首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel synthetic method for the synthesis of the complexes cis-Pt(amine)2R(COO)2 is compared to two other methods involving the use of either barium dicarboxylate or sodium carboxylate. Pt(II) compounds with monodentate and bidentate amines were studied. The reaction involves the use of a silver dicarboxylato complex, which is the intermediate in the new synthetic procedure. The crystal structure of the silver intermediate with the ligand 1,1-cyclobutanedicarboxylate (1,1-CBDCA) was determined by X-ray diffraction. The crystal Ag2(1,1-CBDCA) has a very interesting 3-D extended structure. The complexes cis-Pt(amine)2R(COO)2 were studied in solution by multinuclear (1H, 13C and 195Pt) magnetic resonance spectroscopy, but the solubilities are very low. D2O was found to be the best solvent. In 195Pt NMR, the complexes containing bidentate amines forming five-membered chelates were observed at higher fields than those containing monodentate amines. The resonances of the NH3 compounds were also found at lower fields than the primary amine complexes. All the dicarboxylato ligands form six-membered chelates except 1,2-CBDCA, whose Pt(II) compounds were observed at lower fields than the others. The crystal structures of Pt(en)(1,1-CBDCA), Pt(Meen)(1,1-CBDCA) and Pt(en)(benzylmalonato) were confirmed by X-ray diffraction methods. Several compounds are disordered. The crystals are stabilized by intermolecular hydrogen bonds between the -NH2 groups and the carboxylato O atoms.  相似文献   

2.
Javier Miragaya 《Steroids》2009,74(9):735-361
A norbornyl-2-acetyl derivative of cholic acid ([3β,5β,7α,12α]-3[(norbornyl-2-acetyl)-amino]-7,12-dihydroxycholan-24-oic acid -NbCH2CA-) was synthesized and recrystallized in two dipolar aprotic solvents (acetone, DMSO) and in one protic solvent (2-propanol). In DMSO and acetone the crystals are orthorhombic, P212121 (all their parameters being very similar) while in 2-propanol the crystal is monoclinic, P21. The inclusion complexes with the solvent have a 1:1 stochiometry with DMSO and acetone and 1:2 with 2-propanol. All solvents are forming a hydrogen bond with the amide bond of the bridge between the norbornyl residue and the steroid nucleus of the bile acid. In DMSO and acetone the β side of the steroid groups lies in the same region facilitating hydrophobic interactions, and the molecules are disposed in an antiparallel orientation (the methyl groups having a β interdigitation) forming bilayers. The width of the bilayers is 9.231 Å and 8.859 Å in DMSO and acetone, respectively. A lamellar structure is also evident for the crystal in 2-propanol (the width being 11.908 Å), but the packing is different from the previous one since a sliding between the steroid groups is observed and the methyl groups are not interdigitated. Four different hydrogen bonds are established by every steroid molecule in the NbCH2CA/DMSO (or acetone) crystal. This hydrogen bond network interconnects the hydrophilic regions of the lamellar structure. The hydrogen bond network of the NbCH2CA:2-propanol crystal is different because of the different abilities of 2-propanol to form hydrogen bonds. The side chain has a ttti conformation in the two orthorhombic crystals, and a tgtg one in the monoclinic crystal.  相似文献   

3.
We report two new structures of the quadruplex d(TGGGGT)4 obtained by single crystal X-ray diffraction. In one of them a thymine tetrad is found. Thus the yeast telomere sequences d(TG1–3) might be able to form continuous quadruplex structures, involving both guanine and thymine tetrads. Our study also shows substantial differences in the arrangement of thymines when compared with previous studies. We find five different types of organization: (i) groove binding with hydrogen bonds to guanines from a neighbour quadruplex; (ii) partially ordered groove binding, without any hydrogen bond; (iii) stacked thymine triads, formed at the 3′ends of the quadruplexes; (iv) a thymine tetrad between two guanine tetrads. Thymines are stabilized in pairs by single hydrogen bonds. A central sodium ion interacts with two thymines and contributes to the tetrad structure. (v) Completely disordered thymines which do not show any clear location in the crystal. The tetrads are stabilized by either Na+ or Tl+ ions. We show that by using MAD methods, Tl+ can be unambiguously located and distinguished from Na+. We can thus determine the preference for either ion in each ionic site of the structure under the conditions used by us.  相似文献   

