首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A 2D layer complex 1 and a linear trinuclear complex 2 with mixed ligands have been synthesized and characterized by elemental analyses, IR and single-crystal X-ray diffraction. In 1, the Mn(II) ions are six-coordinated and lie in distorted octahedron coordination environments. Complex 1 is connected into a 2D layer structure based on a linear trinuclear Mn3(admtrz)4(N3)6 (admtrz = 4-amino-3,5-dimethyl-1,2,4-triazole) building unit with either (6,3) topology when Mn1 cations as three-connected nodes or (4,4) network when the coordination trinuclear units being regarded as four connected nodes. In 2, the Co(II) ions are in slightly distorted octahedron coordination geometries. The magnetic behaviors are investigated in the temperature range 1.8-300 K. The magnetic susceptibility measurements show that the Mn(II) ions of complex 1 are weakly antiferromagnetically coupled with g = 1.98(1), J1 = −6.31(5) cm−1 and J2 = −1.88(1) cm−1. There is dominant zero field splitting (ZFS) effects with g values, g// = 2.38(2) and g = 4.96(4), indicated a significant presence of the spin-orbit coupling and magnetization experiment reveals large, uniaxial zero-field splitting parameters of D = −29.55 cm−1 for 2.  相似文献   

2.
Two alternating 1-D metal-radical linear [L:Cu(hfac)2]n and zig-zag [L:Mn(hfac)2]n chains (where L = 4-trimethylsilylethynyl-1-(4,4,5,5-tetramethyl-3-oxylimidazoline-1-oxide)benzene) and hfac = hexafluoroacetylacetonate) are described and characterized by X-ray diffraction of their crystals. Bulk magnetic measurements of L:Cu(hfac)2 indicated a ferromagnetic interaction with J = 6 cm−1 and L:Mn(hfac)2 yielded ferrimagnetic interactions with J = −95 cm−1. For the latter, a strong increase of their magnetic moment at lowest temperatures was observed only at very low static magnetic field, while for Hdc > 0.05 T saturation effect led to a downward slope after reaching a maximum.  相似文献   

3.
A three dimensional supramolecular network, {[Co(bpee)(H2O)4] · (tp) · 2(H2O)}n (1) [bpee = trans-1,2 bis(4-pyridyl)ethylene; tp = terephthalate dianion] has been synthesized and characterized by X-ray single crystal structure, magnetic measurement and thermal analysis. The structure determination reveals that the cobalt(II) ions, bridged by bpee and coordinated by four water molecules, give rise to covalently linked 1D polymeric chain. The parallel chains get involved in H-bonding with tp resulting in a 3D architecture. Upon heating 1, which is pink in color, transforms to [Co(bpee)(tp)] (1a, blue). The deaquated species (1a) reverts on keeping in humid atmosphere. Low temperature magnetic data indicate weak antiferromagnetic coupling.  相似文献   

4.
Two new squarato-bridged Fe(II) polymeric networks of molecular formula [Fe(squarate)(bpp)2(H2O)2] (1) and [Fe(squarate)(bpee)(H2O)2] (2) [bpp = 1,3-bis(4-pyridyl)propane; bpee = 1,2-bis(4-pyridyl)ethylene; ] have been synthesized and characterized by single-crystal X-ray diffraction studies and low temperature (300-2 K) magnetic measurements. Complex 1 is a 1D coordination chain of Fe(H2O)2 units connected by μ-O,O″ squarate dianions with monocoordinated bpp ligands dangling from the polymer. These 1D chains ultimately transform to a thick 2D layer through π-π interaction of pyridyl rings as well as through hydrogen bonds. Whereas structural determination of complex 2 reveals an inclined interpenetrated 3D architecture. Magnetic data for both the complexes 1 and 2 have been fitted using the Fisher formula for S = 2 system and show antiferromagnetic coupling for both the complexes. The best fit parameters are J = −0.40 cm−1, g = 2.30 and R = 0.01 for complex 1 and J = −0.49 cm−1, g = 2.08 and R = 1.9 × 10−3 for complex 2.  相似文献   

