首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

2.
The reaction in methanol of the phosphorus ylides Ph3PCHCOPh, benzoylmethylenetriphenylphosphorane (BPPY), and Ph3PC(COMe)(COPh), α-acetyl-α-benzoylmethylenetriphenylphosphorane (ABPPY) with UO2(NO3)2 · 6H2O at 273 K leads to the formation of O-coordinated bis(ylide)-uranium (VI) complexes of the type [UO2(ylide)2(NO3)2], whereas the reaction of BPPY and UO2(NO3)2 · 6H2O under reflux in benzene yields the salt . The reaction of Ph3PCHCOOCH2CH3, carbethoxymethylenetriphenylphosphorane (EPPY) with UO2(CH3COO)2 · 2H2O produces the salt [H-EPPY]+[UO2(CH3COO)3]. The structures of the free ylides ABPPY and EPPY are also discussed.  相似文献   

3.
When a solution of [Co2(Ph2PCH2PPh2)(CO)6] in chloroform or deuterochloroform is allowed to stand in air at room temperature, it deposits dark green crystals of [Co{Ph2P(O)CH2P(O)Ph2}3][CoCl4] · 8CHCl3. The same product is formed more quickly and in much higher yield (80% based on Co) if the reaction is carried out in the presence of 2 equiv. of [Ph2PCH2PPh2]; the CoII appears to catalyse the air-oxidation of [Ph2PCH2PPh2]. The salt was characterised by X-ray crystallography and shown to contain octahedral CoII cations and CoII tetrahedral anions having normal bond lengths and angles.  相似文献   

4.
Variable-temperature X-ray structural study of the complex [(Ph3P)2N]2[Pt2Ag4Cl2(C2Ph)8] prepared by the reaction of cis-[PtCl2(AsPh3)2] and [(Ph3P)2N][Ag(C2Ph)2] in 1:2 M ratio, revealed isolated (non-polymerised) [Pt2Ag4Cl2(CCPh)8]2− anions with a pseudo-octahedral arrangement of metal atoms. The Pt atoms (in mutually trans vertices) are each σ-bonded to four alkynyl ligands in a square planar arrangement; these moieties are bridged by four Ag atoms; each silver atom being η2-bonded to two alkynyl groups. Chloride ligands are asymmetrically bridging two opposite Ag-Ag edges. Silver atoms show strong and unusual temperature-dependent disorder.  相似文献   

5.
Single crystals of three derivatives of the structurally still incompletely characterized coordination polymer [(Me3Sn)4Ru(CN)6] 1b have been prepared and subjected to crystallographic studies: [1b · 4H2O]=2b forms stacks of puckered 2[Ru{μ-CNSn(Me3)NC}2] sheets interlinked by hydrogen bonds in making use of two additional CNSn(Me3)OH2 ligands and quasi-zeolitic water. Mild drying of 2b leads to the “missing link” between 1b and 2b, [1b · 2H2O], 3b. The structure of [1b · 2tp] (tp=4-thiopyridone) consists of a three-dimensional, negatively charged host framework comprising (via Sn-S bonds) one “aromatic” thione linkage and a [Me3Sn · tp]+guest ion involving a more zwitterionic form of tp. Slow uptake of Me3SnCl from the gas phase by an aqueous solution of K4[Ru(CN)6] and tp afforded the novel assembly [1b · 2H2O · 0.8pms · 0.2pds] (pms/pds=4,4-dipyridylmono-/disulfide), the supramolecular architecture of which resembles that of 2b. Bridging pms or pds molecules occupy equivalent interlayer sites, and the pms/pds ratio is likely to vary. At least three further assemblies containing again 1b and either tp or pds/pms have likewise been isolated, however, not as single crystals.  相似文献   

