首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Inorganica chimica acta》1988,154(2):177-182
TiCl4 reacts with t-butylamine in benzene to give [Ti(NCMe3)Cl2(NH2CMe3)2]x and t-butylamine hydrochloride. The IR spectrum indicates both c/s and trans metal dichlorides (300; and 308, 208 cm−1). In the 13C NMR spectrum the t-butylimido quaternary carbon resonance occurs at 72.1 ppm. A dimeric structure incorporating symmetric t-butylimido bridges is proposed. TiCl4 in benzene react under reflux with two equivalents of Me3SiNHCMe3 to give [Ti(NCMe3)Cl2(NH2CMe3)]x and with iso-propylamine and ethylamine to give complexes of the form [Ti(NR)Cl2(NH2R)2]x. Broad bands below 800 cm−1 in the IR spectra suggest polymeric MNM bridges. For [Ti(NCHMe2)Cl2(NH2CHMe2)]x the iso-propylimido CH resonance in the 13C NMR spectrum occurs at 67 ppm. [Ti(NCMe3)Cl2(NH2CMe3)2]2 reacts with L=bipy or tmed to give [Ti(NCMe3)Cl2(L)]2, and TiCl4 reacts with two equivalents of Me3SiNHCMe3 in benzene and then tmed to give [Ti(NCMe3)Cl2(tmed)]2. The 13C NMR spectrum shows the t-butylimido quaternary carbon resonance at 73.5 ppm and the tmed resonances are chemically equivalent. A dimeric μ-NCMe3 bridging structure is proposed for the complex.  相似文献   

2.
Reaction of the lithium salts of N,N′-dialkyl-2-amino-4-imino-pent-2-enes, nacnacRLi(THF) (R = CH2Ph, Cy, nPr, iBu or S-CH(Me)Ph), with half an equivalent of CrCl2(THF)x yielded the homoleptic complexes (nacnacR)2Cr. All complexes were characterized by X-ray diffraction studies and displayed a highly symmetric, square-planar coordination around the chromium center with strong boat-like distortions of the diketiminate ligands. Reaction of nacnacRLi(THF) (R = CH2Ph, Cy) with one equivalent of CrCl2(THF)x afforded the dimeric complexes {nacnacRCr(μ-Cl)}2.  相似文献   

3.
Photolysis of the allenylidene pentacarbonyl chromium complexes [(CO)5CrCCC(R1)R2] (R1=NMe2, NPh2; R2=NMe2, OMe, Ph) in THF in the presence of equimolar amounts of XR3 (XR3=various phosphanes, P(OMe)3, AsPh3, SbPh3) affords cis-allenylidene tetracarbonyl XR3 complexes, cis-[(CO)4(XR3)CrCCC(R1)R2]. When in the photolysis of [(CO)5CrCCC(NMe2)Ph], the phosphanes PR3 (R=C6H4F-p, C6H4Cl-p, OMe) are used in excess (three equivalents) two carbonyl ligands are displaced and the mer-tricarbonyl complexes mer-[(CO)3(PR3)2CrCCC(NMe2)Ph] are formed both PR3 ligands being mutually trans. The structure of the new complexes is established by IR, NMR, and UV-Vis spectroscopy, that of cis-[(CO)4(PPh3)CrCCC(NMe2)Ph] additionally by an X-ray structural analysis. As indicated by the spectroscopic data of the compounds, these complexes are best described as hybrids of allenylidene and zwitterionic alkynyl complexes with delocalization of the electron pair at nitrogen bonded to the Cγ atom of the allenylidene ligand towards the metal center. The relative contribution of the allenylidene and zwitterionic alkynyl resonance forms is influenced by XR3. Increasing the donor properties of XR3 favors the allenylidene resonance form.  相似文献   