5.
The synthesis, structural characterization and magnetic property of two new coordination polymers [Cu(pyz)(μ-CH3CO2)4]n (1) and [Cu(pyz)(μ-CCl3CO2)4]n (2) (pyz = pyrazine) are reported. Here, the carboxylato bridged two dinuclear copper(II) complexes are linked through pyrazine giving a 1-D alternating chain. The magnetic property of the complexes indicates a significant difference originated from the introduction of electron withdrawing substituent on the bridging dicarboxylate. Complex 1 exhibits strong antiferromagnetic interactions with J = −344.61 cm−1, whereas 2 exhibits comparatively less strong antiferromagnetic coupling with J = −238.53 cm−1.  相似文献   

6.
Four new dinuclear Mn(III) compounds have been synthesised: [{Mn(bpy)(H2O)}2(μ-4-ClC6H4COO)2(μ-O)}](ClO4)2 (1), [{Mn(EtOH)(phen)}2(μ-O)(μ-4-ClC6H4COO)2](ClO4)2 (2), [{Mn(bpy)(EtOH)}(μ-4-BrC6H4COO)2(μ-O){Mn(bpy)(ClO4)](ClO4) (3) and [{Mn(H2O)(phen)}2(μ-4-BrC6H4COO)2(μ-O)](ClO4)2 (4). The crystal structures of 2 and 3 are evidence for the tendency of the ethanol and the perchlorate to act as ligands. Due to the coordination of these groups, the environment of the manganese ions is elongated in the monodentate ligand direction, and this distortion is more important when this ligand is the perchlorate. The magnetic properties of the four compounds have been analysed: compounds 1, 3 and 4 show antiferromagnetic behaviour, with J = −6.33 cm−1 for 1, J = −6.76 cm−1 for 3 and J = −3.08 cm−1 for 4 (H = −JS1·S2), while compound 2 shows a very weak ferromagnetic coupling. For this compound, at low temperature the most important effect on the χMT data is the zero-field splitting of the ion, and the best fit was obtained with |DMn| = 2.38 cm−1 and |EMn| = 0.22 cm−1.  相似文献   

7.
(ML)2(bipy) complexes (LH2 = thiosemicarbazone of 2-hydroxybenzaldehyde, bipy = 4,4′-bipyridine, M = Ni(II), 1, or Cu(II), 2) were synthesized and characterized by X-ray crystallography. Compound 1 possessed porous structure due to peculiarities of crystal packing, whereas 2 formed infinite zig-zag chains with dense non-porous packing. It was shown that 1 absorbed 0.013 cm3/g of methanol vapor in two steps. Complex 1 was diamagnetic; for 2, the dependency of χ versus T could be interpreted by Bleaney-Bowers expression in 20-300 K temperature range (J = −6.8 cm−1, g = 2.07).  相似文献   

8.
Two 3D coordination polymers, {NiII(tp)(OHCH3)}n (1), and {CoII(tp)(phen)(H2O)}n (2) (tp = terephthalic dianion, phen = 1,10-phenanthroline), have been synthesized by self-assembly. The structure analyses show that both of the two complexes are formed by one-dimensional infinite chains through non-covalent interactions, but 1 is formed by one-dimensional straightforward chains, while 2 is based on one-dimensional zigzag ones. The photoluminescent study of the two complexes shows that they exhibit fluorescent emission bands at ca. 374 nm and 392 nm, respectively.  相似文献   