6.
Mo(CO)4(LL) complexes, where LL = polypyridyl ligands such as 2,2′-bipyridine and 1,10-phenanthroline, undergo quasi-reversible, one-electron oxidations in methylene chloride yielding the corresponding radical cations, [Mo(CO)4(LL)]+. These electrogenerated species undergo rapid ligand substitution in the presence of acetonitrile, yielding [Mo(CO)3(LL)(CH3CN)]+; rate constants for these substitutions were measured using chronocoulometry and were found to be influenced by the steric and electronic properties of the polypyridyl ligands. [Mo(CO)3(LL)(CH3CN)]+ radical cations, which could also be generated by reversible oxidation of Mo(CO)3(LL)(CH3CN) in acetonitrile, can be irreversibly oxidized yielding [Mo(CO)3(LL)(CH3CN)2]2+ after coordination by an additional acetonitrile. Infrared spectroelectrochemical experiments indicate the radical cations undergo ligand-induced net disproportionations that follow first-order kinetics in acetonitrile, ultimately yielding the corresponding Mo(CO)4(LL) and [Mo(CO)2(LL)(CH3CN)3]2+ species. Rate constants for the net disproportionation of [Mo(CO)3(LL)(CH3CN)]+ and the carbonyl substitution reaction of [Mo(CO)3(LL)(CH3CN)2]2+ were measured. Thin-layer bulk oxidation studies also provided infrared characterization data of [Mo(CO)4(ncp)]+ (ncp = neocuproine), [Mo(CO)3(LL)(CH3CN)]+, [Mo(CO)3(LL)(CH3CN)2]2+ and [Mo(CO)2(LL)(CH3CN)3]2+ complexes.  相似文献   

7.
The character and dynamics of low-lying electronic excited states of the complexes fac-[Re(Cl)(CO)3(papy)2] and fac-[Re(papy)(CO)3(bpy)]+ (papy = trans-4-phenylazopyridine) were investigated using stationary (UV-Vis absorption, resonance Raman) and ultrafast time-resolved (visible, IR absorption) spectroscopic methods. Excitation of [Re(Cl)(CO)3(papy)2] at 400 nm is directed to 1ππ(papy) and Re → papy 1MLCT excited states. Ultrafast (?1.4 ps) intersystem crossing (ISC) to 3(papy) follows. Excitation of [Re(papy)(CO)3(bpy)]+ is directed to 1ππ(papy), 1MLCT(papy) and 1MLCT(bpy). The states 3(papy) and 3MLCT(bpy) are then populated simultaneously in less then 0.8 ps. The 3MLCT(bpy) state decays to 3(papy) with a 3 ps time constant. 3(papy) is the lowest excited state for both complexes. It undergoes vibrational cooling and partial rotation around the -NN- bond, to form an intermediate with a nonplanar papy ligand in less than 40 ps. This species then undergoes ISC to the ground state potential energy surface, on which the trans and cis isomers are formed by reverse and forward intraligand papy rotation, respectively. This process occurs with a time constant of 120 and 100 ps for [Re(Cl)(CO)3(papy)2] and [Re(papy)(CO)3(bpy)]+, respectively. It is concluded that coordination of papy to the Re center accelerates the ISC, switching the photochemistry from singlet to triplet excited states. Comparison with analogous 4-styrylpyridine complexes (M. Busby, P. Matousek, M. Towrie, A. Vl?ek Jr., J. Phys. Chem. A 109 (2005) 3000) reveals similarities of the decay mechanism of excited states of Re complexes with ligands containing -NN- and -CC- bonds. Both involve sub-picosecond ISC to triplets, partial rotation around the double bond and slower ISC to the trans or cis ground state. This process is about 200 times faster for the -NN- bonded papy ligand. The intramolecular energy transfer from the 3MLCT-excited Re(CO)3(bpy) chromophore to the intraligand state of the axial ligand occurs for both L = stpy and papy with a comparable rate of a few ps.  相似文献   