4.
Treatment of [Ti(OPri)2Cl2] with K(tpip) (tpip = [N(PPh2O)2]) followed by chlorination with HCl afforded cis-[Ti(tpip)2Cl]2 (1). Reduction of 1 with Na/Hg in THF gave [Ti(tpip)3] (2), which could also be prepared from [TiCl3(THF)3] and K(tpip). Recrystallization of [V(O)(tpip)2] (3) from CH2Cl2-Et2O in air afforded trinuclear [{V(O)}3(μ-tpip)3(μ-O)3] (4). Treatment of [Cr(NBut)2Cl2] and [Cr(NBut)Cl3(dme)] (dme = 1,2-dimethoxyethane) with [Ag(tpip)]4 led to isolation of [Cr(tpip)3] (6) and [Cr(NBut)(tpip)2Cl] (7), respectively. The Ti- and V-tpip complexes are capable of catalyzing oxidation of sulfides with tert-butyl hydroperoxide and H2O2. The crystal structures of 1, 2, and 4 have been determined.  相似文献   

5.
The reactivity of hybrid scorpionate/cyclopentadienyl ligand-containing trichloride zirconium complexes [ZrCl3(bpzcp)] (1) [bpzcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1,1-diphenylethylcyclopentadienyl] and [ZrCl3(bpztcp)] (2) [bpztcp = 2,2-bis(3,5-dimethylpyrazol-1-yl)-1-tert-butylethylcyclopentadienyl] toward several lithium alkoxides has been carried out. Thus, alkoxide-containing complexes [ZrCl2(OR)(bpzcp)] (R = Me, 3; Et, 4; iPr, 5; (R)-2-Bu, 6), [ZrCl2(OR)(bpztcp)] (R = Me, 7; Et, 8; iPr, 9; (R)-2-Bu, 10) and [Zr(OR)3(bpztcp)] (R = Et, 11; iPr, 12) were prepared by deprotonation of the appropriate alcohol group with BunLi followed by reaction with 1 or 2. In addition, the imido-complex [Ti(NtBu)Cl(bpztcp)(py)] (13) were also prepared. The structures of these complexes have been proposed on basis of spectroscopic and DFT methods.  相似文献   

6.
Mononuclear zinc complexes of a family of pyridylmethylamide ligands abbreviated as HL, HLPh, HLMe3, HLPh3, and MeLSMe [HL = N-(2-pyridylmethyl)acetamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide; MeLSMe = N-methyl-2-methylsulfanyl-N-pyridin-2-ylmethyl-acetamide] were synthesized and characterized spectroscopically and by single crystal X-ray structural analysis. The reaction of zinc(II) salts with the HL ligands yielded complexes [Zn(HL)2(OTf)2] (1), [Zn(HL)2(H2O)](ClO4)2 (2), [Zn(HLPh3)2(H2O)](ClO4)2 (3), [Zn(HLPh)Cl2] (4), [Zn(HLMe3)Cl2] (5), and [Zn(MeLSMe)Cl2] (6). The complexes are either four-, five- or six-coordinate, encompassing a variety of geometries including tetrahedral, square-pyramidal, trigonal-bipyramidal, and octahedral.  相似文献   

7.
Reactions of orthometallated binuclear palladium complexes with NaER, obtained by NaBH4 reduction of R2E2 in methanol, gave complexes, [Pd2(μ-ER)2(CY)2] (HCY = N,N-dimethylbenzylamine (C6H5CH2NMe2), N,N-dimethylnaphthylamine (C10H7NMe2), tri-o-tolylphosphine {P(tol-o)3}; ER=SePh, SeMes, TePh, TeMes (Mes = 2,4,6-Me3C6H2). Similar reactions of [Pd2(μ-Cl)2(C10H6NMe2-C,N)2] with Pb(SMes)2 or MesSH in the presence of NaHCO3 gave chloro/thiolato-bridged complex [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2-C,N)2]. The newly synthesized complexes were characterized by elemental analysis, UV-Vis, IR, NMR (1H, 13C, 31P, 77Se, 125Te) spectroscopy. These complexes crystallized out preferentially in sym-cis configuration. A low energy charge transfer transition has been identified from chalcogenolate centers to an emptyπ orbital of cyclometallated ligand in absorption spectroscopy in these complexes. The structures of [Pd2(μ-Cl)(μ-SMes)(C10H6NMe2-C,N)2] (1) and [Pd2(μ-SePh)2(C10H6NMe2-C,N) 2] (3) have been established by single crystal X-ray diffraction analyses. In the former, the two palladium atoms are held together by chloro and thiolato bridges whereas in the latter, the two phenylselenolato ligands bridge two palladium atoms. The pyrolysis of [Pd(μ-TeMes)(C10H6NMe2-C,N)]2 (10) in a furnace gave Pd7Te3 whereas thermolysis in TOPO afforded primarily PdTe2.  相似文献   