9.
Two complexes of [Ni(dmit)2] (dmit2− = 2-thioxo-1,3-dithiole-4,5-dithiolate) with nonmagnetic Schiff base cations, 1-(4-bromobenzylideneamino)pyridinium (4-BrBz-1-APy+; 1) and 1-(3-nitrobenzylideneamino)pyridinium (3-NO2Bz-1-APy+; 2), have been characterized structurally. Their striking structural feature is the deviation of the [Ni(dmit)2] anion from the square-planar environment around the Ni atom with 11.42° and 6.57° dihedral angles (between the mean molecular planes of two dmit2− ligands) in 1 and 2, respectively. These twists arise from the molecular packing interactions between the superimposed anion and cation. In 1, the magnetic [Ni(dmit)2] anions are arranged into a wave-shaped regular spin chain, whose magnetism was well fitted by one-dimensional (1D) Heisenberg uniform linear antiferromagnetic chain with |J/kB| = 66 K. In 2, 1D ladder-shape [Ni(dmit)2] chains are formed through lateral-to-lateral S?S contacts between the adjacent anions, which are further aligned into a two-dimensional (2D) anion layer via van der Waals forces. Complex 2 shows Curie-Weiss-type paramagnetic behavior with Curie constant C = 0.421 emu K mol−1 and Weiss constant θ = −1.279 K. The broken-symmetry DFT approach was utilized to evaluate the magnetic coupling nature for 1 and 2, the theoretical analyses performed at ubpw91/lanl2dz level and concerned the so-called “weak bonding” regime approaches qualitatively explained the magnetic behaviors of 1 and 2.  相似文献   

10.
A covalent-bonded one-dimensional (1D) chain, [Mn(bpe)2(SCN)2]n (1) [bpe=1,2-bis(4-pyridyl)ethane], and a hydrogen-bonded two-dimensional (2D) sheet, [Mn(tbp)2(H2O)2(SCN)2] (2) [tbp=trans-1,2-bis(4-pyridyl)ethylene], have been prepared. Complex 1 can be viewed as a purely coordinative-bonded 1D motif doubly bridged by the bpe ligand that is a gauche conformational isomer with a large dihedral angle of 73.9°. The two bridging bpe ligands feature a shape of square with a dimension of 10.064 Å × 9.776 Å. The compound 2 possesses non-covalent bonding forces of hydrogen bonds and π-π interactions responsible for the fabrication of the 2D architecture. Magnetic susceptibility data for 1 were fitted by employing the infinite chain model (H=−JSi·Si+1) to give parameters of J=−0.052 cm−1 and g=2.00, indicating the presence of a weak anti-ferromagnetic coupling.  相似文献   

11.
Two oxamido-bridged trinuclear complexes of formula {[(LCu)(EtOH)]2Mn(EtOH)2}(ClO4)2 (1) and {[(LCu)(EtOH)]2Co(EtOH)2}(ClO4)2 · 2H2O (2) (H2L = 2,3-dioxo-5,6:13,14-dichlorobenzo-7,12-diphenyl-1,4,8,11-tetraazacyclo-pentadeca-7,11-diene) have been synthesized and structurally characterized. The central ions of complexes 1-2 (Mn(II), Co(II)) are all bridged by macrocyclic oxamido groups. Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −16.91 cm−1 for 1 and J = −27.73 cm−1 for 2.  相似文献   

12.
Two unprecedented families of bpca-based mono-dimensional complexes Cu(bpca)(X) (X = CN, 1; N3, 2) and [Cu1 − xFex(bpca)](ClO4) (x = 0, 3; 0.23, 4) were synthesised. The structure of 1 was solved ab initio from X-ray powder diffraction data and refined by Rietveld methods. The complexes 3-4 were characterised by X-ray single crystal diffraction. In 1 the cyano ligand coordinates the metal centres, the Cu centres forming a zigzag 1-D chain along the (0 0 1) direction, while in 3-4, the bpca ligand itself acts as the link towards the metal ions which are arranged in a linear 1-D chain running parallel to the (0 0 1) direction. An infrared spectroscopy study confirmed these coordination modes. The magnetic properties of both chain families were studied. 1-2 do not show significant magnetic interactions, whereas the magnetic behaviour for 3-4 suggests dominant antiferromagnetic interactions between the metal ions within the chains. The magnetic behaviour of 3 was analysed using the Padé approximation of the Bonner-Fisher model for S = 1/2 antiferromagnetic chains. The J value was estimated as 10 K.  相似文献   

