首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

2.
Cobalt(III) and rhodium(III) complexes of the series of [MIIICl3 − n(P)3 + n]n+ (M = Co or Rh; n = 0, 1, 2 or 3) have been prepared with the use of 1,1,1-tris(dimethylphosphinomethyl)ethane (tdmme) and mono- or didentate phosphines. The single-crystal X-ray analyses of both series of complexes revealed that the M-P and M-Cl bond lengths were dependent primarily on the strong trans influence of the phosphines, and secondarily on the steric congestion around the metal center resulting from the coordination of several phosphine groups. In fact, the M-P(tdmme) bonds became longer in the order of [MCl3(tdmme)] < [MCl2(tdmme)(PMe3)]+ < [MCl(tdmme)(dmpe)]2+ (dmpe = 1,2-bis(dimethylphosphino)ethane) < [M(tdmme)2]3+ for both CoIII and RhIII series of complexes, while the M-Cl bond lengths were shortened in this order (except for [M(tdmme)2]3+). Such a steric congestion around the metal center can also account for the structural and spectroscopic characteristics of the series of complexes, [MCl(tdmme)(dmpm, dmpe or dmpp)]2+ (dmpm = bis(dimethylphosphino)methane, dmpp = 1,3-bis(dimethylphosphino)propane). The X-ray analysis for [CoCl(tdmme)(dmpm or dmpe)](BF4)2 showed that all Co-P bonds in the dmpm complex were shorter by 0.03-0.04 Å than those in the dmpe complex. Furthermore, the first d-d transition energy of the CoIII complexes and the 1JRh-P(tdmme) coupling constants observed for the RhIII complexes indicated an unusual order in the coordination bond strengths of the didentate diphosphines, i.e., dmpm > dmpe > dmpp.  相似文献   

3.
A series of crystalline PdII-based heterodimetallic acetate-bridged complexes containing the transition (MnII, CoII, NiII, CuII), post-transition (ZnII) and rare-earth (CeIV, NdIII, EuIII) metals were synthesized starting from Pd3(OOCMe)6 and the complementary metal(II, III) acetates. The crystal and molecular structures of the binuclear PdIIMII(μ-OOCMe)4L (M = Mn, Co, Ni, Zn; L = H2O, MeCN), trinuclear and tetranuclear (M = Nd, Eu) and complexes were established by X-ray diffraction.  相似文献   

4.
The syntheses, crystal structures and properties of compounds [Bu4N]2[Ni(ppdt)2] (1) and [Bu4N]2[Pt(ppdt)2] (2) (ppdt = pyrido[2,3-b]pyrazine-2,3-dithiolate) have been described. Compound 1 crystallizes in P21/c space group (monoclinic system), whereas compound 2 crystallizes in C2/c space group (monoclinic system). The crystal structures of both compounds 1 and 2 have been characterized by C-H?S and C-H?N hydrogen bonding interactions between cation and anions resulting in three-dimensional supramolecular networks in the crystals of 1 and 2, respectively. The acid-base behavior of the ground states of both [Bu4N]2[Ni(ppdt)2] (1) and [Bu4N]2[Pt(ppdt)2] (2) and also the excited state of compound [Bu4N]2[Pt(ppdt)2] (2) in solutions has been studied. The pH dependent changes in the charge transfer absorption and emission spectra are attributed to the protonation on an imine nitrogen of the ppdt ligand. The ground-state basicity constants of the two complexes 1 and 2 have been determined from spectrophotometric analysis by titrating with an weak acid, yielding pKb1 = 8.0 for complex [Bu4N]2[Ni(ppdt)2] (1) and pKb1 = 7.8 for complex [Bu4N]2[Pt(ppdt)2] (2). The excited-state basicity constant pKb1* for complex [Bu4N]2[Pt(ppdt)2] (2) has been determined by a thermodynamic equation using a Förster analysis yielding the value of 1.8. The complex 2 is electrochemically irreversible with an oxidation potential of E1/2 = +0.41 V versus Ag/AgCl in methanol.  相似文献   

