首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dimethyl platinum(II) complexes [PtMe2(NN)] {NN = bu2bpy (4,4′-di-tert-butyl-2,2′-bipyridine) (1a), bpy (2,2′-bipyridine) (1b), phen (1,10-phenanthroline) (1c)} reacted with commercial 3-bromo-1-propanol in the presence of 1,3-propylene oxide to afford cis, trans- [PtBrMe2{(CH2)3OH}(NN)] (NN = bu2bpy (2a), bpy (2b), phen (2c)). On the other hand, [PtMe2(NN)] (1a)-(1b) reacted with the trace of HBr in commercial 3-bromo-1-propanol to give [PtBr2(NN)] (NN = bu2bpy (3a), bpy (3b)). The reaction pathways were monitored by 1H NMR at various temperatures. Treatment of 1a-1b with a large excess of 3-bromo-1-propanol at −80 °C gave the corresponding methyl(hydrido)platinum(IV) complexes [PtBr(H)Me2(NN)] (NN = bu2bpy (4a), bpy (4b)) via the oxidative addition of dimethyl platinum(II) complexes with HBr. The complexes [PtBr(H)Me2(NN)] decomposed by reductive elimination of methane above −20 °C for bu2bpy and from −20 to 0 °C for bpy analogue to give methane and platinum(II) complexes [PtBrMe(NN)] (5a)-(5b) and then decomposed at about 0 °C to yield [PtBr2(NN)] and methane. When the reactions were performed at a molar ratio of Pt:RX/1:10, the corresponding complexes [PtBrMe(NN)] (5a)-(5b) were also obtained. The crystal structure of the complex 3b shows that platinum adopts square planar geometry with a twofold axis through the platinum atom. The Pt…Pt distance (5.164 Å) is considerably larger than the interplanar spacing (3.400 Å) and there is no platinum-platinum interaction.  相似文献   

2.
The reaction of [PtMe3(MeOH)(bpy)][BF4] (1) with the thionucleobases 2-thiocytosine (SCy, 2) and 1-methyl-2-thiocytosine (1-MeSCy, 3) resulted in the formation of the complexes [PtMe3(bpy)(SCy-κS)][BF4] (4) and [PtMe3(bpy)(1-MeSCy-κS)] [BF4] (5), respectively. The complexes were characterized by 1H and 13C NMR spectroscopy as well as by single-crystal X-ray analyses of 4 · MeOH and 5. In 4 · MeOH two strong hydrogen bonds (N4-H?N3′: N4?N3′ 2.976(7) Å) between the thiocytosine ligands give rise to base pairing thus forming dinuclear cations [{PtMe3(bpy)(SCy-κS)}2]2+. In both complexes the platinum atom is octahedrally coordinated [PtC3N2S] by three methyl ligands, the 2,2′-bipyridine ligand and the κS coordinated nucleobase (configuration index: OC-6-33). The structural investigations gave evidence that the sulfur atoms of the nucleobase ligands in 4 · MeOH and 5 have to be regarded as sp3 and sp2 hybridized, respectively. Thus, the ligand in 4 · MeOH has to be considered as the deprotonated thiol-amino form of thiocytosine being reprotonated at N1. In complex 5 the 1-MeSCy is coordinated in its thione-amino form. DFT-calculations of the base-paired dinuclear cation in 4 as well as of 4 itself gave proof of the strength of the hydrogen bond (8.5 kcal/mol) and exhibited that cation-anion interactions influence the conformation of the complex. In vitro cytotoxicity studies of 4 and 5 using nine different human tumor cell lines revealed moderate cytotoxic activity.  相似文献   

