首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In biological systems, enzymes often use metal ions, especially Mg2+, to catalyze phosphodiesterolysis, and model aqueous studies represent an important avenue of examining the contributions of these ions to catalysis. We have examined Mg2+ and Ca2+ catalyzed hydrolysis of the model phosphodiester thymidine-5′-p-nitrophenyl phosphate (T5PNP). At 25 °C, we find that, despite their different Lewis acidities, these ions have similar catalytic ability with second-order rate constants for attack of T5PNP by hydroxide (kOH) of 4.1 × 10−4 M−1s−1 and 3.7 × 10−4 M−1s−1 in the presence of 0.30 M Mg2+ and Ca2+, respectively, compared to 8.3 × 10−7 M−1s−1 in the absence of divalent metal ion. Examining the dependence of kOH on [M2+] at 50 °C indicates different kinetic mechanisms with Mg2+ utilizing a single ion mechanism and Ca2+ operating by parallel single and double ion mechanisms. Association of the metal ion(s) occurs prior to nucleophilic attack by hydroxide. Comparing the kOH values reveals a single Mg2+ catalyzes the reaction by 1800-fold whereas a single Ca2+ ion catalyzes the reaction by only 90-fold. The second Ca2+ provides an additional 10-fold catalysis, significantly reducing the catalytic disparity between Mg2+ and Ca2+.  相似文献   

2.
Rate and equilibrium constants at 25 °C, pH ∼ 1, and ionic strength 0.10 for hydrolysis of the two non-equivalent chlorides of dichloro[S-methyl-l-cysteine(N,S)]platinum(II) isomers, denoted [PtCl2(SmecysH)], and the resultant chloro-aqua species have been determined by NMR, potentiometric, and spectrophotometric methods. Though hydrolysis constants, Kh, for the two chlorides are similar (pKh = 4-5), the rate of hydrolysis of the chloride trans to coordinated S, kh = 3.4 × 10−3 s−1, is 2-3 orders of magnitude faster than the kh for the other chloride, 2.3 × 10−6 s−1, and for the cancer drug cisplatin, cis-[PtCl2(NH3)2], 5.2 × 10−5 s−1. Relative rates of hydrolysis determined under three different experimental conditions (pH ∼ 1 in 0.10 M HNO3, high pH in 0.10 M NaOH, and at low pH with Ag+ assistance) are consistent: the Cl trans to S is 100-1000 times more labile than the Cl cis to S. Potentiometric and NMR methods were also used to estimate pKa values of all aqua species, which are comparable to values reported for corresponding aqua species derived from cisplatin.  相似文献   

3.
The folding mechanism and stability of dimeric formate dehydrogenase from Candida methylica was analysed by exposure to denaturing agents and to heat. Equilibrium denaturation data yielded a dissociation constant of about 10−13 M for assembly of the protein from unfolded chains and the kinetics of refolding and unfolding revealed that the overall process comprises two steps. In the first step a marginally stable folded monomeric state is formed at a rate (k1) of about 2 × 10−3 s−1 (by deduction k−1 is about10−4 s−1) and assembles into the active dimeric state with a bimolecular rate constant (k2) of about 2 × 104 M−1 s−1. The rate of dissociation of the dimeric state in physiological conditions is extremely slow (k−2 ∼ 3 × 10−7 s−1).  相似文献   

4.
Oxidation of the title complexes with ozone takes place by hydrogen atom, hydride, and electron transfer mechanisms. The reaction with (NH3)4(H2O)RhH2+ is a two electron process, believed to involve hydride transfer with a rate constant k = (2.2 ± 0.2) × 105 M−1 s−1 and an isotope effect kH/kD = 2. The oxidation of (NH3)4(H2O)RhOOH2+ to (NH3)4(H2O)RhOO2+ by an apparent hydrogen atom transfer is quantitative and fast, k = (6.9 ± 0.3) × 103 M−1 s−1, and constitutes a useful route for the preparation of the superoxo complex. The latter is also oxidized by ozone, but more slowly, k = 480 ± 50 M−1 s−1.  相似文献   

