首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A variety of platinum(II) complexes of methimazole (2-mercapto-1-methylimidazole; HImS = neutral form and ImS = thiolate form), coordinated in both thione and thiolate forms, have been isolated by reacting methimazole with [PtCl(terpy)]Cl (terpy = 2,2′:6′,2″ terpyridine), [PtCl2(bipy)] (bipy = bipyridine), [PtCl2(o-phen)] (o-phen = o-phenanthroline), [PtCl2(CH3CN)2] and [PtCl2(COD)] (COD = 1,5-cyclooctadiene). These complexes were characterized by electronic absorption, IR and NMR (1H, 13C, 195Pt) spectroscopies. Molecular structure of [Pt(bipy)(HImS)2]Cl2·3H2O (3a·3H2O) has been established by single crystal X-ray crystallography. Platinum thiolate complex, [Pt(ImS)2(HImS)2] (5), could be obtained by treatment of [Pt(HImS)4]Cl2 with sodium methoxide in methanol. The solution of 5 in organic solvents yielded bi- and tri-nuclear platinum complexes. The effect of diimine ligands on oxidation of methimazole moiety in the complexes has been studied by electrochemical oxidation and pulse radiolytic oxidation employing specific one-electron oxidant, radical.  相似文献   

2.
Twelve new dioxo W(VI) complexes of a family of heteroscorpionate ligands of the type [(L)WO2Y], where L = N2X ligand and Y = Cl or OR, have been synthesized and characterized. With the more sterically bulky ligands we show that these complexes exist as isolable cis and trans isomers and compare the rate of such isomerization with their corresponding dioxo Mo(VI) analogs.  相似文献   

3.
Transplatinum planaramine complexes with carboxylate ligands as leaving groups, trans-[Pt(O2CR)2(L)(L′)] (L = L′ = pyridine; L = NH3, L′ = pyridine, isoquinoline, thiazole, quinoline, etc.), are potential anticancer complexes with cytotoxicity in some cases equivalent to that of cisplatin. The carboxylate complexes are, as a family, very water-soluble and surprisingly stable towards hydrolysis - resembling carboplatin in their reactivity. Their pharmacological properties can be systematically modified by steric and electronic effects of the donor groups as well as in the leaving carboxylate ligands. Previously, we have recognized the leaving group formate as having appropriate kinetics for bioligand substitution [1]. In this paper we directly compared the effect on biological properties of a pyridine versus isoquinoline-based carrier group. Binding to calf thymus DNA was similar for both compounds but the distortions produced on DNA, as assessed by Tm (melting temperature) and an ethidium bromide fluorescence reporter assay, were more marked for the isoquinoline ligand. Model studies with 5′-GMP (5′-guanosinemonophosphate) confirmed these trends, with the product trans-[Pt(5′-GMP)2(NH3)(isoquinoline)] showing evidence of restricted rotation caused by steric hinderance of three rigid planar rings on the central platinum. A cross-linking assay on pUC19 plasmid confirmed a higher % of interstrand adducts for the isoquinoline compound. This “enhanced” reactivity was matched by higher cytotoxicity in HCT116 human colon tumor cells, and also with enhanced cellular accumulation. Thus, a combination of systematic biophysical and biological studies indicates that trans-[Pt(O2CH)2(NH3)(isoquinoline)] has the most promising range of chemical and biological properties for further development and examination.  相似文献   

4.
Knoevenagel condensation of 4-(dimethylamino)benzaldehyde with 4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (bpcd) gives the donor-acceptor ligand 2-(4-dimethylaminobenzylidene)-4,5-bis(diphenylphosphino)-4-cyclopenten-1,3-dione (dbpcd). The reaction of dbpcd with PtCl2(cod) affords the platinum(II) complex PtCl2(dbpcd) in high yield. The free dbpcd ligand and PtCl2(dbpcd) have been isolated and fully characterized in solution by IR and NMR spectroscopies, and the solid-state structure of PtCl2(dbpcd) determined by X-ray diffraction analysis. PtCl2(dbpcd), as the 1.5CH2Cl2 solvate, crystallizes in the triclinic space group , a = 11.7412(7) Å, b = 12.0486(7) Å, c = 14.4781(9) Å, α = 82.866(1), β = 75.049(1), γ = 83.905(1), V = 1957.6(2) Å3, Z = 2, and Dcalc = 1.678 mg/m3, R = 0.0291 and wR2 = 0.0723 for 8315 reflections with I > 2σ(I). The molecular structure of PtCl2(dbpcd)·1.5CH2Cl2 consists of a square-planar platinum architecture containing two chlorines and the ancillary dbpcd diphosphine ligand. The redox properties of the dbpcd ligand and PtCl2(dbpcd) have been explored by cyclic voltammetry, and these data are discussed with respect to extended Hückel MO calculations.  相似文献   