3.
The reactions of [PtMe3(OAc)(bpy)] (4) with the N,S and S,S containing heterocycles, pyrimidine-2-thione (pymtH), pyridine-2-thione (pytH), thiazoline-2-thione (tztH) and thiophene-2-thiol (tptH), resulted in the formation of the monomeric complexes [PtMe3(-κS)(bpy)] ( = pymt, 5; pyt, 6; tzt, 7; tpt, 8), where the heterocyclic ligand is coordinated via the exocyclic sulfur atom. In contrast, in the reactions of [PtMe3(OAc)(Me2CO)x] (3, x = 1 or 2) with pymtH, pytH, tztH and tptH dimeric complexes [{PtMe3(μ-)}2] (μ- = pymt, 9; pyt, 10; tzt, 11) and the tetrameric complex [{PtMe33-tpt-κS)}4] (12), respectively, were formed. The complexes were characterized by microanalyses, 1H and 13C NMR spectroscopy and negative ESI-MS (12) measurements. Single-crystal X-ray diffraction analysis of [PtMe3(pymt-κS)(bpy)] (5) exhibited a conformation where the pymt ligand lies nearly perpendicular to the complex plane above the bpy ligand that was also confirmed by quantum chemical calculations on the DFT level of theory.  相似文献   

4.
Three mono-nuclear copper(II) complexes [Cu(tepza)X]ClO4 (X = Cl, 1; X = NCS, 2; X = dca, 3) and two dinuclear bridging complexes [Cu2(tepza)2(μ-C4O4)](ClO4)2·H2O(4) and [Cu2(tepza)2(μ-C5O5)](ClO4)2(5) where tepza = tris[2-ethyl(1-pyrazolyl)]amine, dca = dicyanamide, C4O42− = 3,4-dihydroxycyclobut-3-ene-1,2-dionate (squarate dianion) and C5O52− = 4,5-dihydroxycyclopent-4-ene-1,2,3-trionate (croconate dianion) were synthesized and structurally characterized by IR and UV-Vis spectroscopy as well as by single X-ray crystallography. In the solid state, the geometry of copper(II) centers in these complexes are as follows: close to SP in 2, distorted TBP in 3, predominant SP in 4, and distorted octahedral in 5, whereas in solution distorted SP geometry was generally found. The squarato and the croconato dianions in complexes 4 and 5 are bridging the two copper(II) centers in cis-bis-monodentate and bis-bidentate bonding modes, respectively. Magnetic susceptibility measurements at variable temperatures (2-300 K) reveal the weak antiferromagnetic coupling in the two bridging dinuclear complexes 4 (= −24.9 cm−1) and 5 (= −3.1 cm−1).  相似文献   

5.
Reactions of [PtMe3(bpy)(Me2CO)][BF4] (2) with the thionucleobases 2-thiouracil (s2Ura), 4-thiouracil (s4Ura) and 2,4-dithiouracil (s2s4Ura) resulted in the formation of complexes of the type [PtMe3(bpy)(L-κS)][BF4] (L = s2Ura, 3; s4Ura, 4; s2s4Ura, 5). The complexes were characterized by NMR spectroscopy (1H, 13C, 195Pt), IR spectroscopy as well as microanalyses. The coordination through the C4S groups (4, 5) was additionally confirmed by DFT calculations, where it was shown that these complexes [PtMe3(bpy)(L-κS4)]+ (L = s4Ura, s2s4Ura) are about 5.8 (4b) and 3.3 kcal/mol (5b), respectively, more stable than the respective complexes, having thiouracil ligands bound through the C2X groups (X = O, 4a; S, 5a). For [PtMe3(bpy)(s2Ura-κS2)][BF4] (3) no preferred coordination mode could be assigned solely based on DFT calculations. Analysis of NMR spectra showed the κS2 coordination. In vitro cytotoxic studies of complexes 3−5 on nine different cell lines (8505C, A253, FaDu, A431, A549, A2780, DLD-1, HCT-8, HT-29) revealed in most cases moderate activities. However, 3 and 5 showed significant activity towards A549 and A2780, respectively, possessing IC50 values comparable to those of cisplatin. Cell cycle perturbations and trypan blue exclusion test on cancer cell line A431 using [PtMe3(bpy)(s2s4Ura-κS4)][BF4] (5) showed induction of apoptotic cell death. Furthermore, the reaction of [PtMe3(OAc-κ2O,O′)(Me2CO)] (6) with 4-thiouracil yielded the dinuclear complex [(PtMe3)2(μ-s4Ura-H)2] (7), which has been characterized by microanalysis, NMR (1H, 13C, 195Pt) and IR spectroscopy as well as ESI mass spectrometry. X-ray diffraction analysis of crystals yielded in an isolated case exhibited the presence of a hexanuclear thiouracilato platinum(IV) complex, possessing each three different kinds of methyl platinum(IV) moieties and 4-thiouracilato ligands. This exhibited the ability of 4-thiouracil platinum(IV) complexes to form multinuclear complexes.  相似文献   