8.
The reaction of [Ti(cp)2(BTMSA)] (1) (cp = η5-C5Me5, BTMSA = bis(trimethylsilyl)acetylene) with malonic acids ((HOOC)2CR2, R = H, Me) and N,N-dimethylglycine resulted in the formation of titanium(IV) dicarboxylato complexes [Ti(cp)2{(OOC)2CR2}] (R = H, 2; R = Me, 3) and an α-amino acid titanium(III) complex [Ti(cp)2(OOCCH2NMe2)] (4). The identities of complexes 2-4 were confirmed by microanalysis, 1H and 13C NMR spectroscopy (2, 3), ESI-MS and CID experiments (2, 3) as well as by ESR and magnetic measurements (μeff = 1.81, 298 K) for 4. Single X-ray diffraction analyses of 2 and 4 exhibited monomolecular complexes in which the titanium atom is distorted tetrahedrally coordinated by two η5-C5Me5 rings and by the chelating bound malonato-κ2O,O′ (2) and N,N-dimethylglycinato-κ2O,O′ ligand (4).  相似文献   

9.
Two new Re(III) and Re(IV) complexes with 2(2′-pyridyl)benzimidazole (pbimz) were prepared and their crystal and molecular structures established by single-crystal X-ray diffraction. Reaction of [ReOCl2(OEt)(PPh3)2] with the ligand gave red cis(Cl),trans(P)-[ReCl2(PPh3)2(pbimz)]Cl (1), while red [ReCl4(pbimz)] · OPPh3 (2) was obtained from [ReCl3(PhC(O)C(O)Ph)(PPh3)] and pbimz in the presence of perchlorate. The compounds were characterized by elemental analysis, FAB-MS, UV-Vis, IR, NMR spectroscopy and magnetic susceptibility measurements.  相似文献   

10.
Cytidine (cyt) and adenosine (ado) react with cis-[L2Pt(μ-OH)]2(NO3)2 (L = PMe3, PPh3) in various solvents to give the nucleoside complexes cis-[L2Pt{cyt(− H),N3N4}]3(NO3)3 (L = PMe3, 1),cis-[L2Pt{cyt(− H),N4}(cyt,N3)]NO3 (L = PPh3, 2), cis-[L2Pt{ado(− H),N1N6}]2(NO3)2 (L = PMe3, 3) and cis-[L2Pt{ado(− H),N6N7}]NO3 (L = PPh3, 4). When the condensation reaction is carried out in solution of nitriles (RCN, R = Me, Ph) the amidine derivatives cis-[(PPh3)2PtNH=C(R){cyt(− 2H)}]NO3 (R = Me, 5a; R = Ph, 5b) and cis-[(PPh3)2PtNH=C(R){ado(− 2H)}]NO3 (R = Me, 6a: R = Ph, 6b) are quantitatively formed. The coordination mode of these nucleosides, characterized in solution by multinuclear NMR spectroscopy and mass spectrometry, is similar to that previously observed for the nucleobases 1-methylcytosine (1-MeCy) and 9-methyladenine (9-MeAd). The cytotoxic properties of the new complexes, and those of the nucleobase analogs, cis-[(PPh3)2PtNH=C(R){1-MeCy(− 2H)}]NO3 (R = Me, 7a: R = Ph, 7b), cis-[(PPh3)2PtNH=C(R){9-MeAd(− 2H)}]NO3 (R = Me, 8a: R = Ph, 8b) have been investigated in a wide panel of human cancer cells. Interestingly, whereas the Pt(II) nucleoside complexes (1-4) did not show appreciable cytotoxicity, the corresponding amidine derivatives (7a, 7b, 8a, 8b, 5b, and 6b) exhibited a significant in vitro antitumor activity.  相似文献   