8.
A series of tridentate ligands consisting of mixed aromatic and aliphatic amine derivatives of single amino acid chelates and phenylpiperazine have been developed, and their reactions with [NEt4]2[ReBr3(CO)3] have been investigated. The compounds [Re(CO)3{(NC5H4CH2)NCH3(C2H4)NHCH3}]Br (4), [Re(CO)3{(NC5H4CH2)NCH3(C2H4)NCH3(CH2)xCOOC2H5}]Br (x = 1, 5; x = 4, 6) [Re(CO)3{(NC5H4CH2)NH(C2H4)N(CH3)2}]Br (7), [Re(CO)3{(NC5H4CH2)N(CH 2COOC2H5)(C2H4)N(CH3)2}]Br (8) and [Re(CO)3(NC5H4CH2)(C2H4NH2)N(CH2)3-CH3Ophenpip]Br (9) (phenpip: phenylpiperazine, -C6H4-(CH2CH2)2N-) were prepared and characterized by elemental analysis, NMR, IR, HSMS and X-ray crystallography. All complexes exhibit fac-{Re(CO)3N3} coordination geometry in the cationic molecular unit. Crystal data for C13H17BrN3O3Re (4): orthorhombic, Pbca, a = 13.4510(8) Å, b = 10.5728(6) Å, c = 22.5378(13) Å, V = 3205.2(3) Å3, Z = 8; C17H23BrN3O5Re (5): orthorhombic, Pcca, a = 16.5907(7) Å,b = 14.8387(6) Å, c = 16.7075(7) Å, V = 4113.1(3) Å3, Z = 8; C13H25BrN3O7Re (7 · 4H2O): monoclinic, P21/n, a = 14.0698(17) Å, b = 9.6760(12) Å, c = 15.6099 (19) Å, β = 114.930(2)°, V = 1927.1(4) Å3, Z = 4; C17H23BrN3O5Re (8): monoclinic, P21/n, a = 7.5312(5) Å, b = 16.0366(10) Å, c = 16.8741(10) Å, β = 98.9990(10)°, V = 2012.9(2) Å3, Z = 4.  相似文献   

9.
The octanuclear cyano-bridged cluster [(Tp)8Fe4Ni4(CN)12] · H2O · 24CH3CN (1) (Tp = hydrotris(1-pyrazolyl)borate) showing magnetic properties of single-molecule magnet has been synthesized by reaction of [fac-Fe(Tp)(CN)3] with {(Tp)Ni(NO3)} species formed from an equimolar reaction mixture of Ni(NO3)2 · 6H2O and KTp in MeCN. The X-ray analysis of 1 shows molecular cube structure in which FeIII and NiII ions reside in alternate corners. The average intramolecular Fe?Ni distance is 5.124 Å. Out-of-phase ac susceptibility and reduce magnetization measurements show that 1 is a single molecule magnet with ground spin state S = 6 and spin reversal energy barrier U = 14 K. Magnetic hysteresis loops were also observed by applying fast sweeping field.  相似文献   

10.
Reaction of the precursor Ir complex [Ir(H)2(PPh3)2(Me2CO)2]PF6 with 3,6-bis(2-pyridyl)tetrazine (bptz) in CH2Cl2 gave a novel dinuclear Ir hydrido complex [Ir2(H)4(PPh3)4(bptz)](PF6)2 · 4CH2Cl2. Crystallographic study described an interesting coordination environment having a π-π interaction and 1H NMR study showed unique upfield shifts of pyridyl rings that are likely induced by the ring current effect of neighboring PPh3 ligands.  相似文献   

11.
Substitution of thf ligands in [Cr(thf)3Cl3] and [Cr(thf)2(OH2)Cl3] was investigated. 2,2′-Bipyridine (bipy) was reacted with [Cr(thf)3Cl3] to form [Cr(bipy)(thf)Cl3] (1), which was subsequently reacted with water to give [Cr(bipy)(OH2)Cl3] (2). Reaction of 1 with acetonitrile (CH3CN), pyridine (py) and pyridine derivatives to form [Cr(bipy)(L)Cl3] (L = CH3CN 3, py 4 and 4-pyR with R = NH25, But6 and Ph 7). In addition, the substitution of bipy in [Cr(thf)3Cl3] was followed by 1H NMR spectroscopy at room temperature, which showed completion of the reaction in ca. 100 min. Complex 2 was characterised by single crystal X-ray diffraction. The theoretical powder diffraction pattern of 2 was compared to the experimentally obtained powder X-ray diffraction pattern, and shows excellent agreement. The dimer [Cr2(bipy)2Cl4(μ-Cl)2] was cleaved asymmetrically to give the anionic complex [Cr(bipy)Cl4] (8) and [Cr(bipy)2Cl2]+ (9). Complexes 8 and 9 were characterised by single crystal X-ray diffraction.  相似文献   

