首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthetic, single crystal X-ray structural characterizations and vibrational spectroscopic studies are recorded for a number of adducts of 1:2 stoichiometry of silver(I) oxyanion salts for oxyanions of differing basicity (perchlorate, nitrate, carboxylate (as trifluoroacetate (≡‘tfa’))), with a variety of pyridine (≡‘py’) or piperidine (≡‘pip’) bases hindered in the 2- (and, sometimes, 6-) position(s) by methyl or non-coordinating functionalities of other types, the ligands employed being 2-methylpyridine (‘2mp’), 2,6-dimethylpyridine (‘lut’), 2,4,6-trimethylpyridine (‘coll’), quinoline (‘quin’), 2,2,6,6-tetramethylpiperidine (‘tmp’), 2-amino-,6-methylpyridine (‘nmp’), 2-methoxypyridine (‘mop’) and 2-cyanomethylpyridine (‘pcn’); studies are also recorded of adducts with the parent, ‘py’, base and with 4-cyanopyridine (‘cnp’). In the majority of the complexes, the NAgN motif predominates, as might be expected, variously distorted from linearity in response to changes in (competing) basicities of the nitrogen base and any nearby anion or solvent molecule; an unusual variation is found in the highly hindered tmp/tfa adduct which is a monohydrate with interacting water displacing the rather basic anion, the converse being the case in the corresponding nitrate, also a monohydrate. With the less-hindered base mpy, both nitrate and trifluoroacetate are binuclear, with O and OCO bridges corresponding to centrosymmetric four- and eight-membered rings, respectively; the quin/nitrate adduct is more complex, also binuclear but with bis(chelating) nitrate. AgNO3:py (1:3) is found to be binuclear, while with Agtfa/py, a 3:2 adduct [Ag(py)2][Ag2(tfa)3](∞|∞) is found with a novel, polymeric, strongly interacting anion. A further pair of 1:3 adducts, AgNO3:2np (2np = 2-aminopyridine) and Agtfa:nmp, both mononuclear [AgL3]+X are described, differing in the modes of interaction of silver with the three N-bases. In all simple NAgN systems with aromatic ligands, the pair of ligand ‘planes’ is disposed quasi-parallel.The far-IR spectra of [AgL2]Y (L = lut, coll; Y = ClO4, NO3, tfa) and of [Ag(py)n](ClO4) (n = 2,4) have been recorded and the ν(AgN) bands assigned in the range 80-240 cm−1. For the L = lut, coll complexes, there is a clear trend of decreasing ν(AgN) following increasing r(AgN) as the interaction with the counterion increases along the series Y = ClO4, NO3, tfa.  相似文献   