13.
This work presents a systematic investigation on coordination chemistry of a novel pyridine-2,6-dicarboxylic acid N-oxide (pydco), and also reveals the significant function of supramolecular interactions in dominating the resultant crystalline nets. Assemblies of pydco with transition-metal ions under similar conditions yield a series of polymers in the absence/presence of the organonitrogen ligands {[Cu(pydco)(L)0.5(H2O)] · 2H2O}n (L = bipy (1), bpa (2) and bpe (3)), {[M(pydco)(bpp)(H2O)] · 2H2O}n (M = Cu (4) and Ni (5)), [Ag2(pydco)]n (6) and [Ag2Cu(pydco)2]n (7) (bipy = 4,4′-bipyridine, bpa = 1,2-bis(4-pyridyl)ethane, bpe = 1,2-bis(4-pyridyl)ethene, bpp = 1,3-bis(4-pyridyl)propane). 1-5 feature different structural characteristics, although they exhibit analogous chain networks. Remarkably, extended architectures are further constructed with the aid of weak interactions. Reaction of pydco with AgAc yields a 2-D polymer 6, which was reported in our recent Communication. A mixed-metal coordination polymer 7 was obtained by the self-assembly of AgAc, Cu(Ac)2 · H2O and pydco.In 7, two left- and right-hand helical chains are constructed by carboxylic groups of pydco and Cu centers, which are further connected by [AgCO2]2 cores into a 2-D network. Structural evolution under the co-ligand intervention in this series of compounds, as well as the general coordination rule of pydco, has been further discussed. Furthermore, variable temperature magnetic properties of 1, 3 and 7 are also studied. The magnetic measurements of 1 and 3 reveal the existence of weak antiferromagnetic interactions with J1 = −4.59 cm−1 and J2 = −4.63 cm−1, respectively. Whereas 7 displays weak ferromagnetic interactions with J3 = 1.81 cm−1.  相似文献   

14.
The synthesis, crystal structure and magnetic properties of manganese(III) binuclear complexes [MnIII2(L-3Н)2(CH3ОH)4]·2CH3ОH (1) and [MnIII2(L-3Н)2(Py)4]·2Py (2) (L = 3-[(1E)-N-hydroxyethanimidoyl]-4-methyl-1H-pyrazole-5-carboxylic acid) are reported. The ligand contains two distinct donor compartments formed by the pyrazolate-N and the oxime or the carboxylic groups. The complexes were characterized by X-ray single crystal diffraction, revealing that both 1 and 2 consist of dinuclear units in which the two metal ions are linked by double pyrazolate bridges with a planar {Mn2N4} core. Cryomagnetic measurements show antiferromagnetic interaction with g = 1.99, J = −3.6 cm−1, Θ = −2.02 K for 1 and g = 2.00, J = −3.7 cm−1, Θ = 1.43 K for 2.  相似文献   

15.
Two new binuclear radical complexes derived from a new long nitronyl nitroxide ligand, 2-[4-(5-pyrimidyl)phenyl]-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (4-NITPhPyrim), and M(hfac)2 (M2+ = Cu2+, Mn2+; hfac = hexafluoroacetylacetonato), [Cu(hfac)2(4-NITPhPyrim)]2 · 4H2O (1) and [Mn(hfac)2(4-NITPhPyrim)]2 · 4H2O (2), were synthesized as well as characterized structurally and magnetically. X-ray analysis indicates that 1 and 2 are rectangle-like centrosymmetric dimer M2L2 complexes. Magnetic measurements indicate that there are two types of magnetic exchanges in 1: the ferromagnetic (FM) exchange between the Cu(II) ion and the directly bonded nitroxide unit (J1 = 24.20 cm−1) and the weak FM exchange of Cu-NIT through the pyrimidine and phenyl rings (J2 = 0.62 cm−1). Besides the strong antiferromagnetic (AFM) coupling between the Mn(II) ion and the directly bonded nitroxide unit (J = −87.61 cm−1), there is a weak FM interaction between the two Mn-NIT pairs (θ = 0.39 K) in 2.  相似文献   