4.
The cation [(PPh3)2Pt(H)OH2]+ previously suggested as an intermediate in the synthesis of [(Ph3P)3Pt2(μ-H)(μ-PPh2)Ph]+ has been isolated as the tetrafluoroborate salt and characterised by X-ray crystallography. The structure shows a large unit cell with three independent cations and extensive hydrogen bonding between the water molecules and the tetrafluoroborate anions. The rearrangement of [(PPh3)2Pt(H)OH2]+ in aqueous THF provides a convenient high yield route to [(Ph3P)3Pt2(μ-H)(μ-PPh2)Ph]+.  相似文献   

5.
Four platinum(IV) complexes, trans,trans-dichlorobis(N,N-dimethylglycinato)platinum(IV), trans,trans-[Pt(dmgly)2Cl2] (1) and trans,trans-dibromobis(N,N-dimethylglycinato)platinum (IV), trans,trans-[Pt(dmgly)2Br2] (2), as well as, trans,trans-dichlorobis(N-methylglycinato)platinum(IV), trans,trans-[Pt(sar)2Cl2] (3) and trans,trans-dibromobis(N-methylglycinato)platinum(IV), trans,trans-[Pt(sar)2Br2] (4) (with configuration index for all complexes OC-6-14), were synthesized and characterized by elemental analysis, infrared and 1H NMR spectroscopy. In the aim to assess the selectivity in the antitumor action of these complexes, the antiproliferative action of these compounds was determined to human adenocarcinoma HeLa cells; to human myelogenous leukemia K562 cells and to normal immunocompetent cells; i.e., on human PBMC. The details of the crystal structure synthesized trans,trans-[Pt(sar)2Br2] complex were also reported here. In the crystal structure of trans,trans-[Pt(sar)2Br2], the Pt(IV) ion had a deformed octahedral coordination with both N-methylglycinates and bromides bonded trans to one another and with the N-Pt-Br bond angles of 84.1(4) and 95.9(4)°. The trans,trans-[Pt(sar)2Br2] complex molecules form 2D-layers with multiple N-H?O and C-H?O hydrogen bonds.  相似文献   

6.
N Verdaguer  L Urpí  I Fita  J A Subirana 《Biopolymers》1988,27(12):1887-1896
The crystal structure of L -lysyl-L -alanyl-L -alanine hydrochloride has been determined by x-ray diffraction. The peptide is in zwitterionic form with the carboxylic group deprotonated, and with positive charges both in the amino terminal and ?-amino groups of lysine. Crystals are monoclinic, space group P21 and Z = 4, with two peptide molecules in the asymmetric unit, which show different conformations. While one molecule has torsional angles for the Lys-Ala peptide bond (φ2, φ2) in the β-pleated sheet region, the values for the other molecule are close to those for the α-helix. This molecular flexibility is of interest for the study of H1 histone, which contains this sequence repeated several times. The two lysine residues show fully extended side chains. Two methanol molecules and two acetonitrile molecules are also present in the unit cell. An extensive network of hydrogen bonds and ionic interactions stabilize the crystal structure.  相似文献   

7.
The structure of α-chitin has been determined by X-ray diffraction, based on the intensity data from deproteinized lobster tendon. Least-squares refinement shows that adjacent chains have alternating sense (i.e. are antiparallel). In addition, there is a statistical distribution of side-chain orientations, such that all the hydroxyl groups form hydrogen bonds. The unit cell is orthorhombic with dimensions a = 0.474 ± 0.001 nm, b = 1.886 ± 0.002 nm and c = 1.032 ± 0.002 nm (fiber axis); the space group is P212121 and the cell contains disaccharide sections of the two chains passing through the center and corner of the ab projection. The chains form hydrogen-bonded sheets linked by CO…HN bonds approximately parallel to the a axis, and each chain has an O-3′H…O.5 intramolecular hydrogen bond, similar to that in cellulose. Adjacent chains along the ab diagonal have different conformations for the CH2OH groups: on one chain these groups form O.6H…O.6′ intermolecular hydrogen bonds to the CH2OH group on the adjacent chain along the ab diagonal. The latter group is oriented to form an intramolecular O.6′H…O.7 bond to the carboxyl oxygen on the next residue. The results indicate that a statistical mixture of CH2OH orientations is present, equivalent to half oxygens on each residue, each forming inter- and intramolecular hydrogen bonds. As a result the structure contains two types of amide groups, which differ in their hydrogen bonding, and account for the splitting of the amide I band in the infrared spectrum. The Inability of this chitin polymorph to swell on soaking in water is explained by the extensive intermolecular hydrogen bonding.  相似文献   