2.
The meagre (structurally defined) array of 1:2 silver(I) (pseudo-)halide:unidentate nitrogen base adducts is augmented by the single-crystal X-ray structural characterization of the 1:2 silver(I) thiocyanate:piperidine (‘pip’) adduct. It is of the one-dimensional ‘castellated polymer’ type previously recorded for the chloride: ?Ag(pip)2(μ-SCN)Ag(pip)2? a single bridging atom (S) linking successive silver atoms. By contrast, in its copper(I) counterpart, also a one-dimensional polymer, the thiocyanate bridges as end-bound SN-ambidentate: ?CuSCNCuSCN? A study of the 1:1 silver(I) bromide:quinoline (‘quin’) adduct is recorded, as the 0.25 quin solvate, isomorphous with its previous reported ‘saddle polymer’ chloride counterpart.Recrystallization of 1:1 silver(I) iodide:tris(2,4,6-trimethoxyphenyl)phosphine (‘tmpp’) mixtures from py and quinoline (‘quin’)/acetonitrile solutions has yielded crystalline materials which have also been characterized by X-ray studies. In both cases the products are salts, the cation in each being the linearly coordinated silver(I) species [Ag(tmpp)2]+, while the anions are, respectively, the discrete [Ag5I7(py)2]2− species, based on the already known but unsolvated [Cu5I7]2− discrete, and the polymeric, arrays, and polymeric . The detailed stereochemistry of the [Ag(tmpp)2]+ cation is a remarkably constant feature of all structures, as is its tendency to close-pack in sheets normal to their P-Ag-P axes.The far-IR spectra of the above species and of several related complexes have been recorded and assigned. The vibrational modes of the single stranded polymeric AgX chains in [XAg(pip)2](∞|∞) (X = Cl, SCN) are discussed, and the assignments ν(AgX) = 155, 190 cm−1 (X = Cl) and 208 cm−1 (X = SCN) are made. The ν(AgX) and ν(AgN) modes in the cubane tetramers [XAg(pip)]4 (X = Br, I) are assigned and discussed in relation to the assignments for the polymeric AgX:pip (1:2) complexes, and those for the polymeric [XAg(quin)](∞|∞) (X = Cl, Br) compounds. The far-IR spectra of [Ag(tmpp)2]2[Ag5I7(py)2] and its corresponding 2-methylpyridine complex show a single strong band at about 420 cm−1 which is assigned to the coordinated tmpp ligand in [Ag(tmpp)2]+, and a partially resolved triplet at about 90, 110 and 140 cm−1 which is assigned to the ν(AgI) modes of the [Ag5I7L2]2− anion. An analysis of this pattern is given using a model which has been used previously to account for unexpectedly simple ν(CuI) spectra for oligomeric iodocuprate(I) species.  相似文献   

3.
Syntheses and room-temperature single-crystal X-ray structure determinations are recorded for a number of adducts of 1:1 stoichiometry of silver(I) oxyanion salts (perchlorate, nitrate, trifluoroacetate (‘tfa’) (increasing basicity)) with 2,2′-bis(pyridine) ligands (2,2′-bipyridyl, ‘bpy’; 2,2′-biquinolyl, ‘bq’; 2,2′-dipyridylketone, ‘dpk’; 2,9-dimethylphenanthroline, ‘dmp’). The adducts take two forms: (a) neutral mononuclear molecules, in which the 2,2′-bis(pyridine) ligand behaves as a chelate, with the silver coordination number dependent on the denticity of the anion; these are Agtfa:bpy (1:1) and AgClO4:bq (1:1) (and various (ionic) acetonitrile or pyridine solvates AgClO4:bq/dmp:MeCN/py (1:1:1), in which the solvent molecules are coordinated); and (b) one-dimensional polymers. The latter are diverse: in AgClO4:bpy, dpk (1:1), the anion is discrete, the polymer made up of an array of two-coordinate silver atoms linked by bpy ligands twisted about their central connecting element. In AgNO3:bpy, bq (1:1), the bpy ligands are chelating with the oxyanions bridging, cf. previously reported AgNO3:dpk (1:1), in which the nitrate chelates the metal, with the dpk bridging, chelating N,O to one silver, while the other nitrogen bridges to the next. With Agtfa, a novel binuclear adduct has been isolated in conjunction with the hydrated ligand, Agtfa:dpk:(dpk · H2O) (1:1:2). The far-IR spectra of several of these complexes show bands that can be assigned to the ν(AgN) modes, the positions of these bands correlating well with the relative Ag-N bond lengths.Syntheses and single-crystal X-ray structural characterizations are also reported for various adducts of silver(I) perchlorate, nitrate and trifluoromethanesulfonate with bpy, bq, ‘phen’ (= 1,10-phenanthroline), and ‘dmp’, of stoichiometry AgX:L (1:2). In each case the complex is ionic [AgL2]X; the silver atom is four-coordinate, but diverse and remarkable variations in stereochemistries associated with changes in the interligand N-Ag-N angles, presumably influenced by the different packing arrangements, are observed.  相似文献   