16.
Synthesis, spectroscopic and magnetic properties, and X-ray crystal structures of two copper(II) polymers Cu(2-qic)Br (2-qic = quinoline-2-carboxylate) (1) and Cu(2-pic)Br (2-pic = pyridine-2-carboxylate) (2) are described. These compounds are isostructural with Cu(2-qic)Cl and Cu(2-pic)Cl, respectively, the X-ray crystal structures of which were reported recently. Both complexes are polynuclear copper(II) compounds (1D and 2D, respectively) based on syn-anti carboxylate bridges and additionally on linear monobromo- (in 1) and dibromo-bridging (in 2) motifs. The magnetic properties were investigated in the temperature range 1.8-300 K. They reveal the occurrence of strong antiferromagnetic coupling (J1 = −102.5 cm−1) through the single bromo-bridge in 1, which is much stronger than that transmitted by the single chloro-bridge (J = −57.0 cm−1). Very weak ferromagnetic interaction through the syn-anti carboxylate bridge J2 is expected as it was observed in isomorphous Cu(2-qic)Cl (J = 0.37 cm−1). For 2 a weak ferromagnetic couplings through the syn-anti carboxylate (zJ′ = 1.35 cm−1) and dibromo-bridges (J = 8.31 cm−1) were found. The experimental results indicate that the observed ferromagnetic exchange through dibromo-bridge is weaker than that in the chloride analog (J = 15.0 cm−1). The magnitude of magnetic interactions is discussed on the basis of structural data of compounds 1 and 2 and their halide analogues.  相似文献   

17.
The complexes [Cu2(ox)(phen)2(H2O)2](NO3)2 (1), [Cu2(sq)(pmdien)2(H2O)2](ClO4)2 (2) and {[Cu3(pdc)3(4,4′-bipy)1.5(H2O)2.25] · 2.5(H2O)}n (3) [phen = 1,10-phenanthroline; pmdien = N,N,N′,N′,N″-pentamethyldiethylenetriamine; 4,4′-bipy = 4,4′-bipyridine; ox = oxalate dianion; sq = squarate dianion and pdc = pyridine 2,6-dicarboxylate] have been synthesized and characterized by X-ray single crystal structure determination, low temperature magnetic measurement and thermal study. Structure determination reveals that 1 and 2 are dinuclear copper(II) complexes bridged by oxalate and squarate dianions, respectively, while 3 is a hexanuclear species formed by three Cu(pdc)(H2O)-(4,4′-bipy)-Cu(pdc)(H2O) fragments, connected through long Cu-O(pdc) bonds in a centrosymmetric arrangement. In complex 1 H-bonds occurring between the coordinated water molecules and lattice nitrate anions result in eight-membered ring clusters with the concomitant formation of 1D supramolecular chain. The adjacent chains undergo π-π stacking forming a 2D architecture. In the crystal of 3 an extensive H-bonding scheme gives rise to a 3D supramolecular network. Low temperature magnetic study shows a strong antiferromagnetic coupling in 1 (J = −288 ± 2 cm−1, g = 2.21 ± 0.01, R = 1.2 × 10−6); and a very weak interaction in 2 and 3, the best-fit parameters being: J = −0.21 cm−1, g = 2.12 ± 0.01, R = 1.1 × 10−6 (2) and J = −1.34 cm−1 ± 0.1, g = 2.14 ± 0.01, R = 1.2 × 10−6 (3) (R defines as .  相似文献   