8.
The hydrothermal synthesis, single crystal X-ray structure and magnetic properties of a two-dimensional (2-D) coordination polymer, [Ni4(C6(COO)6)(OH)2(H2O)6] (1), is described. Complex 1 consists of dimer motifs of pseudo octahedral NiO6 linked through μ3-OH to generate one-dimensional (1-D) chains which are further bridged by the mellitate ligands to form non interpenetrated undulating sheet structure. The sheets are further connected by hydrogen bonding interaction to yield a three-dimensional (3-D) structure. The temperature dependence of magnetic susceptibilities revealed the presence of antiferromagnetic interaction between nickel centers.  相似文献   

9.
X-ray diffraction and molecular model building studies of an ordered structure of thymidylyl-3′,5′-deoxyadenosine which gives fibre-type diffraction patterns, are consistent with a seven-residues per turn, left-handed structure in which the adenine of one molecule and the thymine of the next are linked together by Hoogsteen type of hydrogen bonds. The structure thus resembles a macromolecule in which units are linked together by hydrogen bonds and stabilized by base stocking. Both nucleosides in the basic molecule are in the anti conformation and both sugar rings have C3′-endo puckers. The C5′-05′ bond of the deoxyadenosine is trans relative to C4′-C3′ and the conformations about the P-03′ and P-05′ bond are gauche?, trans.  相似文献   

10.
The reactions of the triangulo-cluster [Pt3(μ-CO)3(PtBu3)3] with activated olefins and alkynes have been examined under various conditions. At low temperature, cluster fragmentation occurs yielding the Pt(0) complexes [Pt(CO)(PtBu3)(olefin)] (olefin = maleic anhydride and maleimide), while di(tert-butyl)acetylenedicarboxilate reacts quantitatively giving the dinuclear Pt(0) complex [Pt2(CO)2(PtBu3)2(μ-η22-tBuO2CCCCO2tBu)]. At higher temperature and in the presence of alkyne in large excess, the latter dimer converts quantitatively to the monomers [Pt(CO)(PtBu3)(alkyne)] (alkyne = CF3CCCF3 and tBuO2CCCCO2tBu). The stereochemistry of these complexes has been established by NMR and IR measurements. The structure of [Pt(CO)(PtBu3)(CF3CCCF3)] was confirmed by X-ray diffraction analysis.  相似文献   

11.
From the crystals of trans aquabis(N,N-dimethylglycinato-κNO)copper(II) dihydrate (compound 1, space group P212121) novel crystal structure of trans aquabis(N,N-dimethylglycinato-κNO)copper(II) (compound 2, space group Pbca) was obtained and analysed by X-ray diffraction. In the crystal structure 1, the O-H?O hydrogen bonds form three-dimensional network. In the crystal structure 2, two-dimensional layers stacking to each other are formed, with non-polar N,N-dimethyl groups placed on the opposite sides of the layers, and with the polar part in the middle forming CO?O-H and C-H?O hydrogen bonds. Different hydrogen bonding patterns in 1 and 2 do not pronouncedly affect molecular geometry of the title compound. Molecular mechanics force field suited for studying the properties of bis(amino acidato)copper(II) complexes in the solid state can follow the differences between the experimental molecular structures in the two diverse crystalline surroundings. To make possible direct comparison between crystal lattices, the force field was applied to predict unit cell packing of supposed anhydrous bis(N,N-dimethylglycinato)copper(II) in space group Pbca. Relative intermolecular energies of hypothetic anhydrous crystal and simulated 1 and 2 crystals are discussed. On the basis of experimental and theoretical results we conclude that the main effect of two water molecules of crystallisation in 1 is to stabilise the crystal packing via hydrogen bonding, whilst similar pyramidal copper(II) coordination geometry in 1 and 2 is due to axially coordinated water molecule and its intermolecular interactions.  相似文献   

12.
Xanthates, like thiolates, form a variety of complexes with metals in which coordinating sulfur can serve as a hydrogen bond acceptor. Nickel tris xanthate complexes [Ni(xan)3], (xan = o-ethylxanthate, N-(carbamoylmethyl)ethylxanthate) have been synthesized and compared by a combination of X-ray crystallographic and spectroscopic measurements. Recent results from our studies of N-H?S hydrogen bonding interactions in metal-xanthate complexes shows N-S distances to be longer than those in related thiolate complexes, indicative of weaker hydrogen bonds for the xanthates. The complex (Et4N)[N-(carbamoylmethyl)ethylxanthate)] adopts an extended conformation in both the solid state and solution and lacks either intraligand or intermolecular N-H?S hydrogen bonds. The complex (CTA)[Ni(exa)3] exhibits N-H?S hydrogen bonds between the amide group of the counterion and the ligand sulfur. The amide-sulfur N-H?S distance is 3.567 Å.  相似文献   