5.
The synthesis and characterisation of cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 are described. Solvolysis rates have been measured by both 1H NMR spectroscopy and UV-Vis spectrophotometry in dimethyl sulfoxide at 298.2 K. The cis isomer undergoes solvolysis by consecutive first-order reactions, k1=5.61 × 10−4 and k2=5.35 × 10−4 s−1, each with steric retention. The measured solvolysis rate (single step reaction) for the trans isomer is k=1.54 × 10−5 s−1. The solvent exchange rates have been measured by 1H NMR spectroscopy in CD3CN at 298.2 K: kex(cis)=kct + kcc=2.0 × 10−5 and kex(trans)=ktc + ktt=4.56 × 10−6 s−1. From these data, the measured cis-trans isomerisation rate (1.71 × 10−6 s−1) and equilibrium position in CH3CN (17% trans), the steric course for substitution in the exchange processes has been determined: trans reactant - 69% trans product; cis reactant - 99% cis product. Aquation rates for cis- and trans-[Co(tmen)2(NCCH3)2](ClO4)3 have also been determined spectrophotometrically and by NMR; kcis=1.3 × 10−4 and ktrans=2.7 × 10−5 s−1. In both cases the steric course for the primary aquation step is indeterminate because the subsequent steps are faster. Where data are available, the [Co(tmen)2X2]n+ complexes are found to be consistently much more reactive than their [Co(en)2X2]n+ analogues.  相似文献   

6.
Kinetic studies of X exchange on [AuX4] square-planar complexes (where X=Cl and CN) were performed at acidic pH in the case of chloride system and as a function of pH for the cyanide one. Chloride NMR study (330-365 K) gives a second-order rate law on [AuCl4] with the kinetic parameters: (k2Au,Cl)298=0.56±0.03 s−1 mol−1 kg; ΔH2‡ Au,Cl=65.1±1 kJ mol−1; ΔS2‡ Au,Cl=−31.3±3 J mol−1 K−1 and ΔV2 Au,Cl=−14±2 cm3 mol−1. The variable pressure data clearly indicate the operation of an Ia or A mechanism for this exchange pathway. The proton exchange on HCN was determined by 13C NMR as a function of pH and the rate constant of the three reaction pathways involving H2O, OH and CN were determined: k0HCN,H=113±17 s−1, k1HCN,H=(2.9±0.7)×109 s−1 mol−1 kg and k2HCN,H=(0.6±0.2)×106 s−1 mol−1 kg at 298.1 K. The rate law of the cyanide exchange on [Au(CN)4] was found to be second order with the following kinetic parameters: (k2Au,CN)298=6240±85 s−1 mol−1 kg, ΔH2 Au,CN=40.0±0.8 kJ mol−1, ΔS2 Au,CN=−37.8±3 J mol−1 K−1 and ΔV2 Au,CN=+2±1 cm3 mol−1. The rate constant observed varies about nine orders of magnitude depending on the pH and HCN does not act as a nucleophile. The observed rate constant of X exchange on [AuX4] are two or three orders of magnitude faster than the Pt(II) analogue.  相似文献   

7.
The reaction of with Co(dmgBF2)2(H2O)2 in 1.0 M HClO4/LiClO4 was found to be first-order in both reactants and the [H+] dependence of the second-order rate constant is given by k2obs = b/[H+], b at 25 °C is 9.23 ± 0.14 × 102 s−1. The [H+] dependence at lower temperatures shows some saturation effect that allowed an estimate of the hydrolysis constant for as Ka = 9.5 × 10−3 M at 10 and 15 °C. Marcus theory and the known self-exchange rate constant for Co(OH2)5OH2+/+ were used to estimate an electron self-exchange rate constant of k22 = 1.7 × 10−4 M−1 s−1 for .  相似文献   

