首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding a cowpea trypsin inhibitor (CpTI), which confers insect resistance in trangenic tobacco, was introduced into rice. Expression of the CpTi gene driven by the constitutively active promoter of the rice actin 1 gene (Act1) leads to high-level accumulation of the CpTI protein in transgenic rice plants. Protein extracts from transgenic rice plants exhibit a strong inhibitory activity against bovine trypsin, suggesting that the proteinase inhibitor produced in transgenic rice is functionally active. Small-scale field tests showed that the transgenic rice plants expressing the CpTi gene had significantly increased resistance to two species of rice stem borers, which are major rice insect pests. Our results suggest that the cowpea trypsin inhibitor may be useful for the control of rice insect pests.  相似文献   

2.
A sweet potato (Ipomoea batatas cv. Tainong 57) trypsin inhibitor gene was introduced into tobacco plants (Nicotiana tabaccum cv. W38) by Agrobacterium tumefaciens– mediated transformation. From 30 independent transformants, three lines with high level of expression were further analyzed. The trypsin inhibitor gene, under control of the 35S CaMV promoter, led to the production of the trypsin inhibitor proteins up to 0.2% of the total protein. In insecticidal bioassays of transgenic tobacco plants, larval, growth of Spodoptera litura (F.), the tobacco cutworm, was severely retarded as compared to their growth on control plants. This observation implied that expression of sweet potato trypsin inhibitor can provide an efficient method for crop protection. Received: 29 July 1996 / Revision received: 15 November 1996 / Accepted: 8 December 1996  相似文献   

3.
We have investigated the effects of long-term ingestion of two serine proteinase inhibitors (PIs), the Kunitz Soybean trypsin inhibitor (SBTI) and the Bowman-Birk inhibitor (BBI) on survival, learning abilities involved in the foraging behaviour, and digestive physiology of the honeybee (Apis mellifera L., Hymenoptera). A threshold-dose was established, above which adverse effects of long-term ingestion of the PIs tested are to be expected. The experiments reported herein could be extended to other PIs or gene products used to confer insect resistance, and be part of a general procedure used to assess the innocuousness of transgenic melliferous plants to honeybees.  相似文献   

4.
The transgenic Bt cotton plant has been widely planted throughout the world for the control of cotton budworm Helicoverpa armigera (Hubner). However, a shift towards insect tolerance of Bt cotton is now apparent. In this study, the gene encoding neuropeptide F (NPF) was cloned from cotton budworm H. armigera, an important agricultural pest. The npf gene produces two splicing mRNA variants—npf1 and npf2 (with a 120‐bp segment inserted into the npf1 sequence). These are predicted to form the mature NPF1 and NPF2 peptides, and they were found to regulate feeding behaviour. Knock down of larval npf with dsNPF in vitro resulted in decreases of food consumption and body weight, and dsNPF also caused a decrease of glycogen and an increase of trehalose. Moreover, we produced transgenic tobacco plants transiently expressing dsNPF and transgenic cotton plants with stably expressed dsNPF. Results showed that H. armigera larvae fed on these transgenic plants or leaves had lower food consumption, body size and body weight compared to controls. These results indicate that NPF is important in the control of feeding of H. armigera and valuable for production of potential transgenic cotton.  相似文献   