5.
Combined pH-metric, UV-Vis, 1H NMR and EPR spectral investigations on the complex formation of M(II) ions (M=Co, Ni, Cu and Zn) with N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter H2L) in aqueous solution at a fixed ionic strength, I=10−1 mol dm−3, at 25 ± 1 °C indicate the formation of M(L), M(H−1L) and M2(H−1L)+ complexes. Proton-ligand and metal-ligand constants and the complex formation equilibria have been elucidated. Solid complexes, [M(L)(H2O)2] · nH2O (n=1 for M = Co and Zn, n=2 for M = Ni) and {Cu (μ-L) · 4H2O}n, have been isolated and characterized by elemental analysis, spectral, conductance and magnetic measurements and thermal studies. Structures of [Ni(L)(H2O)2] · 2H2O and {Cu(μ-L) · 4H2O}n have been determined by single crystal X-ray diffraction. The nickel(II) complex exists in a distorted octahedral environment in which the metal ion is coordinated by the two carboxylate O atoms, the amino-N atom of the iminodiacetate moiety and the pyridine type N-atom of the benzimidazole moiety. Two aqua O atoms function as fifth and sixth donor atoms. The copper(II) complex is made up of interpenetrating polymeric chains of antiferromagnetically coupled Cu(II) ions linked by carboxylato bridges in syn-anti (apical-equatorial) bonding mode and stabilized via interchain hydrogen bonds and π-π stacking interactions.  相似文献   

6.
Five novel complexes, Co(OBt)2 · 7H2O (1) (OBt = 1-hydroxybenzotriazole ion), Ni3(OBt)6 · 6H2O (2), [Ag(OBt)(HOBt)]n (3), [Zn(OBt)2]n (4) and [Cu2(OBt)4 · 3H2O]n (5) were synthesized by hydrothermal method and characterized by elemental analysis, IR spectroscopy, TGA, XRPD, and single-crystal X-ray diffraction. The results from single-crystal X-ray diffraction indicate that 1-5 are zero-dimensional (0D), zero-dimensional, one-dimensional (1D), and three-dimensional (3D) frameworks, respectively. In particular, 3 is twin crystal; 4 possesses of double-stranded chains; 5 crystallizes in orthorhombic space group P212121 with a helical chain in its structure. The luminescence properties and the magnetic properties of the five complexes were investigated.  相似文献   

7.
Yue Wang 《Inorganica chimica acta》2005,358(12):3407-3416
New ternary transition metal complexes of formulations [Co(bpa)(p-HB)2](bpa = 2,2′-bipyridylamine, p-HB = p-hydroxybenzenecarboxylic acid) (1), [Ni(bpa)(p-HB)(H2O)2]+(NO3) · H2O (2), , [Cu(bpa)(p-HB)Cl] (4) and [Zn(bpa)(p-HB)2]2 · 0.5H2O (5) are prepared, their structural features are characterized by crystal structural studies, and their DNA binding propensity has been evaluated by fluorescence method. The molecular structure of complex 1 shows the six coordinate octahedral geometry with one bpa and two p-HB ligands, complex 2 is the cationic complex and has the six coordinate octahedral structure with one bpa, one p-HB and two aqua ligands, complex 3 is also the cationic complex of octahedral coordination with two bpa and one p-HB ligands, complex 4 is five coordinate distorted square pyramidal with one bpa, one p-HB and chloride ligands and complex 5 has the distorted octahedral coordination with two p-HB and one bpa ligands. In all of the complexes, both bpa and p-HB act as the bidentate N and O-donor ligands, respectively. The intermolecular H-bond networks, together with π-π interaction in their solid state are also described. The complexes show the competitive inhibition of ethidium binding to DNA, and the DNA binding propensity can be reflected as the relative order: 3 > 2 > 1 > 5 > 4, in which the cationic charged Ni(II) complexes 2 and 3 show the most effective inhibition ability.  相似文献   