8.
Human serum albumin (HSA) is a monomeric allosteric protein. Here, the effect of ibuprofen on denitrosylation kinetics (koff) and spectroscopic properties of HSA-heme-Fe(II)-NO is reported. The koff value increases from (1.4 ± 0.2) × 10−4 s−1, in the absence of the drug, to (9.5 ± 1.2) × 10−3 s−1, in the presence of 1.0 × 10−2 M ibuprofen, at pH 7.0 and 10.0 °C. From the dependence of koff on the drug concentration, values of the dissociation equilibrium constants for ibuprofen binding to HSA-heme-Fe(II)-NO (K1 = (3.1 ± 0.4) × 10−7 M, K2 = (1.7 ± 0.2) × 10−4 M, and K3 = (2.2 ± 0.2) × 10−3 M) were determined. The K3 value corresponds to the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(II)-NO determined by monitoring drug-dependent absorbance spectroscopic changes (H = (2.6 ± 0.3) × 10−3 M). Present data indicate that ibuprofen binds to the FA3-FA4 cleft (Sudlow’s site II), to the FA6 site, and possibly to the FA2 pocket, inducing the hexa-coordination of HSA-heme-Fe(II)-NO and triggering the heme-ligand dissociation kinetics.  相似文献   

9.
The kinetics of the reaction of chloroperoxidase with peroxynitrite was studied under neutral and acidic pH by stopped-flow spectrophotometry. Chloroperoxidase catalyzed peroxynitrite decay with the rate constant, kc, increasing with decreasing pH. The values of kc obtained at pH 5.1, 6.1 and 7.1 were equal to: (1.96 ± 0.03) × 106, (1.63 ± 0.04) × 106 and (0.71 ± 0.01) × 106 M−1 s−1, respectively. Chloroperoxidase was converted to compound II by peroxynitrite with pH-dependent rate constants: (12.3 ± 0.4) × 106 and (3.8 ± 0.3) × 106 M−1 s−1 at pH 5.1 and 7.1, respectively. After most of peroxynitrite had disappeared, the conversion of compound II into the ferric form of chloroperoxidase was observed. The recovery of the native enzyme was completed within 1 s and 5 s at pH 5.1 and 7.1, respectively. The possible reaction mechanisms of the catalytic decomposition of peroxynitrite by chloroperoxidase are discussed.  相似文献   

10.
The oxidation of thiocyanate by iron(V) (Fe(V)) was studied as a function of pH in alkaline solutions by a premix pulse radiolysis technique. The rates decrease with an increase in pH. The rate law for the oxidation of SCN by Fe(V) was obtained as −d[Fe(V)]/dt = k10{[H+]2/([H+]2 + K2[H+] + K2K3)}[Fe(V)][SCN], where k10 = 5.72 ± 0.19 × 106 M−1 s−1, pK2 = 7.2, and pK3 = 10.1. The reaction precedes via a two-electron oxidation, which converts Fe(V) to Fe(III). Thiocyanate reacts approximately 103× faster with iron(V) than does with iron(VI).  相似文献   

11.
GOX is the most widely used enzyme for the development of electrochemical glucose biosensors and biofuel cell in physiological conditions. The present work describes the production of a recombinant glucose oxidase from Penicillium amagasakiense (yGOXpenag) displaying a more efficient glucose catalysis (kcat/KM(glucose) = 93 μM−1 s−1) than the native GOX from Aspergillus niger (nGOXaspng), which is the most industrially used (kcat/KM(glucose) = 27 μM−1 s−1). Expression in Pichia pastoris allowed easy production and purification of the recombinant active enzyme, without overglycosylation. Its biotechnological interest was further evaluated by measuring kinetics of ferrocinium-methanol (FMox) reduction, which is commonly used for electron transfer to the electrode surface. Despite their homologies in sequence and structure, pH-dependant FMox reduction was different between the two enzymes. At physiological pH and temperature, we observed that electron transfer to the redox mediator is also more efficient for yGOXpenag than for nGOXaspng(kcat/KM(FMox) = 27 μM−1 s−1 and 17 μM−1 s−1 respectively). In our model system, the catalytic current observed in the presence of blood glucose concentration (5 mM) was two times higher with yGOXpenag than with nGOXaspng. All our results indicated that yGOXpenag is a better candidate for industrial development of efficient bioelectrochemical devices used in physiological conditions.  相似文献   