11.
Bis(azido)bis(phosphine)-Pd(II) and -Pt(II) complexes, [M(N3)2L2] {L = PMe3, PEt3, PMe2Ph, dppe = 1,2-bis(diphenylphosphino)ethane}, underwent 1,3-dipolar cycloaddition with organic chiral isothiocyanates (R-NCS: R = (S)-(+)-1-phenylethyl, (R)-(−)-1-phenylethyl, (±)-1-phenylethyl, (S)-(+)-1-indanyl) to give the corresponding tetrazole-thiolato Pd(II) and Pt(II) complexes, trans-[M{S[CN4(R)]}2L2] or [M{S[CN4(R)]}2(dppe)]. Spectroscopic (IR and NMR) and X-ray structural analyses of the products showed that the absolute configuration of the starting organic isothiocyanates is retained throughout the reaction. Further treatments of the isolated tetrazole-thiolato complexes with electrophiles such as HCl or benzoyl chloride produced heterocyclic compounds containing a tetrazole thione or a tetrazolyl sulfide group. In addition, organic tetrazole thiones, [S = {CN4H(R)}] containing a chiral moiety, were prepared from NaN3 and R-NCS in the presence of water.  相似文献   

12.
The new mononuclear bis(oxamato) complex [n-Bu4N]2[Cu(obbo)] (1) (obbo=o-benzyl-bis(oxamato)) has been synthesized as a precursor for trinuclear oxamato-bridged transition metal complexes. Starting from 1 the homotrinuclear complexes [Cu3(obbo)(pmdta)2(NO3)](NO3)·CH2Cl2·H2O (2) and [Cu3(obbo)(tmeda)2(NO3)2(dmf)] (3) have been prepared, where pmdta = N,N,N′,N″,N″-pentamethyldiethylenetriamine, tmeda = N,N,N′,N′-tetramethylethylenediamine and dmf = dimethylformamide. The crystal structures of 1-3 were solved. The magnetic properties of 2 and 3 were studied by susceptibility measurements versus temperature. For the intramolecular J parameter values of −111 cm−1 (2) and −363 cm−1 (3) were obtained.  相似文献   

13.
A series of imidazolium chlorides as ligand precursors, L · HCl (L = (1-R)-(3-diphenylphosphanylethyl)-imidazol-2-ylidene; R = aryl, benzyl, naphthylmethyl), for the phosphine-functionalized N-heterocyclic carbene (NHC), L, were prepared by a convenient synthetic procedure of reacting 1,2-dichloroethane with appropriate N-substituted imidazoles to give (β-chloroethyl)imidazolium chlorides, which were subsequently reacted with HPPh2 producing L · HCl in good yield. Palladium complexes of L, PdLCl2 (4), were prepared by a one pot reaction of PdCl2, sodium acetate, and L · HCl in DMSO. Complexes 4b (R = naphthylmethyl) and 4e (R = m-methoxybenzyl) were characterized by X-ray crystallography. Catalytic studies have shown that the palladium complexes are efficient in Suzuki coupling reactions of aryl bromides with phenylboronic acid.  相似文献   

14.
The dinuclear bis(6-X-pyridin-2-olato) ruthenium complexes [Ru2(μ-XpyO)2(CO)4(PPh3)2] (X = Cl (4B) and Br (5B)), [Ru2(μ-XpyO)2(CO)4(CH3CN)2] (X = Cl (6B), Br (7B) and F (8B)) and [Ru2(μ-ClpyO)2(CO)4(PhCN)2] (9B) were prepared from the corresponding tetranuclear coordination dimers [Ru2(μ-XpyO)2(CO)4]2 (1: X = Cl; 2: X = Br) and [Ru2(μ-FpyO)2(CO)6]2 (3) by treatment with an excess of triphenylphosphane, acetonitrile and benzonitrile, respectively. In the solid state, complexes 4B-9B all have a head-to-tail arrangement of the two pyridonate ligands, as evidenced by X-ray crystal structure analyses of 4B, 6B and 9B, in contrast to the head-to-head arrangement in the precursors 1-3. A temperature- and solvent-dependent equilibrium between the yellow head-to-tail complexes and the red head-to-head complexes 4A-7A and 9A, bearing an axial ligand only at the O,O-substituted ruthenium atom, exists in solution and was studied by NMR spectroscopy. Full 1H and 13C NMR assignments were made in each case. Treatment of 1 and 2 with the N-heterocyclic carbene (NHC) 1-butyl-3-methylimidazolin-2-ylidene provided the complexes [Ru2(μ-XpyO)2(CO)4(NHC)], X = Cl (11A) or Br (12A). An XRD analysis revealed the head-to-head arrangement of the pyridonate ligands and axial coordination of the carbene ligand at the O,O-substituted ruthenium atom. The conversion of 11A and 12A into the corresponding head-to-tail complexes was not possible.  相似文献   