5.
Condensation of 2-pyridinecarboxaldehyde with several primary amines containing bulky aryl groups gave the corresponding pyridinecarboxaldimines (N-N′). Addition of these ligands to [PtCl2(coe)]2 (coe = cis-cyclooctene) gave complexes of the type cis-PtCl2(N-N′) in moderate yields. The platinum complexes have been examined for their potential cytotoxicities against OV2008 (human ovarian carcinoma) and the analogous cisplatin-resistant cell line C13.  相似文献   

6.
The novel steroidal carrier ligand 17-α-[4′-ethynyl-dimethylbenzylamine]-17-β-testosterone (ET-dmba 1) and the steroid — C,N-chelate platinum(II) derivatives [Pt(ET-dmba)Cl(L)] (L = DMSO (2) and PTA (3; PTA = 1,3,5-triaza-7-phosphaadamantane)) have been prepared. Values of IC50 were calculated for the new platinum complexes 2 and 3 against a panel of human tumor cell lines representative of ovarian (A2780 and A2780cisR) and breast cancers (T47D). At 48 h incubation time complexes 2 and 3 show very low resistance factors (RF of < 2) against an A2780 cell line which has acquired resistant to cisplatin and were more active than cisplatin (about 4-fold for 3) in T47D (AR+, AR = androgen receptor). Compound 1 retains a moderate degree of relative binding affinity (RBA = 0.94%) for androgen receptors. The cytotoxicity of the non steroidal platinum analogues [Pt(dmba)Cl(L)] (dmba = dimethylbenzylamine; L = DMSO (4) and PTA (5)) has also been studied for comparison purposes. Theoretical calculations at the BP86/def2-TZVP level of theory on complex 3 have been undertaken.  相似文献   

7.
The substitution behaviour of [PtCl(R)(COD)] (R = Me and Fc) complexes, by the stepwise addition of phosphine ligands, L (L = PPh3, PEt3 and P(NMe2)3), were investigated in situ by 1H and 31P NMR spectroscopy. Addition of less than two equivalents of the phosphine ligand results in the formation of dimeric molecules with the general formula trans-[Pt(R)(μ-Cl)(L)]2 for the sterically demanding systems where R = Me/L = P(NMe2)3 and R = Fc/L = PEt3, PPh3 and P(NMe2)3 while larger quantities resulted in cis- and trans mixtures of mononuclear complexes being formed. In the case of the relatively small steric demanding, strongly coordinating, PEt3 ligand the trans-[PtCl(R)(PEt3)2] mononuclear complexes were exclusively observed in both cases. The crystal structures of the two substrates, [PtCl(R)(COD)] (R = Me or Fc), as well as the cis-[PtCl(Fc)(PPh3)2] substitution product are reported.  相似文献   