6.
Four novel Mo(II) and Rh(II) complexes with cis-1,2-dicyano-1,2-bis(2,4,5-trimethyl-3-thienyl)ethene (cis-dbe) or closed-dbe were synthesized and characterized. Employing [M(O2CCF3)4] (M = Mo, Rh) with cis-dbe or closed-dbe afforded complex [Mo2(O2CCF3)4(cis-dbe)](benzene) (1), [Rh2(O2CCF3)4(cis-dbe)](benzene) (2), [{Mo2(O2CCF3)4}2(closed-dbe)] (3), and [Rh2(O2CCF3)4(closed-dbe)](p-xylene) (4). The structures of four metal complexes were revealed by X-ray crystallographic analyses and the correlation between the crystal structures and the photochromic performance was discussed. In all complexes, two cyano groups of the ligand bridged two dimetal carboxylates to give a 1-D zigzag infinite chain structure. Upon irradiation with 405 nm light, complex 1 turned into reddish purple from yellow, and the color reverted to initial yellow on exposure to 563 nm light, indicating the reversible cyclization/ring-opening reaction in the crystalline phase. However, the Rh(II) complex 2 did not display similarities in reaction induced by light, which is attributable to the lower ratio of photoactive anti-parallel conformers compared with complex 1 and coordination effect of metal ions on photochromism of diarylethenes. The complexes of Rh(II) ions did not exhibit the expected reversible photoinduced behavior.  相似文献   

7.
The reactions of metal(II) chlorides and bromides with 8-methylquinoline (8-mequin) in neutral and acidic solutions were investigated. The reaction with ZnCl2, ZnBr2, CoCl2, CoBr2, CuCl2 or CuBr2 with the appropriate HX in water or aqueous ethanol gave complexes of the formula (8-mequin)2MX4 (1, M = Cu, X = Cl; 2, M = Cu, X = Br; 3, M = Co, X = Cl; 4, M = Co, X = Br) or (8-mequin)2ZnX4·nH2O (5, X = Cl, n = 0; 6, X = Br, n = 0; 7, X = Cl, n = 1; 8, X = Br, n = 1). Crystals of 1, 2 and 4-8 suitable for single crystal X-ray diffraction were obtained and the structures reported. Compounds 1 and 2 crystallize in the monoclinic space group C2/c, while 4-8 crystallize in the triclinic space group, . Variable temperature magnetic susceptibility data indicate very weak interactions for the copper compounds 1 and 2, while the magnetic behavior of 3 and 4 is dominated by single ion anisotropy, with weaker antiferromagnetic interactions.  相似文献   

8.
Six complexes (1-6) with the type of [Ru(bpy)2L]X2 (1-3: L = L1-L3, X = Cl; 4-6: L = L1-L3, X = PF6) were synthesized based on 2,2′-bipyridine and three 2,2′-bipyridine derivatives L1, L2 and L3 (L1 = 5,5′-dibromo-2,2′-bipyridine, L2 = 5-bromo-5′-carbazolyl-2,2′-bipyridine, L3 = 5,5′-dicarbazolyl-2,2′-bipyridine). The complexes 1-6 were characterized by 1H NMR, MS(ESI) and IR spectra, along with the X-ray crystal structure analysis for 1, 5 and 6. Their photophysical properties and electrochemiluminescence (ECL) properties were investigated in detail. In the UV-Vis absorption spectra, all complexes 1-6 show strong intraligand (π → π) transitions and metal-ligand charge transfer (MLCT, dπ (Ru) → π) bands. Upon the excitation wavelengths at ∼508 nm, all complexes 1-6 exhibit typical MLCT emission of ruthenium(II) polypyridyl complexes. The introduction of carbazole moieties improves the MLCT absorption and emission intensity. The ruthenium(II) complexes 1-6 exhibit good electrochemiluminescence (ECL) properties in [Ru(bpy)2L]2+/tri-n-propylamine (TPrA) acetonitrile solution and the complexes with PF6 showed higher ECL emission intensity than that of the complexes with Cl based on the same ligands.  相似文献   

