首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Solvent-free 2-halophenolate complexes of lithium, [LiOC6H4-2-X)]n (X = F, Cl, Br), were synthesized by treating the corresponding 2-halophenols with n-butyllithium. ortho-Lithiation was avoided by cooling the reaction mixture to −78 °C and using n-hexane as solvent. Recrystallization from THF/n-hexane lead to tetrameric [Li(THF)(μ3-OC6H4-2-X)]4 (X = F, 1; X = Cl, 2; X = Br, 3), which was verified by X-ray crystallography for 1 and 2 and derived for 3 by the strong similarities in the 1H, 13C and 7Li NMR data for 1, 2 and 3. Cubane structures were revealed for the Li4O4 core of 1 and 2. While complex salt 2 possesses only slight distortions within its cubane core, complex salt 1 has an unusual C2v distortion towards a butterfly shape. Additionally, dimeric [Li(H2O)2(μ-OC6H4-2-Br)]2 was obtained containing an extensive network of hydrogen bonding between water molecules. Upfield shifts in the 1H NMR spectra for the coordinated THF molecules as well as 13C and 7Li NMR spectra are interpreted as indicating the tetrameric form observed in the X-ray crystal structure is preserved in solution.  相似文献   

2.
We report the synthesis and characterization of [CuII(H2O)6][CuII2(nta)2(pyz)]·4H2O. It consists of two molecular entities, a cation and an anion, containing divalent copper. These entities are held together by an extensive network of hydrogen-bonding to form a framework with channels (along the a-axis) housing molecules of water. The latter can be reversibly removed by evacuation at room temperature to give another crystal phase. The compound undergoes a fast solid-state reaction with KBr. Magnetic susceptibility data fit well to the sum of those of a dimer with a singlet-triplet gap of 9.21(5) K and a monomer.  相似文献   

3.
Reaction of platinum(II) salts with 5-ferrocenylpyrimidine (FcPM) afforded cis-[Pt(NH3)2(FcPM)2](PF6)2 (1), trans-[Pt(NH3)2(FcPM)2](PF6)2 (2), cis-[PtCl2(FcPM)2] (3), and cis-[PtCl2(DMSO)(FcPM)] (4): their spectroscopic and electrochemical properties were investigated. Complexes 1 and 2 were structurally characterized by X-ray crystallography.  相似文献   

4.
Reaction of [HgCl2(PPh3)2] with one equivalent of thiosalicylic acid (tsalH2, HSC6H4CO2H) and excess triethylamine, followed by recrystallisation from dichloromethane-diethyl ether gives the compound [Hg2(tsal)2(PPh3)2] (2). This has a bis(S,O)-chelated mercury centre with a nido-trigonal bipyramidal coodination, with the four oxygens of the two carboxylates also coordinated to a Hg(PPh3)2 moiety. When a reduced quantity of pyridine was used as the base a different crystalline product was isolated. This was characterised as [Hg2(tsal)2(PPh3)2][Hg(tsalH)2] (3), which contains the same [Hg2(tsal)2(PPh3)2] moiety found for 2, co-crystallised with a [Hg(tsalH)2]. The two mercury-thiosalicylate species are connected by means of O-H?O hydrogen bonding.  相似文献   

5.
Four new coordination complexes [Cd(DPBA-3)2(H2O)2](ClO4)2·2H2O (1), [Cd(DPBA-3)(DMF)(NO3)2]·DMF (2), [Cd3(DPBA-3)2(SCN)6]·2DMF·4H2O (3) and [Zn(DPBA-3)(SCN)2] (4) [DPBA-3 = N,N′-di(pyridin-3-yl)pyridine-3,5-dicarboxamide] have been synthesized and characterized by elemental analysis, IR and single crystal X-ray diffraction. Complexes 1, 3 and 4 exhibit three different types of one-dimensional (1D) chain structures constructed by the metal ions and DPBA-3 ligands, and the Cd(II)-DPBA-3 1D chains in 3 are further linked by bridging SCN ligands to afford a three-dimensional (3D) framework. Complex 2 possesses a (6,3) two-dimensional (2D) layer structure. In 1-4, the hydrogen bonds involving the amide groups play important role to stabilize the resultant frameworks. The photoluminescence properties of the DPBA-3 and the complexes were studied in the solid state at room temperature.  相似文献   

6.
Three mixed ligands coordination polymers (CPs) [Ag1.5(apym)(nta)0.5]n (1), [(NH4)Ag2(mapym)(nta)·(H2O)3]n (2), [Ag2(dmapym)3(Hnta)]n (3) (apym = 2-aminopyrimidine, mapym = 4-methyl-2-aminopyrimidine, dmapym = 4, 6-dimethyl-2-aminopyrimidine, H3nta = nitrilotriacetate) were synthesized and characterized. For 1-3, as the substituents change from H to one methyl and two methyl groups, the dimensionalities of 1-3 decrease from three-dimension (3D) to one-dimension (1D) due to the steric effect of methyl groups. For 1, the μ2-apym ligands link the Ag(I) ions to form a 1D double-chain incorporating ligand unsupported Ag···Ag interaction. The nta3− ligands extend the 1D double-chain into a 3D framework. In 2, one heptadentate nta3− ligand binds four Ag(I) ions and incorporates μ2-mapym ligand to link metal centers to form a 2D sheet which can be simplified to be a 103 net. Complex 3 features a 1D chain structure incorporating Hnta2− and monodentate dmapym ligands. The substituents on the pyrimidyl ring intensively influence the coordination environments of metal ion and the coordination modes of the carboxyl group, and thus determine the structures of the CPs. The photoluminescent properties of 1-3 were also investigated.  相似文献   