4.
1:1 adducts of N,N′-bis(benzophenone)-1,2-diiminoethane (bz2en) with copper(I) chloride, bromide and iodide, [Cu(bz2en)2][CuX2] (X = Cl, Br, and I), have been synthesized and the structures of the solid bromide and iodide adducts were determined by X-ray crystallography from single-crystal data. The solid-state structure reveals ionic complexes containing a cation of copper(I) ion coordinated to four nitrogen atoms of two bz2en molecules (distorted tetrahedron) and a linear dibromocuprate(I) and a di-μ-iodo-diiododicuprate(I) anion for the bromo and iodo adducts, respectively. The bromo adduct structure contains CH?Br intermolecular hydrogen bonds. The complexes are very stable towards atmospheric oxygen in the solid state. The spectral properties of the above complexes are also discussed.  相似文献   

5.
The crystal structures of two 1:1 ligand-silver(I) cyanide complexes, [Ag(CN)(en)] (en = ethane-1,2-diamine) (1) and [Ag(CN)(pn)] (pn = propane-1,2-diamine) (2), and of two 2:1 ligand-silver(I) cyanide compounds, [(AgCN)2 · tn] (tn = propane-1,3-diamine) (3) and [(AgCN)2 · bn] (bn = butane-1,4-diamine) (4), were determined from single-crystal X-ray diffraction data, collected at 173 K. In 1 and 2, mononuclear AgCN complexes are formed, in which silver(I) is coordinated by one cyanide and one chelating alkanediamine donor ligand. However, in the dinuclear adducts of 3 and 4, two AgCN units are connected by one alkane-1,n-diamine bridging ligand (n = 3, 4). The resulting molecules of 1-4 are cross-linked via N-H?N hydrogen bonds. Apart from these intermolecular contacts, comparatively short Ag(I)-Ag(I) distances of 3.182(1) Å (in 1), 3.267(1) Å (in 2), 3.023(2) Å (in 3) and 3.050(2) Å (in 4) occur.  相似文献   

6.
Five new silver(I)-saccharinate complexes [Ag2(sac)2(tmen)2] (1), [Ag2(sac)2(deten)2] (2), [Ag2(sac)2(dmen)2] (3), [Ag(sac)(N,N-eten)] (4), and [Ag(sac)(dmpen)]n (5); (sac = saccharinate, tmen = N,N,N′,N′-tetramethylethylenediamine, deten = N,N′-diethylethylenediamine, dmen = N,N′-dimethylethylenediamine, N,N-eten = N,N-diethylethylenediamine and dmpen = 1,3-diamino-2,2-dimethylpropan) have been synthesized and characterized by elemental analyses, IR, thermal analyses, single crystal X-ray diffraction and antimicrobial activities. The crystallographic analyses show that all the complexes crystallize in monoclinic space group P21/c. In 1, the sac ligand acts as a bridge to connect the silver centres through its imino N and carbonyl O atoms forming an eight-membered bimetallic ring in a chair conformation. Complex 2 has also a dimeric structure in which the monomeric [Ag(sac)(deten)] units are linked by Ag?Ag interactions. In 3, saccharinate ligand acts as a bridging bidentate ligand between two silver(I) centres through sulfonyl group and imino N atom, forming an alternating polymeric chain through the direction [0 1 0]. In 4, the inter-molecular N-H?O hydrogen bonds form one-dimensional polymeric chains through the a axis, and these linear chains are inter-connected to each other by N-H?O hydrogen bonds, which produce a chain of edge-fused and rings along [1 0 0]. Complex 5 is a coordination polymer in which the monomeric [Ag(dmpen)(sac)]n units are linked by Ag?Ag interactions, and the dmpen ligand acts as a bridge between the silver(I) ions, forming a two-dimensional network parallel to the (1 0 0) plane.  相似文献   