9.
Pyrazole-3,5-dicarboxylate-bridged dinuclear ruthenium(II) and osmium(II) complexes of 2,2-bipyridine of composition [(bpy)2Ru(pzdc)Ru(bpy)2](ClO4) · H2O (1) and [(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2) have been obtained in high yield and have been separated to their homochiral (ΛΛ/ΔΔ) rac (1a, 2a) and heterochiral (ΛΔ/ΔΛ) meso (1b, 2b) diastereoisomers. The distinctive structural features of these diastereoisomers have been characterized by 1-D and 2-D 1H NMR spectroscopy. The X-ray crystal structure of rac-[(bpy)2Os(pzdc)Os(bpy)2](ClO4) · H2O (2a) has been determined. The electrochemical and electronic spectral studies have established that there remain difference in properties and hence difference in intermetallic communication between the diastereoisomeric forms in each case.  相似文献   

10.
The synthesis and the characterization of several mono- and dinuclear middle transition metal derivatives of 1,10-phenanthroline-5,6-dione, 1, are presented. The reaction of 1 with CrCl2(THF)2 gives CrCl2(O,O′-C12H6N2O2)(THF)2, 2, while the halides of iron(II), cobalt(II) and nickel(II) afford adducts of general formula MX2(N,N′-C12H6N2O2), M = Fe, 4, Co, 5, X = Cl; M = Ni, 6, X = Br. DFT calculations on CrCl2(L)(THF)2 with L = O,O′-C12H6N2O2 or O,O′-C14H8O2 allowed a direct comparison of the coordination properties of 9,10-phenanthrenequinone and 1,10-phenanthroline-5,6-dione to be made. Dinuclear compounds of general formula CrCl2(THF)2(O,O′-C12H6N2O2-N,N′)MXnLm, M = Zr, 7, X = Cl, n = 4, m = 0; M = Cr, 8, X = Cl, n = 2, L = THF, m = 2; M = Fe, 9, Co, 10, X = Cl, n = 2, m = 0; M = Ni, 11, X = Br, n = 2, m = 0, are prepared from 2 and the corresponding metal halide, while VCp2(O,O′-C12H6N2O2-N,N′)FeCl2, 12, is synthesized by reacting 4 with VCp2. The electronic properties of the different complexes are investigated by magnetic moment measurements and EPR spectroscopy.  相似文献   

11.
The reactions of salicylaldehyde oxime (H2salox) with CuII precursors yielded the known complexes [Cu(Hsalox)2] (1) and [Cu(Hsalox)2]n (2), as well as complexes [Cu3(salox)(L1)(L2)]·MeCN (3·MeCN), [CuCl(L1)] (4) and [Cu2Na(O2CMe)5(HO2CMe)]n (5), where L1 = o-O-C6H4-CHNO-C(CH3)NH and L23− = o-O-C6H4-CHNO-C(o-O-C6H4)N. L1 was formed in situ via the nucleophilic addition of the oximato O-atom of salox2− to the unsaturated nitrile group of the MeCN reaction solvent. L23− is also formed in situ probably through the nucleophilic attack of the oximato O-atom to the unsaturated nitrile group of salicylnitrile; the latter, although not directly added to the reaction mixture, can be produced via the dehydration of salox2−. Compounds 1 and 2 contain Hsalox bound to the metal center in two different coordination modes; they both contain the same mononuclear unit, however a 2D network is generated in 2 due to a relatively long Cu-Ooximato bond. Compound 3 contains three different ligands, i.e. salox2−, L1 and L23−, which act as μ32OO′:κN, κONN′ and μ32O2NO′:κN′, respectively, whereas 4 consists of a square planar CuII atom bound to a κONN′ L1 and a chloride ion. Compound 5 consists of dinuclear [Cu2(O2CMe)5(HO2CMe)] units and Na+ ions assembled into an overall 3D network structure. Magnetic susceptibility measurements from polycrystalline samples of 2 and 5 gave best-fit parameters J = +0.36 cm−1 (H = −J?i?j) and J = −360 cm−1, zj = +20 cm−1 (H = −J?i?j − zJ〈Sz?z), respectively.  相似文献   