12.
The ligand hydrotris(1,4-dihydro-3-methyl-4-phenyl-5-thioxo-1,2,4-triazolyl)borato (TrPh,Me) was synthetized as natrium salt and the complexes [Zn(TrPh,Me)2] · 7.5H2O · 1.5CH3CN (2a), [Zn(TrPh,Me)2] · 8DMF (2b), [Co(TrPh,Me)2] · 8DMF (3a), [Ni(TrPh,Me)2] · H2O · 6DMSO (4a), [Bi(TrPh,Me)2]NO3 (5), have been isolated and structurally characterized by X-ray diffraction. In the zinc derivatives the ligand adopts different denticity and coordination modes, η2 and [S2] for 2a and η3 and [N3] for 2b, depending on the crystallization solvent, giving rise to tetrahedral and octahedral geometry, respectively. In the octahedral cobalt and nickel complexes the ligand is η3 and [N3] coordinated whereas in the bismuth complex the η3 and [S3] coordination is exhibited.  相似文献   

13.
Arylpiperazines, XC6H4N(CH2CH2)2NH, are readily alkylated to give the N-alkylpiperazines of the type XC6H4N(CH2CH2)2N(CH2)nNH2. The amine functions of these derivatives are in turn easily subjected to mono- or dialkylation to provide potentially tridentate ligands of the types XC6H4N(CH2CH2)2N(CH2)nN(H)(CH2Y) and XC6H4N(CH2CH2)2N(CH2)nN(CH2Y)(CH2Z), respectively. The latter class of dialkylated derivatives may be symmetrically (Y=Z) or unsymmetrically (Y ≠ Z) substituted. The donor groups Y and Z of this study include pyridine, imidazole, methyl-imidazole, thiazole, carboxylate and thiolate.The reactions of these ligands with [NEt4]2[Re(CO)3Br3] yield complexes of the type [Re(CO)3{(YCH2)N(H)(CH2)n(H)xN(CH2CH2)2N(H)yC6H4X}]n and [Re(CO)3{(ZCH2)(YCH2)N(CH2)n(H)xN(CH2CH2)2N(H)yC6H4X}]n where the molecular charge n (0, +1, or +2) depends on the nature of the donor groups Y and Z (whether neutral or anionic or a combination of neutral and anionic) and on the degree of protonation of the piperazine unit (x=0 or 1; y=0 or 1). This variety of tridentate chelators provides complexes with fac-{Re(CO)3N3}, {Re(CO)3N2O}, {Re(CO)3NO2}, {Re(CO)3N2S} and {Re(CO)3NS2} coordination geometries. The structures of the model compound [Re(CO)3{(CH3N2C3H2CH2)N(H)CH2CH2-piperidine}]Br · H2O, [Re(CO)3{(CH3N2C3H2CH2)N(H)CH2CH2-Fphenpip}]Br, [Re(CO)3{(NC5H4CH2)N(H)CH2CH2-Fphenpip}]Br, [Re(CO)3{(O2CCH2)2NCH2CH2CH2-CH3OphenpipH}] · xCH3OH (x≈0.875), [Re(CO)3{(NC5H4CH2)2NCH2CH2CH2-CH3OphenpipH}]Br2 · 2CH2Cl2 · H2O and [Re(CO)3{(CH3N2C3H2CH2)(O2CCH2)NCH2CH2CH2-CH3OphenpipH2}]BrCl · 1.5CH3OH · H2O are discussed (phenpip: phenylpiperazine, -C6H4N(CH2CH2)2N-).  相似文献   