12.
The kinetics of the reduction of by Co(dmgBF2)2(H2O)2 in 0.041 M HNO3/NaNO3 was found to be first-order in both the oxidizing and reducing agents and the second-order rate constant is given by kobs = k1 + k2K[Cl], with k1=1.59 × 106 M−1 s−1and k2K = 1.83 × 108 M−2 s−1, at 25 °C. The term that is first-order in [Cl] is attributed to the formation of an ion-pair between and Cl. For k1, the activation parameters ΔH* and ΔS* are 2.22 ± 0.02 kcal mol−1 and −22.7 ± 0.8 cal mol−1 K−1, respectively. The self-exchange rate constant of k22 ≈ 8.7 × 10−3 M−1 s−1 for was estimated using Marcus theory and the known self-exchange rate constant for .  相似文献   

13.
It was recently shown that the structure of the fluorophore attached to the acyl chain of phosphatidylcholine analogs determines their mechanism of transport across the plasma membrane of yeast cells (Elvington et al., J. Biol Chem. 280:40957, 2005). In order to gain further insight into the physical properties of these fluorescent phosphatidylcholine (PC) analogs, the rate and mechanism of their intervesicular transport was determined. The rate of spontaneous exchange was measured for PC analogs containing either NBD (7-nitrobenz-2-oxa-1,3-diazol-4-yl), Bodipy FL (4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene), Bodipy 530 (4,4-difluoro-5,7-diphenyl-4-bora-3a,4a-diaza-s-indacene), or Bodipy 581 (4,4-difluoro-5-(4-phenyl-1,3-butadienyl)-4-bora-3a,4a-diaza-s-indacene) attached to a five or six carbon acyl chain in the sn-2 position. The rate of transfer between phospholipid vesicles was measured by monitoring the increase in fluorescence as the analogs transferred from donor vesicles containing self-quenching concentrations to unlabeled acceptor vesicles. Kinetic analysis indicated that the transfer of each analog occurred by diffusion through the water phase as opposed to transfer during vesicle collisions. The vesicle-to-monomer dissociation rate constants differed by over four orders of magnitude: NBD-PC (kdis = 0.115 s− 1; t1/2 = 6.03 s); Bodipy FL-PC (kdis = 5.2 × 10− 4; t1/2 = 22.2 min); Bodipy 530-PC (kdis = 1.52 × 10− 5; t1/2 = 12.6 h); and Bodipy 581-PC (kdis = 5.9 × 10− 6; t1/2 = 32.6 h). The large differences in spontaneous rates of transfer through the water measured for these four fluorescent PC analogs reflect their hydrophobicity and may account for their recognition by different mechanisms of transport across the plasma membrane of yeast.  相似文献   

14.
Two 15N-labelled cis-Pt(II) diamine complexes with dimethylamine (15N-dma) and isopropylamine (15N-ipa) ligands have been prepared and characterised. [1H,15N] HSQC NMR spectroscopy is used to obtain the rate and equilibrium constants for the aquation of cis-[PtCl2(15N-dma)2] at 298 K in 0.1 M NaClO4 and to determine the pKa values of cis-[PtCl(H2O)(15N-dma)2]+ (6.37) and cis-[Pt(H2O)2(15N-dma)2]2+ (pKa1 = 5.17, pKa2 = 6.47). The rate constants for the first and second aquation steps (k1 = (2.12 ± 0.01) × 10−5 s−1, k2 = (8.7 ± 0.7) × 10−6 s−1) and anation steps (k−1 = (6.7 ± 0.8) × 10−3 M−1 s−1, k−2 = 0.043 ± 0.004 M−1 s−1) are very similar to those reported for cisplatin under similar conditions, and a minor difference is that slow formation of the hydroxo-bridged dimer is observed. Aquation studies of cis-[PtCl2(15N-ipa)2] were precluded by the close proximity of the NH proton signal to the 1H2O resonance.  相似文献   