7.
Five new silver(I) triple salts: (Ag2C2)(AgNO3)4(AgL1)2(L1H)2 (1), (Ag2C2)(AgCF3CO2)2(AgL1)2(L1H)1/2 (2), [(Ag2C2)(AgCF3CO2)4(L2)(H2O)] · (L2H2) (3), (Ag2C2)(AgNO3)3(AgL3)2 (4), and [(Ag2C2)(AgCF3CO2)4(AgL3)2(H2O)2] · H2O (5) (L1H = nicotinic acid, L2H = isonicotinic acid, L3H = 2-pyrazinecarboxylic acid) have been synthesized by the hydrothermal method. All five compounds contain polyhedral silver(I) cages each encapsulating an acetylenediide dianion, . In 1, C2@Ag8 cages in the shape of bicapped trigonal prisms are interlinked by nitrate, L1, and L1H ligands into a three-dimensional architecture. In 2, silver(I) columns generated from fusion of triangulated dodecahedra are linked by L1 into a layer structure. Compound 3 provides a rare example of a (L2H2)+-pillared three-dimensional structure via hydrogen bonding. In 4, nitrate ligands together with L3 link the C2@Ag7 cages into a three-dimensional architecture. Compound 5 also exhibits a three-dimensional architecture generated from trifluoroacetate and L3-linked C2@Ag8 cages.  相似文献   

8.
The synthesis and characterization of three simple 1:2 silver(I) pyridine adducts of different counter-anions, [Ag(py)2]+ · X (X = ClO4, 1; BF4, 2; PF6, 3), are reported. The structural studies for 1-3 reveal the presence of strong ligand-unsupported argentophilic interactions between [Ag(py)2]+ ions, forming pairs of . The Ag?Ag contact distances are 2.96-3.00 Å. In 1 and 2, pairs of are further linked into 1-D infinite chains by a combined set of multiple Ag?Ag close contacts (3.34-3.37 Å), offset ‘head to head’ π-π stacking, and anion bridging interactions. Such combined set of interactions is anion-dependant with 1 and 2 containing anions of tetrahedral geometry and , affording essentially the same supramolecular architecture. Metal-anion interactions are crucial in organizing the 1-D chains into 3-D networks. The ES-MS studies of 1 and 2 provide positive evidence for the aggregation of silver(I) ions in solution. In contrast, for 3 with the counter-anion of octahedral , pairs of are organized into a 3-D network via a combined set of Ag?F contacts, C(H)?F hydrogen bonds, and ‘head to tail’ π-π stacking interactions. No extended 1-D polymeric chains of silver ions are present in 3.  相似文献   

9.
Six hydrogen-bonded silver(I) complexes, Ag(4-abaH)2(NO3) (1), [Ag(4-abaH)2(NO3)]n (2), {[Ag(4-aba)(4-abaH)] · H2O}n (3), {[Ag(4,4-bipy)(H2O)](4-aba)0.5(NO3)0.5 · (H2O)0.5}n (4), [Ag[(3-abaH0.5)2] (5), and {[Ag(3-aba)] · H2O}n (6) (4-abaH=4-aminobenzoic acid, 3-abaH=3-aminobenzoic acid), have been synthesized and characterized by single-crystal X-ray diffraction analyses. In 1, 4-abaH serves as a monodentate ligand coordinating to Ag(I) through its nitrogen atom, while uncoordinated carboxylic group links (4-abaH)-Ag-(4-abaH) into a one-dimensional metallic carboxylic synthon. 2 may be regarded as an extension of 1 into a two-dimensional carboxylic synthon through NO3 − bridging two adjacent Ag(I) centers. In 3, 4-abaH in a monodentate mode and 4-aba in a μ-N,O bridging mode link three-coordinated Ag(I) to form a one-dimensional swallow-like chain, which is further extended into a two-dimensional layer structure through inter-chain hydrogen bonding interactions. The alternating Ag(I) and 4,4-bipy in 4 give rise to a slightly distorted linear chain, which is further extended into a two-dimensional layer through the completely overlapping and off-set stacking interactions. The hydrogen bonds involving in weakly coordinated aqueous molecules and 4-aba further extend it into a three-dimensional framework. In 5, the inter-molecular hydrogen bonding and π-π stacking interactions extend Ag[(3-abaH0.5)2] into a two-dimensional supramolecular architecture. In 6, 3-aba in a μ3-N,O,O coordination mode links three three-coordinated Ag(I) into a two-dimensional network. Uncoordinated aqueous molecules and the adjacent 3-aba oxygen atoms form intermolecular hydrogen bonds.  相似文献   