5.
A member of the potato proteinase inhibitor II (PPI II) gene family that encodes for a chymotrypsin iso-inhibitor has been introduced into tobacco (Nicotiana tabacum) usingAgrobacterium tumefaciens-mediated T-DNA transfer. Analysis of the primary transgenic plants (designated R0) confirmed that the introduced gene is being expressed and the inhibitor accumulates as an intact and fully functional protein. For insect feeding trials, progeny from the self-fertilization of R0 plants (designated R1) were used. Leaf tissue, either from transgenic or from control (non-transgenic) plants, was fed to larvae ofChrysodeixis eriosoma (Lepidoptera: Noctuidae, green looper),Spodoptera litura (F.) (Lepidoptera: Noctuidae) andThysanoplusia orichalcea (F.) (Lepidoptera: Noctuidae) and insect weight gain (increase in fresh weight) measured. Consistently,C. eriosoma larvae fed leaf tissue from transgenic plants expressing thePPI II gene grew slower than insects fed leaf tissue from non-transgenic plants or transgenic plants with no detectablePPI II protein accumulation. However, larvae of bothS. litura andT. orichalcea consistently demonstrated similar or faster growth when fed leaf tissue from transgenic plants compared with those fed non-transgenic plants. In agreement with the feeding trials, the chymotrypsin iso-inhibitor extracted from transgenic tobacco effectively retarded chymotrypsin-like activity measured inC. eriosoma digestive tract extracts, but not in extracts fromS. litura. We conclude, therefore, that for certain insects the use of chymotrypsin inhibitors should now be evaluated as an effective strategy to provide field resistance against insect pests in transgenic plants, but further, that a single proteinase inhibitor gene may not be universally effective against a range of insect pests. The significance of these observations is discussed with respect to the inclusion of chymotrypsin inhibitors in the composite of insect pest resistance factors that have been proposed for introduction into crop plants.  相似文献   

6.
Xenorhabdus nematophila is an entomopathogenic bacteria. It secretes a GroEL homolog, XnGroEL protein, toxic to its larval prey. GroEL belongs to the family of molecular chaperones and is required for proper folding of cellular proteins. Oral ingestion of insecticidal XnGroEL protein is toxic to Helicoverpa armigera, leading to cessation of growth and development of the larvae. In the present study, the insecticidal efficacy of XnGroEL against H. armigera has been evaluated in transgenic tobacco plant expressing the protein. A 1.7-kb gene encoding the 58-kDa XnGroEL protein was incorporated into the tobacco genome via Agrobacterium-mediated transformation. The stable integration of the transgene was confirmed by Southern blot analysis and its expression by RT-PCR and western blot analyses in transgenic plants. The transgenic lines showed healthy growth and were phenotypically normal. Insect bioassays revealed significant reduction of 100 % in the survival of larvae (p < 0.001) and 55–77 % reduction in plant damage (p < 0.05 and p < 0.001) compared to the untransformed and vector control plants. The results demonstrate that XnGroEL is a novel potential candidate for imparting insect resistance against H. armigera in plants.  相似文献   

7.
8.
Induced resistance in plants affects insect growth and development as a result of the up‐regulation of defence‐related secondary metabolites or enzyme‐binding proteins. In the present study, the effects of jasmonic acid (JA) and salicylic acid (SA) induced resistance in groundnut on Helicoverpa armigera (Hübner) are examined. Larval survival, larval weights and the activities of digestive enzymes (total serine protease and trypsin) and of detoxifying enzymes [glutathione S‐transferase (GST) and esterase (EST)] are studied in insects fed on four groundnut genotypes with moderate levels of resistance to H. armigera (ICGV 86699, ICGV 86031, ICG 2271 and ICG 1697) and a susceptible genotype (JL 24). The plants are pre‐ and/or simultaneously treated with JA and SA, and then infested with H. armigera, which are allowed to feed for 6 days. Significantly lower serine protease and trypsin activities are observed in H. armigera fed on plants treated with JA. Greater GST activity is recorded in insects fed on JA and SA treated plants, whereas EST activity is low in H. armigera larvae fed on plants treated with JA and SA. Serine proteases, trypsin and GST activities and larval weights (r = 0.74–0.95) and larval survival (r = 0.77–0.93) are positively correlated, whereas EST activity and larval weight (r = ?0.55) and larval survival (r = ?0.65) are negatively correlated. The results suggest that midgut digestive and detoxifying enzymes can be used as indicators of the adverse effects of constitutive and/or induced resistance in crop plants on the insect pests and the role of JA and SA in insect pest management.  相似文献   