13.
The interaction forces between a platinum dichloride complex and DNA molecules have been studied using atomic force microscopy (AFM). The platinum dichloride complex, di-dimethylsulfoxide-dichloroplatinum (II) (Pt(DMSO)2Cl2), was immobilized on an AFM probe by coordinating the platinum to two amino groups to form a complex similar to Pt(en)Cl2, which is structurally similar to cisplatin. The retraction forces were measured between the platinum complex and DNA molecules immobilized on mica plates using force curve measurements. The histogram of the retraction force for λ-DNA showed several peaks; the unit retraction force was estimated to be 130 pN for a pulling rate of 60 nm/s. The retraction forces were also measured separately for four single-base DNA oligomers (adenine, guanine, thymine, and cytosine). Retraction forces were frequently observed in the force curves for the DNA oligomers of guanine and adenine. For the guanine DNA oligomer, the most frequent retraction force was slightly lower than but very similar to the retraction force for λ-DNA. A higher retraction force was obtained for the adenine DNA oligomer than for the guanine oligomer. This result is consistent with a higher retraction activation energy of adenine with the Pt complex being than that of guanine because the kinetic rate constant for retraction correlates to exp(FΔx – ΔE) where ΔE is an activation energy, F is an applied force, and Δx is a displacement of distance.  相似文献   

14.
A new open-framework gallium phosphite Ga5(OH)2(HPO3)8(C4N3H16) · 2H2O (1) is synthesized solvothermally using diethylenetriamine (DETA) as template from a mixed solvent system in which ethylene glycol (EG) was used as the co-solvent. The as-synthesized product is characterized by single crystal X-ray diffraction, powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis (TGA), ICP-AES and elemental analyses. The three-dimensional open-framework of compound 1 is constructed from two novel secondary building units (SBUs), Ga2O7(OH)(HPO3) three-membered ring (3R) and Ga(HPO3)6 tooth-wheel type unit. These two novel secondary building units are first found in gallium phosphate/phosphite, which lead to form the one-dimensional 8-membered ring channels along the a-axis. Moreover, it is noted that compound 1 is the first gallium phosphite containing 5-fold coordinate gallium atom.  相似文献   

15.
The preparation is reported of [(NH3)3Pt(9- MeA)] X2 (9-MeA = 9-methyladenine) with XCl (1a) and XClO4 (1b) and of trans-[(OH)2Pt(NH3)3- (9-MeA)]X2 with XCl (2a) and XClO4 (2b), and the crystal structure of 1b. [(NH3)3Pt(C6H7N5)](ClO4)2 crystallizes in space group P21/n with a = 20.810(7) Å, b = 7.697(3) Å, c = 10.567(4) Å, β = 91.57(6)°, Z = 4. The structure was refined to R = 0.054, Rw = 0.063. In all four compounds Pt coordination is through N7 of 9-MeA, as is evident from 3J coupling between H8 of the adenine ring and 195Pt. Pt(II) and Pt(IV) complexes can be differentiated on the basis of different 3J values, larger for Pt(II) than for Pt(IV) by a factor of 1.57 (av). In Me2SO-d6, hydrogen bonding occurs between Cl? and C(8)H of 9-MeA as weil as between Cl? and the NH3 groups in the case of the Pt(II) complex 1a. Protonation of the 9-MeA ligands was followed using 1H NMR spectroscopy and pKa values for the N1 protonated 9-MeA ligands were determined in D2O. They are 1.9 for 1a and 1.8 for 2a, which compares with 4.5 for the non-platinated 9-MeA. Possible consequences for hydrogen bonding with the complementary bases thymine or uracil are discussed briefly. Protonation of the OH groups in the Pt(IV) complexes has been shown not to occur above pH 1.  相似文献   

16.
Eight PdII complexes are chemically and structurally characterized by NMR and X-ray diffraction. Their common structural feature is the planar 2,2′-bipyridyl ligand (bipy) faced by variously substituted, vertical pyridines (n-Rpy). Dissymmetric Csn-Rpy lead, in solution, to syn and anti geometric isomers whose dynamic interconvertion can be either driven by pyridine rotation or reversible dissociation. Activation energy of the rotational motion is for Pd lower than Pt in accord with a weaker double bond character of Pd-Npy bond. The energetic barrier also owns a steric contribution which becomes dominant for 2-Mepy. Methyl bumping locks rotation and loosens Pd-Npy bond, triggering an alternative isomerization pathway.  相似文献   