14.
Reaction of Mo2(O2CCH3)2(DMepyF)2 (HDMepyF=N,N-di(6-methyl-2-pyridyl)formamidine) with HBF4 in CH2Cl2/CH3CN afforded the complex trans-[Mo2(H2DMepyF)2(CH3CN)4](BF4)6 (1), which crystallized in two forms, trans-[Mo2(H2DMepyF)2(CH3CN)4](ax-CH3CN)2(BF 4)6 · 2CH3CN (1a), and trans- [Mo2(H2DMepyF)2(CH3CN)4](ax-BF4) 2(BF4)4 · 2CH3CN (1b). The molecular structures of complexes (1) consist of two quadruply bonded molybdenum atoms, which are spanned by two trans-bridging formamidinate ligands and coordinated by four trans-CH3CN. Each H2DMepyF+ ligand adopts an s-cis,s-cis- conformation. The difference between 1a and 1b is that complex 1a contains two CH3CN molecules as axial ligands, while 1b contains two BF4 anions as axial ligands. Complex 1 is the first dimolybdenum complex containing a pair of trans bridging ligands and two pairs of trans-CH3CN ligands.  相似文献   

15.
Reaction of [(CO)5WC(O)Ph]Li or [(CO)5WC(O)Ph]NBu4 with Ph3PAuCl affords acyl complexes of gold. In the latter conversion, both the crystalline products [(CO)5WCl]NBu4 (2) and Ph3PAuC(O)Ph (3) have been isolated and fully characterised. Similarly, imidoyl gold compounds (4-8) result from deprotonated aminocarbene complexes, [(CO)5MC(NR2)R1]Li (M = Cr, W; R1 = Ph, Me; R2 = H, Me) and Ph3PAuCl. Crystal and molecular structure determinations of dinuclear [Ph3PAuC(NH)Ph] · Cr(CO)5 (6) show N-coordination of the chromium carbonyl unit that selectively affords a Z-isomer.  相似文献   

16.
The salts - yellow [Cr(NH3)6][Ag(CN)2]3 · 2H2O, red [Co(NH3)6][Ag(CN)2]3 · 2H2O, red [Co(NH3)6][Au(CN)2]3 · 2H2O, pale yellow [Ru(NH3)6][Ag(CN)2]3 · 2H2O, yellow K[Cr(NH3)6]2[Au(CN)2]7 · 4H2O, and colorless [(μ2-NH2)2Pt2(NH3)10][Au(CN)2]6 · 5.5{OS(CH3)2} · 0.5H2O - have been prepared by evaporation of aqueous solutions of potassium dicyanoargenate or potassium dicyanoaurate and salts of the appropriate cations. Hydrogen bonding between the cations and the cyano groups of the anions facilitates the formation of structures with strong metallophilic interactions between the anions. Thus, the [Au(CN)2] or [Ag(CN)2] ions self-associate into linear trimers in the isostructural set of crystals, [Cr(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1610(4) Å), [Co(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1557(2) Å), [Co(NH3)6][Au(CN)2]3 · 2H2O (Au?Au distance; 3.0939(4) Å), and [Ru(NH3)6][Ag(CN)2]3 · 2H2O (Ag?Ag distance; 3.1584(5) Å). Crystalline [(μ2-NH2)2Pt2(NH3)10][Au(CN)2]6 · 5.5{OS(CH3)2} · 0.5H2O also contains nearly linear trimers of the dicyanoaurate ion. Yellow crystals of K[Cr(NH3)6]2[Au(CN)2]7 · 4H2O contain a centrosymmetric, bent chain of seven dicyanoaurate ions with Au?Au separations of 3.1806(3), 3.2584(4), and 3.1294(4) Å.  相似文献   

17.
TiCl3(thf)3 reacts with ACl (A = NBu4, PPN; PPN = Ph3PNPPh3) in dichloromethane solution, affording the compounds A[TiCl4(thf)2] (A = NBu4, 1; A = PPN, 2). Compound 1, dissolved in CH2Cl2, exhibits thermochromic behaviour which has been the subject of variable-temperature UV-Vis investigations.  相似文献   