9.
10.
The cDNA for bovine spleen trypsin inhibitor (SI), a homologue of bovine pancreatic trypsin inhibitor (BPTI), including the natural mammalian presequence was expressed in tobacco using Agrobacterium tumefaciens-mediated transformation. Stable expression required the N-terminal targeting signal presequence although subcellular localization was not proven. SI was found to exist as two forms, one coinciding with authentic BPTI on western blots and the second marginally larger due to retention of the C-terminal peptide. Both were retained on a trypsin-agarose affinity gel and had inhibitory activity. Newly emergent leaves contained predominantly the large form whereas senescent leaves had little except the fully processed form present. Intermediate-aged leaves showed a gradual change indicating that a slow processing of the inhibitor peptide was occurring. The stability of SI was shown by the presence of protein at high levels in completely senescent leaves. Modifications to the cDNA (3 and 5 changes and minor codon changes) resulted in a 20-fold variation in expression. Expression of modified SI in transgenic tobacco leaves at 0.5% total soluble protein reduced both survival and growth of Helicoverpa armigera larvae feeding on leaves from the late first instar. In larvae surviving for 8 days, midgut trypsin activity was reduced in SI-tobacco fed larvae, while chymotrypsin activity was increased. Activities of leucine aminopeptidase and elastase-like chymotrypsin remained unaltered. The use of SI as an insect resistance factor is discussed.  相似文献   

11.
In the present study, 11 varieties of Dolichos biflorus exhibited both protease inhibitor activities as well as in vitro inhibitory activity against Helicoverpa armigera gut protease. A Bowman–Birk protease inhibitor showing activity against trypsin and α-chymotrypsin has been purified from D. biflorus seeds using multi-step strategy. The purified inhibitor revealed a single band on SDS-PAGE corresponding to molecular mass of 16 kDa. The inhibitory constants for the interaction of purified PI with trypsin and α-chymotrypsin were 0.04 and 0.48 μM, respectively. The purified inhibitor was stable over a pH range of 2–12 and up to a temperature of 100 °C for 20 min. The results of insect bioassay against H. armigera revealed 68 % decline in larval weight after 7 days of feeding on artificial diet containing the inhibitor. The larval growth and % leaf area eaten were drastically reduced in the presence of inhibitor. The observed cumulative mortality from larval to adult was 51.21 %. The inhibitor displayed antifungal activity against Alternaria alternata, Fusarium oxysporum, and Aspergillus niger with minimum inhibitory concentration as 0.4, 0.6, and 1.2 μg mL?1, respectively. This is the first report of anti-feedant and anti-fungal activities of D. biflorus protease inhibitor on a single protein, which might be important for developing transgenic plants resistant to insect pests and fungal pathogens.  相似文献   

12.
13.
This study was done to assess insect growth and mortality on tobacco plants transformed with baculovirus enhancin genes, as a first step toward the possible use of enhancin transgenes as part of an insect control system. Enhancin genes from Trichoplusia ni or Helicoverpa armigera baculoviruses were introduced into tobacco via Agrobacterium tumefaciens with kanamycin selection. PCR analyses of genomic DNA confirmed the presence of the enhancin genes in the kanamycin-resistant plants; however, the expression of the genes was very low and could be detected only with RT-PCR. Bioassays with Trichoplusia ni larvae showed that larval growth and development was significantly slower on some transgenic lines and that larval mortality was higher. The majority of the enhancin-transgenic plants had little or no inhibitory effect. The low expression of enhancin in plants carrying current expression cassettes and the relevance of these results to pest management are discussed.  相似文献   