18.
Based on self-assembly of the dissymmetrical mononuclear entity CuL(CH3OH) [H2L = (E)-N1-(2-((2-aminocyclohexydiimino)(phenyl)methyl)-4-chlorophenyl)-N2-(2-benzyl-4-chlorophenyl)oxalamide] with Mn(II), two trinuclear complexes were prepared. They are of the formula [(LCuN3)2Mn(CH3OH)2] · 2CH3OH · 2H2O (1) and [(LCuSCN)2Mn(H2O)2] · 4CH3OH (2). Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −14.40 cm−1 for 1 and J = −15.48 cm−1 for 2. Hydrogen bonds help complex 1 to produce a novel S type one-dimensional chain-like supramolecular structure. In complex 2, Cl?Cl interaction also results in the formation of a one-dimensional structure.  相似文献   

19.
Based on the complex ligand (CuL H2L = 2,3-dioxo-5,6:15,16-dibenzo-1,4,8,13-tetraazacyclotetradeca-7,13-diene), which includes macrocyclic oxamido bridge, three trinuclear complexes were prepared. They are of the formula [(CuL)2M(ClO4)2] (M = Co(1), Ni(2)) and [(CuL)2Zn(CH3OH)2] · (ClO4)2 (3). The crystal structures of the three complexes have been determined and the M(II) of the three complexes all exist on the mirror plane. Complex 1 is the first Cu-Co complex bridged by oxamido. Their magnetic properties were studied by susceptibility versus temperature measurement, the best fitting of the experimental data led to J = −28.12 cm−1 for 1, J = −42.88 cm−1 for 2, and J = −2.13 cm−1 for 3.  相似文献   

20.
Three new coordination compounds, [Ni(Pht)(Py)2(H2O)3] (1), [Ni(Pht)(β- Pic)2(H2O)3] · H2O (2) and [Ni(Pht)(1-MeIm)2(H2O)3] (3) (where Pht2− = dianion of o-phthalic acid; Py = pyridine, β-Pic = 3-methylpyridine, 1-MeIm = 1-methylimidazole), have been synthesized and characterized by IR spectroscopy and thermogravimetric analysis. Crystallographic studies 1-3 reveal that each Ni(II) center has a distorted octahedral geometry being coordinated by two nitrogen atoms of aromatic amines, one oxygen atom from a carboxylate group of a phthalate ligand and three water molecules. Pht2− anions act as monodentate ligands, while the remaining uncoordinated carboxylate oxygen atoms participate in the formation of hydrogen bonding. The uncoordinated oxygen atoms form hydrogen bonds with the coordinated water molecules from adjacent complexes creating a centrosymmetric dimer unit. Further, these dimer units are connected by O-H?O hydrogen bonds in double-chains. Depending on the nature of aromatic amines, the arrangement of these double-chains differs. The double-chains are held together only by van der Waals interactions in 1. In contrast, in 2 these chains form layers by π-π interactions between antiparallel molecules of β-Pic as well as by π-π interactions between β-Pic and Pht aromatic rings. In complex 3, the double-chains are knitted together via C-H?O hydrogen bonds between the methyl group of 1-MeIm and the coordinated carboxylate oxygen atom of Pht, as well as π-π contacts involving antiparallel 1-MeIm cycles. The thermal dependence of the magnetic susceptibilities for compounds 1 and 2 shows a weak antiferromagnetic interaction between the two Ni2+ ions of the hydrogen bonded dimers. For compound 3, a ferromagnetic interaction could be observed. Modeling the experimental data with MAGPACK resulted in: g = 2.22, |D| = 4.11 cm−1 and J = −0.29 cm−1 for compound 1, g = 2.215, |D| = 3.85 cm−1 and J = −0.1 cm−1 for compound 2 and g = 2.23, |D| = 4.6 cm−1 and J = 0.22 cm−1 for compound 3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号