10.
Syntheses, spectroscopic characterization and single crystal X-ray studies are reported for a number of complexes of copper(II) salts with simple monodentate nitrogen bases. The 1:4 adduct of copper(II) sulfate with 3,5-dimethylpyridine (m2py) CuSO4·4m2py, takes the form [(O3SO)Cu(m2py)4], the Cu-O vector of the square-pyramidal coordination environment being disposed on the 4-axis in tetragonal space group P4/n. The complex CuCO3·Cu(NCS)2·4py is a linear polymer, taking the form ?O·Cu(py)2·O·C{O·Cu(py)2(NCS)2}·O·Cu(py)2? (etc.), all atoms lying in the mirror plane of space group Pnma, excepting the pair of ‘py’ (pyridine) ligands disposed to either side. In Cu(OH)I·3/4I2·2py·1/2MeCN ≡ [{(py)2Cu(OH)}4](I3)3I·2MeCN a novel cubanoid tetranuclear cation is found (2-symmetry). The EPR spectra of the above compounds show a trend in the anisotropy of the g-values that correlates well with the crystal structures. Obtained only in small quantities but supported by single crystal X-ray studies are the adduct of Cu(OH)Cl with pyrrolidine (pyrr), Cu(OH)Cl:pyrr (1:3), which takes the centrosymmetric binuclear form [(pyrr)3Cu(μ-OH)2Cu(pyrr)3]Cl2, the copper atom being disposed in a distorted trigonal bipyramidal array, and the adduct 3CuCl2·CuO·4quin, [Cu4Cl6O(quin)4]Cl2, which contains the familiar Cu4Cl6O core with monodentate quinuclidine (quin) attached to the copper atoms; this compound crystallizes in the cubic space group .  相似文献   

11.
Four new Ag(I) complexes with three different modes of structures were obtained by varying the counteranions , and their structures characterized by single-crystal X-ray diffraction analysis. Compounds 1, 2, and 3 crystalize in the C-centered monoclinic space group C2/m. Compound 4 crystalizes in the monoclinic space group P21/c. The crystal structures of these complexes show that the complexes 1, 2, and 3 form ligand-supported dinuclear rings, and the dinuclear units of 1 and 3 are further linked by anions to form one-dimensional polymer, while the complex 4 forms an one-dimensional zigzag chain. The structural differences between 1, 2, 3, and 4 show the influences of the counteranions on the structures of the complexes.  相似文献   

12.
The copper(I) complexes {(bis-2,6-dimethylphenyl-penta-2,3-diiminato)Cu}2(μ-toluene), 3 has been prepared and its reactivity against Lewis bases and nitrous oxide investigated. Complex 3 crystallizes as a toluene-bridged dimer and forms mono- and dinuclear benzene adducts in C6D6 solution. It does not coordinate excess THF, but reacts quantitatively with 1 equiv. of acetonitrile. Reaction with 2,6-xylyl isonitrile yields (bis-2,6-dimethylphenyl-penta-2,3-diiminato)Cu(2,6-xylyl isonitrile), 5, (νCN = 2123 cm−1), which was characterized by an X-ray diffraction study. Complex 3 does not react with nitrous oxide in either C6D6 solution (5 days 50 °C) or in diethyl ether (13 days at ambient temperature).  相似文献   

13.
The synthesis of a series of dipyridyl ligands based on 1,2-bis(2′-pyridylethynyl)benzene and their complexation of silver cation is described. NMR binding studies confirm that the incorporation of thioether appendages results in an increased binding constant while ether appendages result in similar or lower binding constants as compared to the unsubstituted ligand. X-ray crystallographic analysis confirms that steric hinderance is critical.  相似文献   