8.
Spectroscopic (IR, 31P NMR and UV-Vis) and electrochemical studies on fac-[Mn(CO)3(L′-L′)(L)]0/+,where L′-L′ = 1,2-bis(diphenylphosphino)ethane (dppe) or 1,10-phenanthroline (phen) and L = bromide, triflate, imidazole (im), isonicotinamide (isn) or N-(2-hydroxyethyl)isonicotinamide (heisn), were undertaken to understand the effect of various ligands on the CO-Mn-L and CO-Mn-(L′-L′) bonding characteristics of these complexes. Crystal structures for L = triflate/L′-L′ = dppe, L = triflate/L′-L′ = phen and L = isn/L′-L′ = phen are reported and they show that the two Mn-O(OSO2CF3) and Mn-N(isn) distances are similar. The tricarbonyl complexes exhibit two major bands in the 250-300 and 350-450 nm region of the UV-Vis spectrum. The lowest energy bands have been assigned as a contribution from both the metal-centered (MC) and metal to ligand (dπ → L′-L′) charge transfer (MLCT) transitions. The energy of this maximum absorption decreases in the order Br ∼ triflate > im > isn ∼ heisn. The cyclic four-component mechanism was observed at room temperature by voltammetric techniques for all the cases. On the basis of d metal orbital splitting, an electronic molecular orbital diagram is proposed. In this model, the ligands along the z-axis play a relevant role in the reverse of the HOMO energies of the fac/mer isomers by stabilizing the metal dz2 orbital relative to dxy in mer-Mn(II).  相似文献   

9.
Two new pyrazole-derived ligands, 1-ethyl-3,5-bis(2-pyridyl)pyrazole (L1) and 1-octyl-3,5-bis(2-pyridyl)pyrazole (L2), both containing alkyl groups at position 1 were prepared by reaction between 3,5-bis(2-pyridyl) pyrazole and the appropriate bromoalkane in toluene using sodium ethoxide as base.The reaction between L1, L2 and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) resulted in the formation complexes of formula [MCl2(L)] (M = Pd(II), L = L1 (1); M = Pd(II), L = L2 (2); M = Pt(II), L = L1 (3); M = Pt(II), L = L2 (4)). These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 13C{1H} NMR and HMQC spectroscopies. The X-ray structure of the complex [PtCl2(L2)] (4) was determined. In this complex, Npyridine and Npyrazole donor atoms coordinate the ligand to the metal, which complete its coordination with two chloro ligands in a cis disposition.  相似文献   

10.
Dinaphthylmethylarsine complexes of palladium(II) and platinum(II) with the formulae [MX2L2] (M = Pd, Pt; L = di(1-naphthyl)methylarsine = Nap2AsMe and X = Cl, Br, I), [M2Cl2(μ-Cl)2L2], [PdCl(S2CNEt2)L], [Pd2Cl2(μ-OAc)2L2] and [MCl2(PR3)L] (PR3 = PEt3, PPr3, PBu3, PMePh2) have been prepared. These complexes have been characterized by elemental analyses, IR, Raman, NMR (1H, 13C, 31P) and UV-vis spectroscopy. The stereochemistry of the complexes has been deduced from the spectroscopic data. The crystal structures of trans-[PdCl2(PEt3)(Nap2AsMe)] and of [Pd(S2CNEt2)2], a follow-up product, were determined. The UV-vis spectra of [MX2L2] complexes show a red shift on going from X = Cl to X = I. The complexes [PdX2L2] and [PtX2L2] are strongly luminescent in fluid solution and in the solid at ambient temperature.  相似文献   

11.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

12.
The reactions of cis-[PtCl2L2] [L = PPh3, PMe2Ph or L2 = Ph2P(CH2)2PPh2 (dppe)] with endo-8-camphanylphosphonic acid (CamPO3H2) and Ag2O in refluxing dichloromethane gave platinum(II) phosphonate complexes [Pt(O3PCam)L2]. The X-ray crystal structure of [Pt(O3PCam)(PPh3)2]·2CHCl3 shows that the bulky camphanyl group, rather than being directed away from the platinum, is instead directed into a pocket formed by the Pt and the two PPh3 ligands. This allows the O3P-CH2 group to have a preferred staggered conformation. The complexes were studied in detail by NMR spectroscopy, which demonstrates non-fluxional behaviour for the sterically bulky PPh3 and dppe derivatives, which contain inequivalent phosphine ligands in their 31P NMR spectra. These findings are backed up by theoretical calculations on the PPh3 and PPhMe2 derivatives, which show, respectively, high and low energy barriers to rotation of the camphanyl group in the PPh3 and PPhMe2 complexes. The X-ray crystal structure of CamPO3H2 is also reported, and consists of hydrogen-bonded hexameric aggregates, which assemble to form a columnar structure containing hydrophilic phosphonic acid channels surrounded by a sheath of bulky, hydrophobic camphanyl groups.  相似文献   