8.
Mixed ligand complexes: [Co(L)(bipy)] · 3H2O (1), [Ni(L)(phen)] · H2O (2), [Cu(L)(phen)] · 3H2O (3) and [Zn(L)(bipy)] · 3H2O (4), where L2− = two -COOH deprotonated dianion of N-(2-benzimidazolyl)methyliminodiacetic acid (H2bzimida, hereafter, H2L), bipy = 2,2′ bipyridine and phen = 1,10-phenanthroline have been isolated and characterized by elemental analysis, spectral and magnetic measurements and thermal studies. Single crystal X-ray diffraction studies show octahedral geometry for 1, 2 and 4 and square pyramidal geometry for 3. Equilibrium studies in aqueous solution (ionic strength I = 10−1 mol dm−3 (NaNO3), at 25 ± 1 °C) using different molar proportions of M(II):H2L:B, where M = Co, Ni, Cu and Zn and B = phen, bipy and en (ethylene diamine), however, provides evidence of formation of mononuclear and binuclear binary and mixed ligand complexes: M(L), M(H−1L), M(B)2+, M(L)(B), M(H−1L)(B), M2(H−1L)(OH), (B)M(H−1L)M(B)+, where H−1L3− represents two -COOH and the benzimidazole N1-H deprotonated quadridentate (O, N, O, N), or, quinquedentate (O, N, O, N, N) function of the coordinated ligand H2L. Binuclear mixed ligand complex formation equilibria: M(L)(B) + M(B)2+ ? (B)M(H−1L)M(B)+ + H+ is favoured with higher π-acidity of the B ligands. For Co(II), Ni(II) and Cu(II), these equilibria are accompanied by blue shift of the electronic absorption maxima of M(II) ions, as a negatively charged bridging benzimidazolate moiety provides stronger ligand field than a neutral one. Solution stability of the mixed ligand complexes are in the expected order: Co(II) < Ni(II) < Cu(II) > Zn(II). The Δ log KM values are less negetive than their statistical values, indicating favoured formation of the mixed ligand complexes over the binary ones.  相似文献   

9.
Two 1D organic-inorganic coordination polymers, [Cd(3-pmpmd)(CH3CN)2(H2O)2]n · 2n(ClO4)2 (1) and [Zn(3-pmpmd)1.5(H2O)2]n · 2n(ClO4)2 · nCH3CN (2), were obtained from M(ClO4)2 (M = Cd, Zn) and the semi-flexible 3,3′-N-donor bis-pyridyl ligand 3-pmpmd: 1 has an 1D zigzag framework with 3-pmpmd in the ZT-mode (anti, trans-) conformation, while 2 has an 1D rod and loop network with 3-pmpmd in both ZT- and ZC-mode (anti, cis-) conformations. Results showed that the metal ions could influence the coordination mode of a semi-flexible bis-pyridyl ligand.  相似文献   

10.
A novel bifunctionalized arylimido derivative of hexamolybdate, (Bu4N)2[Mo6O17(NAr)2] [Ar = 2,6-(CH3)2C6H3] (1), in which the two 2,6-dimethylaniline groups are bounded to hexamolybdate at the cis positions, was synthesized by a facile reaction of α-octamolybdate with 2,6-dimethylaniline using DCC as a dehydration agent. The existence of strong non-typical C-H?O hydrogen bonds plays an important role in crystal structure stabilization of compound 1. The results of fluorescence spectra show that the formation of a covalent bond between 2,6-dimethylaniline molecule and hexamolybdate could efficiently quench the fluorescence intensity of 2,6-dimethylaniline molecule, with a fluorescence quencher efficiency of 87.7%. Thermal analysis results indicate that two substituted 2,6-(CH3)2C6H3 molecules bonding to the same cluster dissociated at different temperature, in well agreement with the different MoN bond length in compound 1. The electrochemical behavior of modified 1-CPE has been studied in detail. Compared with the conventional polyoxometalate (POM)-modified electrode, 1-CPE presents a merit of remarkable stability over 500 cycles due to the insolubility of the POM nanoparticles, which is especially important for practical applications.  相似文献   