14.
Mixed-ligand complexes of the formula [Ag(PPh3)(L)Br]2 were obtained by treatment of various heterocyclic thiones L {L=pyridine-2-thione (py2SH), pyrimidine-2-thione (pymtH), benz-1,3-imidazoline-2-thione (bzimtH2), benz-1,3-thiazoline-2-thione (bztztH), 1-methyl-1,3-imidazoline-2-thione (meimtH) and 5-methoxy-benz-1,3-imidazoline-2-thione (5MeObzimtH2)} with equivalent quantities of silver(I) bromide and triphenylphosphine in dry acetone. The compounds were characterized by their IR, far-IR, UV–Vis and 1H NMR spectroscopic data. The crystal structure of [Ag(PPh3)(pymtH)Br]2 was determined by single-crystal X-ray diffraction methods. The complex exhibits a planar Ag2Br2 moiety in which each of the doubly bromine-bridged Ag(I) centres is further bonded to one phosphine P and one thione S atom.  相似文献   

15.
Reaction of 2 equiv. amount of copper(II) chloride dihydrate with 2 equiv. of methyl-5-methyl-1-(4,6-dimethyl-2-pyrimidyl)pyrazole-3-carboxylate (DpymPzC) in presence of 1 equiv. of 2-mercapto-4,6-dimethylpyrimidine (DpymtH) at pH ∼ 6 afforded the tricoordinated copper(I) complex [Cu(DpymPzC)Cl] (1). The same reaction with copper(II) perchlorate hexahydrate, as the metal salt under the same equivalent ratio at pH ∼ 6 formed the tetracoordinated copper(I) complex [Cu(DpymPzC)2]ClO4 (2). In both the cases, the role of DpymtH is nothing but only to reduce the copper(II) salt in situ finally forming the copper(I) complex. On the other hand, the direct reaction between the copper(I) thiocyanate and DpymPzC in 2:2 equiv. ratio produced a tricoordinated copper(I) complex [Cu(DpymPzC)SCN] (3). In a similar reaction of 2 equiv. amount of copper(II) chloride dihydrate with 2 equiv. amount of ethyl-5-methyl-1-(2-pyridyl)pyrazole-3-carboxylate (PyPzC) in presence of 1 equiv. of DpymtH at pH ∼ 6, an intense red coloured microcrystalline compound (4) was obtained. In contrast, 1 equiv. of PyPzC and 2 equiv. of DpymtH on reaction with 1 equiv. of copper(II) chloride dihydrate at pH ∼ 6 produced a novel tetranuclear mixed coordinated [Cu4(DpymtH)4Cl4] complex (5). Here DpymtH plays dual role - a reducing agent for the copper(II) salt followed by a chelating ligand towards copper(I) so formed in situ. Among the above species, 1, 2 and 5 are crystallographically characterized. In 1, the central copper atom is in distorted triangular planar geometry with N2Cl chromophore whereas in 2, the same is in distorted tetrahedral geometry with N4 chromophore. Notably, the extent of distortion from the ideal geometry is more in 2. In 5, which is in chair conformation, out of four copper atoms, two being in S2Cl chromophore are tricoordinated and the remaining two are tetracoordinated with NS2Cl chromophore. The metal centers are bridged through DpymtH in its ‘thione’ form. Interestingly, the chelation (in part) results in formation of the highly stable four-membered two chelate rings around the two tetracoordinated copper atoms in 5. The two copper centers along the long arm of the chair are separated through a distance of 5.190 Å while those in the short arm are at a length of 3.629 Å. The electronic, IR spectra and electrochemistry of the complexes 1, 2 and 5 have also been investigated.  相似文献   

16.
The X-ray crystal structures of four complexes, obtained by reaction of silver nitrate with four different heteroaryl thioethers, are described. In these compounds the ligands act as dinuclear bridges between silver atoms, with coordination exclusively through the nitrogen donor atoms. All ligands form dinuclear complexes, either as discrete species or as higher aggregates involving additional nitrate bridges. π–π Stacking interactions provide extra stabilisation in some of the structures.  相似文献   