12.
The dinuclear bis(6-X-pyridin-2-olato) ruthenium complexes [Ru2(μ-XpyO)2(CO)4(PPh3)2] (X = Cl (4B) and Br (5B)), [Ru2(μ-XpyO)2(CO)4(CH3CN)2] (X = Cl (6B), Br (7B) and F (8B)) and [Ru2(μ-ClpyO)2(CO)4(PhCN)2] (9B) were prepared from the corresponding tetranuclear coordination dimers [Ru2(μ-XpyO)2(CO)4]2 (1: X = Cl; 2: X = Br) and [Ru2(μ-FpyO)2(CO)6]2 (3) by treatment with an excess of triphenylphosphane, acetonitrile and benzonitrile, respectively. In the solid state, complexes 4B-9B all have a head-to-tail arrangement of the two pyridonate ligands, as evidenced by X-ray crystal structure analyses of 4B, 6B and 9B, in contrast to the head-to-head arrangement in the precursors 1-3. A temperature- and solvent-dependent equilibrium between the yellow head-to-tail complexes and the red head-to-head complexes 4A-7A and 9A, bearing an axial ligand only at the O,O-substituted ruthenium atom, exists in solution and was studied by NMR spectroscopy. Full 1H and 13C NMR assignments were made in each case. Treatment of 1 and 2 with the N-heterocyclic carbene (NHC) 1-butyl-3-methylimidazolin-2-ylidene provided the complexes [Ru2(μ-XpyO)2(CO)4(NHC)], X = Cl (11A) or Br (12A). An XRD analysis revealed the head-to-head arrangement of the pyridonate ligands and axial coordination of the carbene ligand at the O,O-substituted ruthenium atom. The conversion of 11A and 12A into the corresponding head-to-tail complexes was not possible.  相似文献   

13.
Schiff bases of 2-hydroxybenzophenone (HBP) (C6H5)(2-HOC6H4)CN(CH2)nEAr (L1/L2: E = S, Ar = Ph, n = 2/3; L3/L4: E = Se, Ar = Ph, n = 2/3; L5/L6: E = Te, Ar = 4-MeOC6H4, n = 2/3) and their complexes [PdCl(L-H)] (L = L1L6; 1, 2, 3, 5, 7, 11), [PtCl(L3-H/L5-H)] (4/8), [PtCl2(L4/L6)2] (6/12), [(p-cymene)RuCl(L5/L6)]Cl (9/13) and [HgBr2(L5/L6)2] (10/14) have been synthesized and characterized by proton, carbon-13, selenium-77 and tellurium-125 NMR, IR and mass spectra. Single crystal structures of L1, 1, 3, 4, 5 and 7 were solved. The Pd-E bond distances (Å): 2.2563(6) (E = S), 2.3575(6)−2.392(2) (E = Se); 2.5117(5)−2.5198(5) (E = Te) are near the lower end of the bond length range known for them. The Pt-Se bond length, 2.3470(8) Å, is also closer to the short values reported so far. The Heck and Suzuki reaction were carried out using complexes 1, 3, 5 and 7 as catalysts under aerobic condition. The percentage yields for trans product in Heck reaction were found upto 85%.  相似文献   