11.
The compounds [Cu(dien)(2-PhIm)(ClO4)](ClO4) (1); [Cu(dien)(2-MeBzIm)](ClO4)2 (2); where dien = diethylenetriamine, 2-PhIm = 2-phenylimidazole and 2-MeBzIm = 2-methylbenzimidazole, were synthesized and characterized. The complexes possessing [Cu(II)dien] moiety as common, the former containing 2-phenylimidazole, yielded square pyramidal geometry with apical perchlorate coordination [Cu1-O(5) = 2.449 Å], while the latter with 2-methylbenzimidazole formed square planar geometry with weak perchlorate contact [Cu1-O(8) = 2.596 Å] in its apical position. The effect of solvent and the variable temperature 1H NMR investigation combinedly explore the geometrical rearrangement towards five coordination around Cu(II) metal center by accommodating the solvent molecule in its fifth coordination. Possessing easily labile perchlorate anion, both these complexes were investigated for their oxidation capability using 3,5-di-tert-butyl catechol (DTBC). The rate constant determined for the oxidation of DTBC to corresponding quinone indicates that they are catalytically quite similar and the kcat of 1 ≈ 2. The crystal structure and the NMR investigations are discussed in detail.  相似文献   

12.
The reactions of methyl 2-pyridyl ketone oxime, (py)C(Me)NOH, with MSO4 · xH2O (M = Zn, x = 7; M = Cd, x = 8/3), in the absence of an external base, have been investigated. The synthetic study has led to the two new complexes [Zn(SO4){(py)C(Me)NOH}(H2O)3] · H2O (1 · H2O) and [Zn2(SO4)2{(py)C(Me)NOH}4] · (py)C(Me)NOH [2 · (py)C(Me)NOH], and the coordination polymer [Cd(SO4){(py)C(Me)NOH}(H2O)]n · [Cd(SO4){(py)C(Me)NOH}(H2O)2]n (3). In the three complexes the organic ligand chelates through its nitrogen atoms. The sulfate anion in 1 · H2O is monodentate; the complex molecule is the mer isomer considering the positions of the aqua ligands. The ZnII centers in 2 · (py)C(Me)NOH are bridged by two syn, anti η112 ligands; each metal ion has the cis-cis-trans disposition of the coordinated sulfate oxygen, pyridyl nitrogen and oxime nitrogens, respectively. The molecular structure of 3 is unique consisting of two different linear and ladder - type chains. π-π stacking interactions and/or hydrogen bonds lead to the formation of interesting supramolecular architectures in the three complexes. The thermal decomposition of complex 3 has been studied. Characteristic vibrational (IR, Raman) bands are discussed in terms of the nature of bonding and the structures of the three complexes.  相似文献   

13.
Two new 3,5-dimethylpyrazolic derived ligands that are N1-substituted by diamine chains, 1-[2-(diethylamino)ethyl]-3,5-dimethylpyrazole (L1) and 1-[2-(dioctylamino)ethyl]-3,5-dimethylpyrazole (L2) were synthesised. Reaction of the ligands, L1 and L2, with [MCl2(CH3CN)2] yielded [MCl2(L)] (M = Pd(II), Pt(II)) complexes. These complexes were characterised by elemental analyses, conductivity measurements, IR, 1H, 13C{1H} and 195Pt{1H} NMR spectroscopies. The crystal structure of [PdCl2(L1)] was determined by single-crystal X-ray diffraction methods. The structure consists of mononuclear units. The Pd(II) atom is coordinated by a pyrazolic nitrogen, an amine nitrogen and two chlorine atoms in a cis disposition. In this structure, C-H?Cl, C-H?H-C and C-H?C-H intermolecular interactions have been identified.  相似文献   

