PDF全文

E V Caler S Vaena de Avalos P A Haynes N W Andrews B A Burleigh 《The EMBO journal》1998,17(17):4975-4986
Mammalian cell invasion by the intracellular protozoan parasite Trypanosoma cruzi is mediated by recruitment and fusion of host cell lysosomes, an unusual process that has been proposed to be dependent on the ability of parasites to trigger intracellular free calcium concentration ([Ca2+]i) transients in host cells. Previous work implicated the T.cruzi serine hydrolase oligopeptidase B in the generation of Ca2+-signaling activity in parasite extracts. Here we show that deletion of the gene encoding oligopeptidase B results in a marked defect in host cell invasion and in the establishment of infections in mice. The invasion defect is associated with the inability of oligopeptidase B null mutant trypomastigotes to mobilize Ca2+ from thapsigargin-sensitive stores in mammalian cells. Exogenous recombinant oligopeptidase B reconstitutes the oligopeptidase B-dependent Ca2+ signaling activity in null mutant parasite extracts, demonstrating that this enzyme is responsible for the generation of a signaling agonist for mammalian cells. 相似文献
20.
Barrias ES Dutra JM De Souza W Carvalho TM 《Biochemical and biophysical research communications》2007,363(3):828-834
Membrane rafts are small and dynamic regions enriched in sphingolipids, cholesterol, ganglioside GM1 and protein markers like flotillins, forming the flatter domains or caveolins, which are characterized as stable flask-shape invaginations. We explored whether membrane rafts participate in the entry of Trypanosoma cruzi's trypomastigotes into murine macrophages through transient depletion of macrophage membrane cholesterol with methyl-beta-cyclodextrin and treatment with filipin. These treatments led to a decrease in the trypomastigote invasion process. Macrophage pre incubated with increasing concentrations of cholera toxin B, that binds GM1, inhibited the adhesion and invasion of trypomastigote and amastigote forms. Immunofluorescence analysis demonstrated a colocalization of GM1, flotillin 1 and caveolin 1 in the T. cruzi parasitophorous vacuole. Taken together these data suggest that membrane rafts, including caveolae, are involved in the process of T. cruzi invasion of macrophages. 相似文献