17.
Aree T  Chaichit N 《Carbohydrate research》2003,338(15):1581-1589
A new crystal form of beta-cyclodextrin (beta-CD)[bond]ethanol[bond]dodecahydrate inclusion complex [(C(6)H(10)O(5))(7).0.3C(2)H(5)OH.12H(2)O] belongs to monoclinic space group C2 (form II) with unit cell constants a=19.292(1), b=24.691(1), c=15.884(1) A, beta=109.35(1) degrees. The beta-CD macrocycle is more circular than that of the complex in space group P2(1) [form I: J. Am. Chem. Soc. 113 (1991) 5676]. In form II, a disordered ethanol molecule (occupancy 0.3) is placed in the upper part of beta-CD cavity (above the O-4 plane) and is sustained by hydrogen bonding to water site W-2. In form I, an ethanol molecule located below the O-4-plane is well ordered because it hydrogen bonds to surrounding O-3[bond]H, O-6[bond]H groups of the symmetry-related beta-CD molecules. In the crystal lattice of form I, beta-CD macrocycles are stacked in a typical herringbone cage structure. By contrast, the packing structure of form II is a head-to-head channel that is stabilized at both O-2/O-3 and O-6 sides of each beta-CD by direct O(CD)...O(CD) and indirect O(CD)...O(W)...(O(W))...O(CD) hydrogen bonds. The 12 water molecules are disordered in 18 positions both inside the channel-like cavity of beta-CD dimer (W-1[bond]W-6) and in the interstices between the beta-CD macrocycles (W-7[bond]W-18). The latter forms a cluster that is hydrogen bonded together and to the neighboring beta-CD O[bond]H groups.  相似文献   

18.
Abstract

The effect of methylation of the 0–6 position of guanine in short segments of double helical DNA has been investigated by molecular mechanical simulations on the sequences d(CGCGCG)2, d(CGC+AFs-OMG+AF0-CG)2, d(CGT+AFs-OMG+AF0-CG)2, d(CGC+AFs-OMC+AF0-CG/(CGCGCG), d(CGC+AFs-OMG+AF0-CG/d(CGTGCG), d(CGCGAATTCGCG)2 and d(CGCGAATTC+AFs-OMG+AF0-CG)2. Guanines methylated at the 0–6 position are found to form hydrogen bonds of roughly equal strength to cytosine and thymine. The optimum structure of these modified base pairs are not dramatically different from normal GC pairs, but both involve some bifurcation of the proton donors of cytosine (4NH2) or thymine (3NH) between the guanine N3 and O6 groups.  相似文献   

19.
The thermal stability of a new polynucleotide complex has been used to establish the hydrogen-bonding structure of three-stranded C-G·CH+ helices. In the Hoogsteen structure, the 8NH2 group of 8NH2GMP can form a third hydrogen bond to the CH+ strand, but in the alternative structure, the 8NH2 group can form no interbase hydrogen bonds. For the new complex, 8NH2GMP·2 poly(C), a transition temperature of 80°C is observed under conditions in which the corresponding complex formed with 5′-GMP has a Tm of 20°C. We conclude from this 60° elevation of transition temperature that a third hydrogen bond is formed by the 8NH2 group and that the structure must have Hoogsteen bonding. In order to be compatible with this structure in regular helices formed by U,C copolymers, A·2U bonding would also have to have a Hoogsteen structure.  相似文献   

20.
Sequence repeats constituting the telomeric regions of chromosomes are known to adopt a variety of unusual structures, consisting of a G tetraplex stem and short stretches of thymines or thymines and adenines forming loops over the stem. Detailed model building and molecular mechanics studies have been carried out for these telomeric sequences to elucidate different types of loop orientations and possible conformations of thymines in the loop. The model building studies indicate that a minimum of two thymines have to be interspersed between guanine stretches to form folded-back structures with loops across adjacent strands in a G tetraplex (both over the small as well as large groove), while the minimum number of thymines required to build a loop across the diagonal strands in a G tetraplex is three. For two repeat sequences, these hairpins, resulting from different types of folding, can dimerize in three distinct ways—i.e., with loops across adjacent strands and on same side, with loops across adjacent strands and on opposite sides, and with loops across diagonal strands and on opposite sides—to form hairpin dimer structures. Energy minimization studies indicate that all possible hairpin dimers have very similar total energy values, though different structures are stabilized by different types of interactions. When the two loops are on the same side, in the hairpin dimer structures of d(G4TnG4), the thymines form favorably stacked tetrads in the loop region and there is interloop hydrogen bonding involving two hydrogen bonds for each thymine–thymine pair. Our molecular mechanics calculations on various folded-back as well as parallel tetraplex structures of these telomeric sequences provide a theoretical rationale for the experimentally observed feature that the presence of intervening thymine stretches stabilizes folded-back structures, while isolated stretches of guanines adopt a parallel tetraplex structure. © 1994 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号