14.
Three new thiodiacetato-Cu(II) chelates have been synthesized and studied by X-ray crystallography and by thermal, spectral and magnetic methods. [Cu(tda)]n (1) is a 3D-polymer with a pentadentate tda, which acts with a fac-O2 + S(apical)-tridentate chelating conformation and as a twofold anti, syn-μ-η11 carboxylate bridge. In its square pyramidal Cu(II) coordination (type 4 + 1) four O(carboxylate) donors define a close regular square base, but the Cu-S(apical) bond deviates 27.4° from the perpendicular to the mean basal plane. Each anti,syn-bridging carboxylate group exhibits two C-O (average 1.26(1) Å) and two Cu-O bonds (average 1.958(7) Å), which are very similar in length to each other. In contrast, the mixed-ligand complexes of [Cu(tda)(Him)2(H2O)] (compound 2, distorted octahedral, type 4 + 1 + 1) and [Cu(tda)(5Mphen)] · 2H2O (compound 3, distorted square pyramidal, type 4 + 1) have molecular structures and the tda ligand displays only a fac-O2 + S(apical)-tridentate conformation. The Cu-S(apical) bond lengths (2.570(1), 2.623(1) or 2.573(1) Å for 1, 2 or 3, respectively) are shorter than those previously reported for closely related Cu(II)-tda derivatives. The different tda ligand roles in their Cu(II) derivatives are rationalized on the basis of crystal packing forces driving in the absence or presence of auxiliary ligands (with two or three N-donor atoms).  相似文献   

15.
A novel Ni(II)-nitronyl nitroxide-substituted thiazole complex, Ni(NIT2-thz)3(ClO4)2 (NIT2-thz = 2-(2′-thiazole)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide) was synthesized and characterized structurally and magnetically. It crystallizes in the monoclinic space group P21c. The metal coordination sphere is fully occupied by three chelating nitroxide ligands, showing a distorted octahedral geometry. The complex molecules were connected as 1-D chain structure by the intermolecular interaction. Magnetic studies show that antiferromagnetic couplings occurred between the nickel(II) ion and the organic radicals, and ferromagnetic between the adjacent molecules.  相似文献   

16.
The bis(2-methoxyethyl)dithiocarbamate complexes [M{S2CN(CH2CH2OMe)2}2] (M = Ni, Cu, Zn, Pd) are readily prepared and the three lighter complexes have been crystallographically characterised. Disproportionation of [Cu{S2CN(CH2CH2OMe)2}2] upon addition of Cu(ClO4)2 · 6H2O affords the copper(III) complex [Cu{S2CN(CH2CH2OMe)2}2][ClO4] which has also been crystallographically characterised. Unlike other copper(III) dithiocarbamate salts, there are no intermolecular cation-cation or cation-anion interactions.  相似文献   

17.
To compare the cytotoxicities and the DNA-binding properties in tetranuclear complexes with different bridging ligands, two tetracopper(II) complexes with formulae of [Cu4(oxbe)2Cl2(bpy)2]·4H2O (1) and [Cu4(oxbm)2Cl2(bpy)2]·2H2O (2) were synthesized, where H3oxbe and H3oxbm stand for N-benzoato-N′-(2-aminoethyl)oxamide and N-benzoato-N′-(1,2-propanediamine)oxamide, respectively, and bpy is 2,2′-bipyridine. Complex 1 was characterized by elemental analyses, IR and electronic spectra and single-crystal X-ray diffraction. The crystal structure reveals the presence of the circular tetranuclear copper(II) cations which are assembled by a pair of cis-oxamido-bridged dinuclear copper(II) units through carboxyl bridges. The crystal structure of complex 2 has been reported in our previous paper. However, the bioactivities were not studied. Cytotoxicities experiments reveal that both the two complexes exhibit cytotoxic effects against human hepatocellular carcinoma cell SMMC-7721 and human lung adenocarcinoma cell A549, and complex 1 has the better activities than those of complex 2. The results of the interactions between the two complexes and herring sperm DNA (HS-DNA) suggest that the two complexes interact with HS-DNA in the mode of intercalation with the intrinsic binding constants of 3.93 × 104 M−1 (1) and 2.48 × 104 M−1 (2). These results indicated that the bridging ligands may play an important role in the cytotoxicities and the DNA-binding properties of tetranuclear complexes.  相似文献   