14.
A dose‐dependent inhibition of endogenous trypsin and aminopeptidase occurs in the lumen of Spodoptera frugiperda after feeding L6 larvae exogenous inhibitors soybean trypsin inhibitor (SBTI), tosyl‐L‐lysine chloromethyl ketone‐HCl (TLCK), or bestatin, respectively, for 3 days. TLCK inhibits trypsin in tissue extracts and in secretions more strongly than SBTI. The aminopeptidase released into the lumen (containing the peritrophic membrane) is strongly inhibited by bestatin, but the membrane‐bound enzyme is not. A bound enzyme may be more resistant to an inhibitor than unbound. A cross‐class elevation of aminopeptidase activity occurs in response to ingested trypsin inhibitor, but there was no cross‐class effect of aminopeptidase inhibitor (bestatin) on trypsin activity. An endogenous trypsin and aminopeptidase inhibitor is present in the lumen and ventricular cells. The strength of the endogenous trypsin inhibition seems to be in the same range as that resulting from ingestion of the exogenous inhibitor SBTI. In some insect species, considerable trypsin secretion occurs in unfed as well as in fed animals, and endogenous protease inhibitors might function to protect the ventricular epithelium by inactivation of trypsin when less food is available. © 2010 Wiley Periodicals, Inc.  相似文献   

15.
16.
Spider venoms are neurotoxin proteins that can kill insects. Spider toxin Hvt gene was cloned under two phloem specific RSs1 and RolC promoters, transformed into tobacco plants through Agrobacterium-mediated transformation and tested against Heliothis armigera larvae. Transgenic plants were confirmed through PCR. First instar larvae of H. armigera were released on detached leaves of transformed and non-transformed plants. Insect bioassays showed 93–100% mortality of H. armigera larvae within 72 h on the leaves of transgenic plants while all larvae survived and continued feeding on detached leaves from non-transformed control plants. The Hvt gene expressing under phloem specific RSs1 and RolC promoters could therefore be used for developing H. armigera-resistant, genetically-modified crops.  相似文献   

17.
Abstract

Growth of first instar Costelytra zealandica larvae was significantly reduced after 6 weeks when reared on an artificial diet containing 0.3 and 1% soybean trypsin inhibitor (SBTI), 0.1% and 0.3% potato inhibitor II, and 0.3% potato protease inhibitor I and cowpea trypsin inhibitor. Limabean trypsin inhibitor at 1% significantly stimulated growth compared with that on diet with corresponding levels of added casein. A direct relationship between increased free-trypsin activity and decreased larval growth was observed. Sequential measurement of enzyme activity in third instar larvae feeding on SBTI was compared with that of larvae feeding on casein. The increase in enzyme activity was observed after 14 days in larvae feeding on SBTI. Larvae preferred to feed on SBTI-free diet when given a choice between diet containing this inhibitor at 0.3% and added casein at 0.3%.  相似文献   

18.
A synthetic gene, mwti1b, coding for a winged bean trypsin inhibitor WTI-1B, has been introduced and expressed in rice plants, Oryza sativa. Protein extracts from transgenic rice plants expressing the trypsin inhibitor inhibited the gut proteases of larvae of the serious insect pest, the rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae) in vitro. The growth of larvae reared on transgenic rice plants expressing WTI-1B at more than 1 ng/10 g total protein was significantly retarded compared to that on non-transgenic control plants.  相似文献   

19.
20.
转双基因烟草对棉铃虫的杀虫活性评价   总被引:15,自引:0,他引:15  
以含Bt杀虫蛋白基因(单基因)烟草和常规烟草为对照,系统测定了含Bt与豇豆胰蛋白酶抑制剂蛋白基因(双基因)的抗虫烟草对棉铃虫不同龄期幼虫的杀虫活性。结果表明:1 ̄3龄幼虫取食转双基因烟草3d后死亡率为80.5% ̄99.3%,取食6d后死亡率达100%,均显著高于转单基因烟草。2龄幼虫取食转基因烟草3d后死亡率为80.5% ̄99.3%,取食6d后死亡率达100%,均显著高于转单基因烟草。2龄幼虫取食  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号