17.
Three new silver(I) complexes of 5,5-diethlybarbiturate (barb), [Ag(barb)(apy)]·H2O (1), {[Ag(μ-ampy)][Ag(μ-barb)2]}n (2) and [Ag(barb)(dmamhpy)] (3) [apy = 2-aminopyridine, ampy = 2-aminomethylpyridine and dmamhpy = 2-(dimethylaminomethyl)-3-hydroxypyridine] have been synthesized and characterized by elemental analysis and FT-IR. Single crystal X-ray diffraction analyses showed that complexes 1 and 3 are mononuclear. In 1, the silver(I) ion is linearly coordinated by a barb anion and a ampy ligand, while a bidentate dmamhpy ligand together with an N-coordinated barb anion forms a trigonal coordination geometry around silver(I) in 3. Complex 2 is a one-dimensional coordination polymer in which silver(I) ions are bridged by ampy ligands, leading to a cationic chain . The [Ag(barb)2] units contains two N-bonded barb ligands, bridging the silver centers in the cationic and anionic units via the carbonyl O atoms. Thus, complex 2 contains two-coordinated and four-coordinated silver ions. All complexes display hydrogen-bonded network structures and exhibit appreciable fluorescence at room temperature. Thermal analysis (TG-DTA) data are in agreement with the structures of the complexes.  相似文献   

18.
Six new adducts of the form AgX:PPh3:H2C(pzx)2 (1:1:1) (H2C(pzx)2 = H2C(pz)2 = bis(pyrazolyl)methane or H2C(pzMe2)2 = bis(3,5-dimethylpyrazolyl)methane; X = ClO4, NO3, SO3CF3) have been synthesized and characterized by analytical, spectroscopic (IR, far-IR, 1H and 31P NMR) and two of them also by single crystal X-ray diffraction studies for comparison with counterpart adducts with 2,2′-bipyridyl (‘bpy’) derivatives reported in a previous paper, the bpy-derived ligands forming five-membered chelate rings, while the present H2C(pzx)2 should, potentially, form six-membered rings. Such is the case, the two adducts exhibiting quasi-planar N2AgP coordination environments, perturbed by the approach of the oxyanion, unidentate in the case of the perchlorate but, in the case of the nitrate, an interesting disordered aggregate of differing unidentate modes.  相似文献   

19.
A tetrameric [Ag(μ-3,5-tBu2pz)]4 · CH2Cl2 (1 · CH2Cl2) has been prepared and structurally characterized. The four Ag-atoms are in an approximate rhombic arrangement with pyrazolato bridges alternating on either side of the Ag4-plane. A 1H NMR study shows partial decomposition of 1 to the mononuclear [Ag(3,5-tBu2pzH)2]+ in solution.  相似文献   

20.
The reaction of [Ag4(hfac)4(THF)2] (hfac = 1,1,1,5,5,5-hexafluoroacetylacetonate, THF = tetrahydrofurrane) with 2,2′-bipyrimidine (bpm) leads to single crystals. They crystallise in the triclinic system, space group . Their structure consists of [Ag4(hfac)42-bpm)3] tetranuclear complexes. In this complex, Ag(I) ions adopt distorted square planar and trigonal prismatic geometries. When [Ag4(hfac)4(THF)2] is replaced by monohydrated silver(I) perchlorate, a one-dimensional (1D) compound with a formula of [[Ag(μ2-bpm)]+]n, is obtained as single crystals. They crystallise in the monoclinic system, space group P21/c. Their structure consists of [[Ag(μ2-bpm)]+]n chains separated by non-coordinated perchlorate ions. In the chains, the Ag(I) centres adopt a square planar geometry. Finally, starting from [[Ag(μ2-bpm)]+]n, and sodium oxalate , another 1D compound with a formula of [Ag(μ2-bpm)(μ2-ox)]n, 4nH2O is obtained as single crystals. They crystallise in the triclinic system, space group . In these chains, bipyrimidine and oxalate are alternate. They generate a square planar geometry around the Ag(I) cations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号