18.
Single-crystal X-ray structural characterizations of MX:dpam (1:1) (‘dpam’ = Ph2AsCH2AsPh2) are reported for MX = AgCl, Br; CuI, CN/Cl (all isomorphous) and AgI, AgSCN, CuSCN arrays, all being of the novel form [(μ-X){M(μ-X)(As-dpam-As′)2M′}], essentially the familiar M(E-dpem-E′)2M′ binuclear array with both ‘bridging’ and (linking) ‘terminal’ (pseudo-)halides involved in the polymer. A different arrangement of bridging and linking entities is found with AgX:dpae (1:1)2(∞|∞), X = Br, NCO, ‘dpae’ = Ph2As(CH2)2AsPh2, now comprising [M(μ-X)2(As-dpae-As)M] kernels linked by As-dpae-As′, while in the thiocyanate analogue units are linked by the dpae ligands into a two-dimensional web. Synthetic procedures for all adducts have been reported. All compounds have been characterized both in solution (1H, 13C, 31P NMR, ESI MS) and in the solid state (IR).  相似文献   

19.
Novel N-N-N-O-type of tetradentate ligands H3obap (H3obap = oxamido-N-aminopropyl-N′-benzoic acid) and H3maeb (H3maeb = malamido-N-aminoethyl-N′-benzoic acid) and the corresponding square-planar copper(II) complexes have been prepared and characterized. The obap3− and maeb3− ligands coordinate to the copper(II) ion via four ligating atoms (three deprotonated atoms: one carboxylate oxygen and two deprotonated amide nitrogens; one amine nitrogen) with in-plane square chelation. A four coordinate, square-planar geometry has been established crystallographically for the binuclear Na2[Cu(obap)]2 · 2H2O complex. Structural data correlating the square-planar geometry of the [Cu(obap)] unit and an extensive strain analysis are discussed in relation to the information obtained for similar complexes. The infrared and electronic absorption spectra of the complexes are discussed in comparison to the related complexes of known geometries. Antibacterial activity of ligands and copper(II) complexes towards common Gram-negative and Gram-positive bacteria are reported as well.  相似文献   

20.
[M(TPA)Cl]ClO4·nH2O complexes (1: M = CoII, n = 0; 2: M = CuII, n = ½; 3: M = ZnII, n = 0) where TPA = tris(2-pyridylmethyl)amine, were synthesized and structurally characterized. The molecular structure of [Cu(TPA)Cl]ClO4·½H2O was determined by single crystal X-ray crystallography. In aqueous solution, the complex ions [M(TPA)Cl]+ (M = CoII or CuII) are hydrolyzed to the corresponding aqua species [M(TPA)(H2O)]2+. In contrast to the TBP [Cu(TPA)(H2O)]2+, the corresponding TBP cobalt(II) species showed severe distortion towards tetrahedral geometry. The interactions of the three complexes with DNA have been investigated at pH 7.0 (1.0 mM Tris-Cl buffer) and 37 °C. Significant DNA cleavages were obtained for complexes 1 and 2, whereas complex 3 did not show any detectable cleavage for DNA. Under pseudo Michaelis-Menten kinetic conditions, the kinetic parameters kcat and KM were determined as kcat = 6.59 h−1 and KM = 2.20 × 10−4 M for 1 and the corresponding parameters for 2 are kcat = 5.7 × 10−2 h−1 and KM = 6.9 × 10−5 M, and the reactivity of the complexes in promoting the cleavage of DNA decreases in the order 1 > 2 ? 3. The rate enhancements for the DNA cleavage by 1 and 2 correspond to 1.8 × 108 and 1.6 × 106, respectively, over the non-catalyzed DNA. The reactivity of the two complexes was discussed in relation to other related artificial nucleases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号