13.
The thiocarbamates 4-RC6H4NHC(S)NR2′ (R = H, Cl; R′ = Me, Et), 4-ClC6H4NHC(S)NR (NR = 2-pyridylpiperazine) react with cis-[PtCl2(PTA)2] (PTA = 1,3,5-triaza-7-phosphaadamantane) in the presence of base to afford the monocationic platinum(II) complexes cis-[Pt{SC(NR2′) = NC6H4R}(PTA)2]+ (R = H, Cl; R′ = Me, Et), cis-[Pt{SC(NR) = NC6H4Cl}(PTA)2]+ (NR = 2-pyridylpiperazine), which were isolated as their PF6 salts in high yields. The complexes were fully characterised spectroscopically and also by X-ray crystallography. Cytotoxicity of these complexes was studied in vitro in three human cancer cell lines (CH1, A549 and SW480) using the MTT assay.  相似文献   

14.
Adduct formation between R2SnCl2 (R = methyl and n-butyl) as acceptors, and nickel(II) complexes of tetradentate Schiff base ligands ([NiL]) where L = [3-methoxysalen, N,N′-bis(3-methoxysalicylidene)ethylenediamine], [4-methoxysalen, N,N′-bis(4-methoxysalicylidene)ethylenediamine], [5-methoxysalen, N,N′-bis(5-methoxysalicylidene)ethylenediamine], [salen, N,N′-bis(salicylaldehydo)ethylenediamine], [5-chlorosalen, N,N′-bis(5-chlorosalicylidene)ethylenediamine] and [5-bromosalen, N,N′-bis(5-bromosalicylidene)ethylenediamine] as donors have been investigated in chloroform as a solvent by means of UV-Vis spectrophotometeric analysis. Adducts have been characterized by 1H NMR, IR and electronic spectroscopy. The formation constants and the thermodynamic free energies were measured using UV-Vis spectrophotometry titration for 1:1 adduct formation at various temperatures (T = 278-308 K). The trend of the adduct formation of the nickel Schiff base complexes with a given tin acceptor decreases as follow:
Ni(3-MeOSalen)>Ni(5-MeOSalen)>Ni(4-MeOSalen)  相似文献   

15.
The microwave synthesis of a series of platinum(II) phosphine complexes is reported. The complexes dppePtCl2 (dppe = bis(diphenylphosphino)ethane), dpppPtCl2 (dppp = bis(diphenylphosphino)propane), dppmPtCl2 (dppm = bis(diphenylphosphino)methane) and cis-(Ph3P)2PtCl2 are synthesized from the reaction of potassium tetrachloroplatinate(II) and the phosphine. The isolated yields are 65% or better.  相似文献   

16.
Reaction of iron salts with the tripodal ligands formed from the condensation of tris-(2-aminoethyl)amine (tren) with the following mixtures of aldehydes, 2-pyridinecarboxaldehyde (py) and 6-methyl-2-pyridinecarboxaldehyde (6-CH3py), salicylaldehyde (sal) and 2-hydroxy-5-methylbenzaldehyde (5-CH3sal), salicylaldehyde and pyrrole-2-carboxaldehyde (pyr), and 4-methyl-5-imidazolecarboxaldehyde (4-CH3ImH) and salicylaldehyde yielded mixtures of all four possible iron complexes, [Fe(tren)LxL′y]z (x +y = 3), where L and L′ represent different aldehydes. Preliminary indication of mixtures of products was provided by IR and UV-Vis spectroscopy. Conclusive proof of the existence of all four components (x = 0-3) in each of the reaction mixtures is provided by mass spectroscopy. Separation of the [Fetren(sal)x(4-CH3ImH)y](ClO4)y mixture can be achieved using a Sephadex ion exchange column. Treatment of the two observed fractions with base yields greatly enriched [Fetren(sal)2(4-CH3Im)] and [Fetren(sal)(4-CH3Im)2], which were identified by mass spectroscopy.  相似文献   