15.
The substitution behaviour of [PtCl(R)(COD)] (R = Me and Fc) complexes, by the stepwise addition of phosphine ligands, L (L = PPh3, PEt3 and P(NMe2)3), were investigated in situ by 1H and 31P NMR spectroscopy. Addition of less than two equivalents of the phosphine ligand results in the formation of dimeric molecules with the general formula trans-[Pt(R)(μ-Cl)(L)]2 for the sterically demanding systems where R = Me/L = P(NMe2)3 and R = Fc/L = PEt3, PPh3 and P(NMe2)3 while larger quantities resulted in cis- and trans mixtures of mononuclear complexes being formed. In the case of the relatively small steric demanding, strongly coordinating, PEt3 ligand the trans-[PtCl(R)(PEt3)2] mononuclear complexes were exclusively observed in both cases. The crystal structures of the two substrates, [PtCl(R)(COD)] (R = Me or Fc), as well as the cis-[PtCl(Fc)(PPh3)2] substitution product are reported.  相似文献   

16.
The reaction of [C5H4(CH2)nX]Tl (1: n = 2, X = NMe2, OMe, CN; n = 3, X = NMe2) with [(η6-C6H6)RuCl(μ-Cl)]2, 2, afforded the sandwich compounds [{η5-C5H4(CH2)nX}Ru(η6-C6H6)]PF6, 3, and [η5-C5H4(CH2)nX]2Ru, 4. Photolytic cleavage of 3 in acetonitrile afforded the tethered products [{η5N-C5H4(CH2)nX}Ru(CH3CN)2]PF6, 5.  相似文献   

17.
Treatment of tris-cyclopentadienyl-ytterbium in thf with one equivalent of 2,6-di(tert-butyl)phenol, N,N-dimethyl-2-aminoethanol or N,N-diethyl-2-aminoethanol resulted in substitution of one cyclopentadienyl ligand and formation of [YbCp2(O-C6H3tBu-2,6)(thf)] (1), [{YbCp2(μ-OCH2CH2NMe2)}2] (2) or [{YbCp2(μ-OCH2CH2NEt2)}2] · (thf)2 (3), respectively. All compounds were characterised by spectroscopic and X-ray crystallographic techniques, the latter two also being studied by variable temperature 1H NMR spectroscopy. Compound (1) is mononuclear with the Yb centre bound by two η5-cyclopentadienyl ligands one O-bound thf and an O-bound phenoxy ligand. Compounds (2) and (3) are centrosymmetric dimers with the Yb centre bound by two η5-cyclopentadienyl ligands, while the bidentate ligands chelate the metal centre and also bridge to the adjacent Yb through the alkoxy oxygen atom. Variable temperature 1H NMR studies on compounds (2) and (3) show a solution-state equilibrium between the dimeric solid-state structure and one with the nitrogen atoms non-bound to Yb.  相似文献   