14.
Reaction of bis(2-{pyrid-2-yl}ethyl)amine with 2-bromoethanol in the presence of Na2CO3 yields the title ligand, LH. Treatment of LH with the CuBr2 or Zn(O2CMe)2 · 2H2O yields pure crystalline [CuBr(LH)]Br · H2O (1 · H2O) and [Zn2(O2CMe)2(μ-O2CMe)(μ-L)] (2). Reaction of LH with Cu(O2CMe)2 · H2O affords a low yield of [Cu2Cl2(μ-O2CMe)(μ-L)] (3), the Cl ligands apparently originating from the CH2Cl2 crystallization solvent. Compound 1 · H2O is a near-regular square-pyramidal complex with a neutral, protonated LH ligand. In contrast, 2 and 3 are both unusual unsymmetric dinuclear complexes, with a five-coordinate [ML(O2CMe)] (M = Zn or Cu) unit linked to a second metal ion through the deprotonated ligand alkoxide donor and O,O′-bridging acetate ligand.  相似文献   

15.
A series of chiral Ag(I) and Cu(II) complexes have been prepared from the reaction between AgX (X = NO3, PF6, OTf) or CuX2 (X = Cl, ClO4) and chiral biaryl-based N-ligands. The rigidity of the ligand plays an important role in the Ag(I) complex formation. For example, treatment of chiral N3-ligands 1-3 with half equiv of AgX (X = NO3, PF6, OTf) gives the chiral bis-ligated four-coordinated Ag(I) complexes, while ligand 4 affords the two-coordinated Ag(I) complexes. Reaction of AgX with 1 equiv of chiral N4-ligands 5, 7, 8 and 10 gives the chiral, binuclear double helicate Ag(I) complexes, while chiral mono-nuclear single helicate Ag(I) complexes are obtained with N4-ligands 6 and 9. Treatment of either N3-ligand 1 or N4-ligand 9 or 10 with 1 equiv of CuX2 (X = Cl, ClO4) gives the mono-ligated Cu(II) complexes. All the complexes have been characterized by various spectroscopic techniques, and elemental analyses. Seventeen of them have further been confirmed by X-ray diffraction analyses. The Cu(II) complexes do not show catalytic activity for allylation reaction, in contrast to Ag(I) complexes, but they do exhibit catalytic activity for Henry reaction (nitroaldol reaction) that Ag(I) complexes do not.  相似文献   

16.
The preparation of a series of 1,2-phenylenedioxoborylcyclopentadienyl-metal complexes is described. These are of formula [M{η5-C5H4(BX)}Cl3] [M = Ti and X = CAT (2a), CATt (2b) or CATtt (2c); X = CATtt and M = Zr (4a) or Hf (4b)], [M{η5-C5H4(BX)}2Cl2] [M = Zr, X = CAT (3a) or CATt (3c); or M = Hf, X = CAT (3b) or CATt (3d)], [M{(μ-η5-C5H3BCAT)2 SiMe2}Cl2] [M = Zr (5a) or Hf (5b)], [M{η5-C5H3(BCAT)2}Cl3] [M = Zr (6a) or Hf (6b)], [M{η5-C5H4BCAT}3(THF)] [M = La (7a), Ce (7b) or Yb (7c)], [Sn{η5-C5 H4(BCATt)}Cl](8) and [Fe{η5-C5H4(BCATt)}2] (9). The abbreviations refer to BO2C6H4-1,2 (BCAT) and the 4-But (BCATt) and the (BCATtt) analogues. The compounds 2a-9 have been characterised by microanalysis, multinuclear NMR and mass spectra. The single crystal X-ray structure of the lanthanum compound 7a is presented.  相似文献   

17.
Reduction of RuQ3 (1a, Q = 8-quinolinolato) with Zn/Hg in the presence of various π-acceptor ligands in ethanol affords RuQ2L2 (L2 = (dimethylsulfoxide)2 (2); (4-picoline)2 (3); N,N′-dimethyl-1,4-diazabuta-1,3-diene, dab (4); cyclooctadiene, COD (5); norborna-2,5-diene, nbd (6)). Compound 6 is isolated as an equimolar mixture of cis,trans (6a) and trans,cis (6b) isomers, which can be separated by column chromatography. DFT calculations have been performed on 6a and 6b. Oxidation of 3 and 6b affords the corresponding ruthenium(III) species 7 and 8, respectively. The structures of 2, 3, 4 and 6 have been determined by X-ray crystallography.  相似文献   