17.
A series of new heteroleptic, tris(polypyridyl)chromium(III) complexes, [Cr(phen)2L]3+ (L = substituted phenanthrolines or bipyridines), has been prepared and characterized, and their photophyical properties in a number of solvents have been investigated. X-ray crystallography measurements confirmed that the cationic (3+) units contain only one ligand L plus two phenanthroline ligands. Electrochemical and photophysical data showed that both ground state potentials and lifetime decays are sensitive to ligand structure and the nature of the solvent with the exception of compounds containing L = 5-amino-1,10-phenanthroline (aphen) and 2,2′-bipyrimidine (bpm). Addition of electron-donating groups in the ligand structure shifts redox potentials to more negative values than those observed for the parent compound, [Cr(phen)3]3+. Emission decays show a complex dependence with the solvent. The longest lifetime was observed for [Cr(phen)2(dip)]3+ (dip = 4,7-diphenylphenanthroline) in air-free aqueous solutions, τ = 273 μs. Solvent effects are explained in terms of the affinity of hydrophobic complexes for non-polar solvent molecules and the solvent microstructure surrounding chromium units.  相似文献   

18.
The solid-state packing arrays of the platinum(II) trans- and cis-[PtCl2(PzH)2] (1 and 2) and platinum(IV) trans- and cis-[PtCl4(PzH)2] (3 and 4) complexes have been examined and the occurrence of N-H ? Cl hydrogen-bonding associations in those structures has been discussed. Although different packing motifs are observed, in all cases molecules are interacting mostly via NH ? Cl and CH ? Cl associations. The square planar 1 and 2 form stacked arrays of PtCl2(PzH)2, which are supported by NH ? Cl and CH ? Cl hydrogen bonding. The isomeric structure of the complexes and orientation of the PzH rings determine NH ? Cl bonding mode (intermolecular or intramolecular) and also the extent of the platinum-platinum interaction. The synthetic procedures for the preparation of 1-4 along with elemental and X-ray analyses, TG/DTA, FAB+-MS, IR, and 1H and 13C{1H} NMR data are also given in this article.  相似文献   

19.
The effect of the platinum compound [PtCl2(H2bim)] (H2bim = 2,2′-biimidazole) on the plasmid DNA conformation was previously studied by electrophoresis in agarose gel and on calf thymus DNA by circular dichroism spectroscopy. The effect of this compound on pBR322 plasmid DNA has now been visualized by atomic force microscopy, which shows that the complex modifies the DNA in the same way as cisplatin does. The cytotoxic activity of [PtCl2(H2bim)] in HeLa-229, HL-60, A2780 and A2780cisR cell lines has also been evaluated. Likewise, the interaction of [PtCl2(H2bim)] with the small protein potato carboxypeptidase inhibitor (PCI) and a PCI mutant in which glycine 39 was substituted by methionine has been followed by HPLC/mass spectrometry. The interaction with the mutant protein PCI showed the formation of monofunctional adducts that ultimately gave bifunctional adducts. PCI mutant protein could be a good carrier of this platinum compound to the tumour cells in which the antiproliferative behaviour was demonstrated.  相似文献   

20.
Single crystal X-ray structural characterizations are recorded for a wide range of adducts of the form MX:dppx (1:1)(n), M = silver(I) (predominantly), copper(I), X = simple (pseudo-) halide or oxy-anion (the latter spanning, where accessible, perchlorate, nitrate, carboxylate - a range of increasing basicity), dppx=bis(diphenylphosphino)alkane, Ph2P(CH2)xPPh2, x = 3-6. Adducts are defined of two binuclear forms: (i) [LM(μ-X)2L], with each ligand chelating a single metal atom, and (ii) [M(μ-X)2(μ-(P-L-P′))2M′] where both ligands L and halides bridge the two metal atoms; a few adducts are defined as polymers, the ligands connecting M(μ-X)2M′ kernels, this motif persisting in all forms. Synthetic procedures for all adducts have been reported. All compounds have been characterized both in solution (1H, 13C, 31P NMR, ESI MS) and in the solid state (IR).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号