18.
In view of the wide applicability and versatility of titanium based Lewis acids in selective organic synthesis including asymmetric synthesis, we have synthesized a family of mono and polyatomic titanium derivatives. The polymetallic complexes prepared are bridged by pyridimine, quinone and triazine based ligands. The synthesis of [{Ti(O-i-Pr)3(Oddbf)}2] (1), [Ti(O-i-Pr)2(Oddbf)2] (2), [{Ti(O-i-Pr)2(Oddbf)(OMent)}2] (3) (ddbfO = 2,3-dihydro-2,2-dimethyl-benzofuranoxo; MentO = (1R,2S,5R)-(−)-menthoxo), [{Ti(O-i-Pr)3(OMenpy)}2] (4), [Ti(O-i-Pr)2(OMenpy)2] (5) (MenpyO = (1S,2S,5R)-(−)-menthoxo-pyridine); [{(Ti(OR)3)2L}n] (RO = isopropoxo, (1R,2S,5R)-(−)-menthoxo) (6-11) and [{(Ti(O-i-Pr)3)3L}n] (12) was accomplished from a Lewis acid such as Ti(O-i-Pr)4, [{Ti(O-i-Pr)3(OMent)}2] or [Ti(OMent)4] and chelating ligands (ddbfOH = 2,3-dihydro-2,2-dimethyl-benzofuranol; MenpyOH = (1R,2S,5R)-(−)-5-methyl-2-isopropyl-1-(2′-pyridinyl)cyclohexan-1-ol; LH2 = 4,6-dihydroxy-2,5-diphenyl-pyrimidine, 2,4-dihydroxy-5,6-dimethyl-pyrimidine, 5,8-dihydroxy-1,4-napthoquinone, 2,5-dihydroxy-1,4-benzoquinone and LH3 = cyanuric acid) that provide a rigid framework for the metal centre. The molecular structure of 5 has been determined by single crystal X-ray diffraction studies.  相似文献   

19.
The reactions of N,N-dimethylaminopropyl chalcogenolates with platinum(II) compounds have been carried out and complexes of the types [PtCl(ECH2CH2CH2NMe2)]2 (1) (E = S (1a) and Se (1b)), [Pt(ECH2CH2CH2NMe2)2]n (2) (E = S (2a) and Se (2b)), [(PtCl2)2{(Me2NCH2CH2CH2E)2}]n (3), [PtX(SeCH2CH2CH2NMe2)]2 (4) (X = SePh (4a) and OAc (4b)) and [PtCl(ECH2CH2CH2NMe2)(PR3)]n (5) (E = S, Se, Te) have been isolated. These complexes have been characterized by elemental analysis, IR, UV-Vis, NMR (1H, 13C, 31P, 77Se, 195Pt) spectroscopy and FAB mass spectral data. The structures of [PtCl(SeCH2CH2CH2NMe2)]2 (1b) and [PtCl(SCH2CH2CH2NMe2)(PPr3)]2 (5a) have been established by single crystal X-ray diffraction data. Both the molecules have dimeric structures. In 1b, two platinum atoms are held together by symmetrically bridging Se atoms of the chelating selenolate groups. In 5a, two thiolates form a four-membered Pt2S2 bridge with dangling NMe2 groups.  相似文献   

20.
Two new mononuclear Fe(III) complexes, [FeCl3{PPh2(p-C6H4NMe2)-P}3](1) (PPh2(p-C6H4NMe2): 4-(dimethylamino)phenyldiphenylphosphine) and [FeCl3(PPh2py-P)(PPh2py-P,N)] (2) (PPh2py: diphenyl(2-pyridyl)phosphine) were synthesized by reacting anhydrous FeCl3 with respective ligand in acetonitrile solution under refluxing condition. Both the complexes were characterized by elemental analysis, FAB-Mass, FTIR, UV-Vis, ESR, Cyclic Voltammetry and magnetic measurement. The FAB mass spectra of complexes 1 and 2 show molecular ion peak at m/z 1078 [M]+ and m/z 687 [M−1]+, respectively, indicating mononuclear nature of the complexes. UV-Vis spectra of the complexes were consistent with low-spin, octahedral geometry. The variable temperature magnetic susceptibility measurement (73-323 K) of these complexes is also consistent with the paramagnetic nature of the complexes with a ground state spin S = ½. The Fe(III) centers of these two complexes remain low-spin, both at room temperature and liquid nitrogen temperature, was also indicated by the ESR analysis. Cyclic Voltammetry of both the complexes show an irreversible oxidation wave attributed to Fe3+ → Fe4+ + e along with the peak for ligand oxidation. Theoretical calculations (B3LYP) of the complexes show that for complex 1, a trans geometry of the two phosphorous atoms and for complex 2, a mer,cis structures are the most favored geometrical isomer. TDDFT calculations were performed to interpret the observed bands in the UV-Visible spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号