15.
Peroxynitrite-mediated oxidation of ferrous nitrosylated myoglobin (Mb(II)-NO) involves the transient ferric nitrosylated species (Mb(III)-NO), followed by NO dissociation and formation of ferric myoglobin (Mb(III)). In contrast, peroxynitrite-mediated oxidation of ferrous oxygenated myoglobin (Mb(II)-O2) involves the transient ferrous deoxygenated and ferryl derivatives (Mb(II) and Mb(IV)O, respectively), followed by Mb(III) formation. Here, kinetics of peroxynitrite-mediated oxidation of ferrous carbonylated horse heart myoglobin (Mb(II)-CO) is reported. Values of the first-order rate constant for peroxynitrite-mediated oxidation of Mb(II)-CO (i.e., for Mb(III) formation) and of the first-order rate constant for CO dissociation from Mb(II)-CO (i.e., for Mb(II) formation) are h = (1.2 ± 0.2) × 10−2 s−1 and koff(CO) = (1.4 ± 0.2) × 10−2 s−1, respectively, at pH 7.2 and 20.0 °C. The coincidence of values of h and koff(CO) indicates that CO dissociation represents the rate limiting step of peroxynitrite-mediated oxidation of Mb(II)-CO.  相似文献   

16.
Human serum albumin (HSA) participates to heme scavenging, in turn HSA-heme binds gaseous diatomic ligands at the heme-Fe-atom. Here, the effect of abacavir and warfarin on denitrosylation kinetics of HSA-heme-Fe(II)-NO (i.e., koff) is reported. In the absence of drugs, the value of koff is (1.3 ± 0.2) × 10−4 s−1. Abacavir and warfarin facilitate NO dissociation from HSA-heme-Fe(II)-NO, the koff value increases to (8.6 ± 0.9) × 10−4 s−1. From the dependence of koff on the drug concentration, values of the dissociation equilibrium constant for the abacavir and warfarin binding to HSA-heme-Fe(II)-NO (i.e., K = (1.2 ± 0.2) × 10−3 M and (6.2 ± 0.7) × 10−5 M, respectively) were determined. The increase of koff values reflects the stabilization of the basic form of HSA-heme-Fe by ligands (e.g., abacavir and warfarin) that bind to Sudlow’s site I. This event parallels the stabilization of the six-coordinate derivative of the HSA-heme-Fe(II)-NO atom. Present data highlight the allosteric modulation of HSA-heme-Fe(II) reactivity by heterotropic effectors.  相似文献   

17.
Although allosteric transitions of GroEL by MgATP2 have been widely studied, the initial bimolecular step of MgATP2− binding to GroEL remains unclear. Here, we studied the equilibrium and kinetics of MgATP2 binding to a variant of GroEL, in which Tyr485 was replaced by tryptophan, via isothermal titration calorimetry (ITC) and stopped-flow fluorescence spectroscopy. In the absence of K+ at 4-5 °C, the allosteric transitions and the subsequent ATP hydrolysis by GroEL are halted, and hence, the stopped-flow fluorescence kinetics induced by rapid mixing of MgATP2 and the GroEL variant solely reflected MgATP2 binding, which was well represented by bimolecular noncooperative binding with a binding rate constant, kon, of 9.14 × 104 M− 1 s− 1 and a dissociation rate constant, koff, of 14.2 s− 1, yielding a binding constant, Kb (= kon/koff), of 6.4 × 103 M− 1. We also successfully performed ITC to measure binding isotherms of MgATP2 to GroEL and obtained a Kb of 9.5 × 103 M− 1 and a binding stoichiometric number of 6.6. Kb was thus in good agreement with that obtained by stopped-flow fluorescence. In the presence of 10-50 mM KCl, the fluorescence kinetics consisted of three to four phases (the first fluorescence-increasing phase, followed by one or two exponential fluorescence-decreasing phases, and the final slow fluorescence-increasing phase), and comparison of the kinetics in the absence and presence of K+ clearly demonstrated that the first fluorescence-increasing phase corresponds to bimolecular MgATP2 binding to GroEL. The temperature dependence of the kinetics indicated that MgATP2 binding to GroEL was activation-controlled with an activation enthalpy as large as 14-16 kcal mol− 1.  相似文献   