18.
The kinetics of the reactions between anhydrous HCl and trans-[MoL(CNPh)(Ph2PCH2CH2PPh2)2] (L=CO, N2 or H2) have been studied in thf at 25.0 °C. When L=CO, the product is [MoH(CO)(CNPh)(Ph2PCH2CH2PPh2)2]+, and when L=H2 or N2 the product is trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. Using stopped-flow spectrophotometry reveals that the protonation chemistry of trans-[MoL(CNPh)(Ph2PCH2CH2PPh2)2] is complicated. It is proposed that in all cases protonation occurs initially at the nitrogen atom of the isonitrile ligand to form trans-[MoL(CNHPh)(Ph2PCH2CH2PPh2)2]+. Only when L=N2 is this single protonation sufficient to labilise L to dissociation, and subsequent binding of Cl gives trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. At high concentrations of HCl a second protonation occurs which inhibits the substitution. It is proposed that this second proton binds to the dinitrogen ligand. When L=CO or H2, a second protonation is also observed but in these cases the second protonation is proposed to occur at the carbon atom of the aminocarbyne ligand, generating trans-[MoL(CHNHPh)(Ph2PCH2CH2PPh2)2]2+. Addition of the second proton labilises the trans-H2 to dissociation, and subsequent rapid binding of Cl and dissociation of a proton yields the product trans-[MoCl(CNHPh)(Ph2PCH2CH2PPh2)2]. Dissociation of L=CO does not occur from trans-[Mo(CO)(CHNHPh)(Ph2PCH2CH2PPh2)2]2+, but rather migration of the proton from carbon to molybdenum, and dissociation of the other proton produces [MoH(CO)(CNPh)(Ph2PCH2CH2PPh2)2]+.  相似文献   

19.
Phosphonium zwitterions of a known type were obtained in high yield via a 1:1 reaction of p-benzoquinone or methoxy-p-benzoquinone with the tertiary phosphines R3P [R = (CH2)3OH, Ph, Et, Me] and Ph2MeP, in acetone or benzene at room temperature. In all cases, attack of the P-atom occurs at a C-atom rather than at an O-atom. The products were characterized to various degrees by elemental analysis, 31P{1H}, 1H and 13C NMR spectroscopies, and mass spectrometry, and two of the zwitterions, the new [HO(CH2)3]3P+C6H2(O)(OH)(MeO) and the known Ph3P+C6H3(O)(OH), were structurally characterized by X-ray analysis. The PEt3 reaction also produces small amounts of the ‘dimeric’, μ-oxo co-product Et3P+C6H2(O)(OH)-O-C6H3(O)P+Et3 that is tentatively characterized by 1D- and 2D-NMR data. 2,5-Di-tert-butyl- and 2,3,5,6-tetramethyl-p-benzoquinone do not react with [HO(CH2)3]3P under the conditions noted above. Heating D2O solutions of the water-soluble zwitterions R3P+C6H3(O)(OH) [R = (CH2)3OH, Et] at 90 °C for 72 h leads to complete H/D exchange of the H-atom in the position ortho to the phosphonium center.  相似文献   

20.
Base-assisted reduction of [Ru(CO)3Cl2]2 in the presence of NP-Me2 (2,7-dimethyl-1,8-naphthyridine) in thf provides an unsupported diruthenium(I) complex [Ru2(CO)4Cl2(NP-Me2)2] (1). Two NP-Me2 and four carbonyls bind at equatorial positions and two chlorides occupy sites trans to the Ru-Ru single bond. Reaction of [Ru(CO)3Cl2]2, TlOTf, KOH and NP-Me2 in acetonitrile, in a sealed container, affords a bicarbonate bridged diruthenium(I) complex [Ru2(CO)2(μ-CO)2(μ-O2COH)(NP-Me2)2](OTf) (2). The in situ generated CO2 is the source for bicarbonate under basic reaction medium. Isolation of 2 validates the decarboxylation step in the base-assisted reduction of [RuII(CO)3Cl2]2 → [RuI2(CO)4]2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号