18.
Three new triply bridged dinuclear copper(II) compounds containing carboxylato bridges, [Cu2(μ-CH3COO-κ-O1,O2)2(μ-CH3COO-κ-O1)(dpyam)2](BF4) (1), [Cu2(μ-CH2CH3COO-κ-O1,O2)(μ-OH)(μ-OH2)(bpy)2](ClO4)2 (2) and [Cu2(μ-CH3COO-κ-O1,O2)(μ-OH)(μ-OH2)(phen)2](ClO4)2 (3) (in which dpyam = di-2-pyridylamine, bpy = 2,2-bipyridine, phen = phenanthroline), have been synthesized in order to investigate the magnetic super-exchange pathway between coupled copper(II) centres. All three compounds display a distorted square-pyramidal arrangement around each copper(II) ion with a CuN2O3 chromophore. Compound 1 has three acetato bridges, two of which connect each square pyramid at two equatorial sites in a triatomic bridging mode and the third acetato bridge acts at the apical site in the monoatomic bridging mode. The structures of compounds 2 and 3 are mutually similar. In each dinuclear unit, both copper(II) ions are linked at two equatorial positions through a hydroxo bridge and a triatomic carboxylato bridge and at the axial position through a water molecule.The magnetic susceptibility measurements, measured from 5 to 300 K, revealed an antiferromagnetic interaction between the Cu(II) ions in compound 1 and a ferromagnetic interaction for compounds 2 and 3 with singlet-triplet energy gaps (J) of −56, 149 and 120 cm−1, for compounds 1, 2 and 3, respectively.  相似文献   

19.
We report here the synthesis, characterisation, electrochemical, photophysical and protein-binding properties of four luminescent ruthenium(II) polypyridine indole complexes [Ru(bpy)2(L1)](PF6)2 (1), [Ru(bpy)2(L2)](PF6)2 (2), [Ru(L1)3](PF6)2 (1a), and [Ru(L2)3](PF6)2 (2a) (bpy = 2,2′-bipyridine; L1 = 4-(N-(2-indol-3-ylethyl)amido)-4′-methyl-2,2′-bipyridine; L2 = 4-(N-(6-N-(2-indol-3-ylethyl)hexanamidyl)amido)-4′-methyl-2,2′-bipyridine). Their indole-free counterparts, [Ru(bpy)2(L3)](PF6)2 (3) and [Ru(L3)3](PF6)2 (3a) (L3 = 4-(N-(ethyl)amido)-4′-methyl-2,2′-bipyridine), have also been synthesised for comparison purposes. Cyclic voltammetric studies revealed ruthenium-based oxidation at ca. +1.3 V versus SCE and diimine-based reductions at ca. −1.20 to −2.28 V. The indole moieties of complexes 1, 2, 1a and 2a displayed an irreversible wave at ca. +1.1 V versus SCE. All the ruthenium(II) complexes exhibited intense and long-lived orange-red triplet metal-to-ligand charge-transfer 3MLCT (dπ(Ru) → π*(L1-L3)) luminescence upon visible-light irradiation in fluid solutions at 298 K and in alcohol glass at 77 K. The binding of the indole-containing complexes to bovine serum album (BSA) has been studied by quenching experiments and emission titrations.  相似文献   

20.
The reaction of [C5H4(CH2)nX]Tl (1: n = 2, X = NMe2, OMe, CN; n = 3, X = NMe2) with [(η6-C6H6)RuCl(μ-Cl)]2, 2, afforded the sandwich compounds [{η5-C5H4(CH2)nX}Ru(η6-C6H6)]PF6, 3, and [η5-C5H4(CH2)nX]2Ru, 4. Photolytic cleavage of 3 in acetonitrile afforded the tethered products [{η5N-C5H4(CH2)nX}Ru(CH3CN)2]PF6, 5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号