18.
Gaining insights into the dynamic processes of molecular interactions that mediate cell-substrate and cell-cell adhesion is of great significance in the understanding of numerous physiological processes driven by intercellular communication. Here, an acoustic-wave biosensor is used to study and characterize specific interactions between cell-bound membrane proteins and surface-immobilized ligands, using as a model system the binding of major histocompatibility complex class I HLA-A2 proteins to anti-HLA-A2 monoclonal antibodies. The energy of the acoustic signal, measured as amplitude change, was found to depend directly on the number of HLA-A2/antibody complexes formed on the device surface. Real-time acoustic data were used to monitor the surface binding of cell suspensions at a range of 6.0 × 104 to 6.0 × 105 cells mL−1. Membrane interactions are governed by two-dimensional chemistry because of the molecules’ confinement to the lipid bilayer. The two-dimensional kinetics and affinity constant of the HLA-A2/antibody interaction were calculated (ka = 1.15 × 10−5 μm2 s−1 per molecule, kd = 2.07 × 10−5 s−1, and KA = 0.556 μm2 per molecule, at 25°C), based on a detailed acoustic data analysis. Results indicate that acoustic biosensors can emerge as a significant tool for probing and characterizing cell-membrane interactions in the immune system, and for fast and label-free screening of membrane molecules using whole cells.  相似文献   

19.
The aquation of the title complex cation in aqueous perchloric acid proceeded via two steps, both postulated to be the proton attack on the oxygen atom which binds the acetate ligand to the metal centre, followed by Fe-O bond cleavage. This was followed by rapid decomposition to produce aqueous iron(III) and acetate ions. The first-order rate constants for the first and second steps at 25 °C are: k1 = (4.16 ± 0.58) × 10−2 s−1 and k2 = (2.09 ± 0.42) × 10−3 s−1, respectively, and their corresponding activation parameters are . The spontaneous hydrolysis rate constants for the first and second steps were also determined at 25 °C and ionic strength of 1 mol dm−3 and they are k0 = (3.10 ± 0.82) × 10−3 s−1 and , respectively. The corresponding activation parameters are .  相似文献   

20.
Fiber-optic biosensors have been studied intensively because they are very useful and important tools for monitoring biomolecular interactions. Here we describe a fluorescence detection fiber-optic biosensor (FD-FOB) using a sandwich assay to detect antibody-antigen interaction. In addition, the quantitative measurement of binding kinetics, including the association and dissociation rate constants for immunoglobulin G (IgG)/anti-mouse IgG, is achieved, indicating 0.38 × 106 M−1 s−1 for ka and 3.15 × 10−3 s−1 for kd. These constants are calculated from the fluorescence signals detected on fiber surface only where the excited evanescent wave can be generated. Thus, a confined fluorescence-detecting region is achieved to specifically determine the binding kinetics at the vicinity of the interface between sensing materials and uncladded fiber surface. With this FD-FOB, the mathematical deduction and experimental verification of the binding kinetics in a sandwich immunoassay provide a theoretical basis for measuring rate constants and equilibrium dissociation constants. A further measurement to study the interaction between human heart-type fatty acid-binding protein and its antibody gave the calculated kinetic constants ka, kd, and KD as 8.48 × 105 M−1 s−1, 1.7 × 10−3 s−1, and 2.0 nM, respectively. Our study is the first attempt to establish a theoretical basis for the florescence-sensitive immunoassay using a sandwich format. Moreover, we demonstrate that the FD-FOB as a high-throughput biosensor can provide an alternative to the chip-based biosensors to study real-time biomolecular interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号