7.
Three new Cu(II) complexes, [Cu2(C3H2O4)(phen)2(H2O)3](NO3)2(H2O)2 (1) (C3H2O4 = malonate, phen = 1,10-phenanthroline), [Cu2(C4H4O4)(phen)2(H2O)2](NO3)2 (2) (C4H4O4 = succinate), and {[Cu2(phen)2(H2O)(NO3)]2(C5H6O4)2}(NO3)2 (3) (C5H6O4 = glutarate) have been synthesized and characterized by elemental analysis, infrared spectroscopy, thermogravimetric analysis, and single crystal X-ray diffraction. The X-ray analysis reveals that the structures of 1 and 2 are of dinuclear copper(II) complexes bridged by malonate and succinate dianions, respectively, and 3 is a tetranuclear species formed by two {[Cu2(phen)2(H2O)(NO3)](C5H6O4)} fragments. The copper ions in 1 and 3 show square-pyramidal coordination geometry, while the copper ions in 2 exhibit a square planar geometry. In each complex, the dicarboxylate ligand is coordinated to copper ions as a chelate and monodentate (1), bis-monodentate (2), and bis-bridging ligand toward the copper ions with syn-syn coordination mode (3).  相似文献   

8.
Three novel cadmium(II) complexes [Cd2(tbpo)(O2CC6H4-p-NO2)2]ClO4·3CH3OH (1) [Cd2(bbap)(O2CC6H4-p-NO2)2]ClO4·4.5CH3OH·0.75H2O (2) and [Cd(ntb)(O2CC6H4-p-NO2)]ClO4·4CH3OH (3) have been synthesized and characterized by IR, elemental analysis, 1H NMR and X-ray crystallography, where tbpo and bbap are anions of N,N,N′,N′-tetrakis(2-benzimidazolylmethyl)-2-hydroxo-1,3-diaminopropane and 2,6-bis[bis(2-benzimidazolylmethyl)aminomethyl]-4-methylphenol, respectively; ntb is tris(2-benzimidazolymethyl)amine. Complexes 1 and 2 contain μ-phenolate-bridged and μ-alkoxo-bridged dicadmium(II) cores with the Cd1?Cd2 separation of 3.671 Å for complex 1 and 3.718 Å for 2. One of the 4-nitrobenzoate anions bridged the two cadmium(II) ions in syn-anti mode through its carboxylate group, the other 4-nitrobenzoate is only coordinated with Cd2 in bidentate chelating mode. The two central cadmium(II) atoms are in trigonal bipyramidal and pentagonal bipyramidal geometry. In complex 3, the cadmium(II) atom is coordinated with four nitrogen atoms of ntb and one carboxylate oxygen atom of 4-nitrobenzoate in distorted trigonal bipyramidal geometry. Experiment shows that there is a higher affinity of 4-nitrobenzoate anion as coligand with the dinuclear [Cd2(tbpo)]3+ and [Cd2(bbap)]3+ cores than that with the mononuclear [Cd(ntb)]2+ core.  相似文献   

9.
A series of pyrazolone lanthanide complexes: Ln(PMPP)3 · 2H2O · C2H5OH (Ln = Nd (1), Sm (2), Gd (3), Dy (4); PMPP = 1-phenyl-3-methyl-4-propionyl-5-pyrazolone) have been synthesized by the hydrothermal method with the starting ligand PMPP-SAH (1-phenyl-3-methyl-4-(salicylidene hydrazone)-propionyl-5-pyrazolone) changed into PMPP during the formation process of complexes. All the complexes were structurally characterized by X-ray crystallography. The fluorescence of these four complexes 1-4 in solid state and DMF solution was investigated via F-4500 spectrophotometer and all of them indicate a fluorescent behavior at room temperature.  相似文献   

10.
New water-soluble rhodium(III) complexes with a tacn (1,4,7-triazacyclononane) and a bpy (2,2-bipyridine) supporting ligands were synthesized. The reaction of [RhIII(tacn)Cl3] (1) with equimolar amount of bpy and two equivalents of AgNO3 in H2O at reflux for 10 h gave a water-soluble chloro complex [RhIII(tacn)(bpy)Cl](NO3)2 {2(NO3)2}. Complex 2(NO3)2 was treated with equimolar amount of AgNO3 in H2O at reflux for 10 h to give a water-soluble nitrato complex [RhIII(tacn)(bpy)(NO3)](NO3)2 {3(NO3)2}. Water-solubility of 3 with NO3 − ligand (46.5 mg/mL) is high compared with that of 2 with Cl ligand (14.5 mg/mL) under the same conditions (at pH 7.0 at 25 °C). The structures of 2 and 3 were unequivocally determined by X-ray analysis. Their structures in H2O were also examined by 1H NMR, IR, and electrospray ionization mass spectrometry (ESI-MS).  相似文献   

11.
Bidentate ligands 2,2′-biquinoline (biq) and 6,6′-dimethyl-2,2′-bipyridine (dmbpy) with steric hindrance substituents cis to the nitrogen atoms have been used in the synthesis of transition metal complexes. Six new doubly end-on azido-bridged binuclear complexes [M2(biq)21,1-N3)2(N3)2] (M = Ni (1), M = Co (2)), [M2(biq)21,1-N3)2Cl2] (M = Ni (3), M = Co (4)), [M2(dmbpy)21,1-N3)2(N3)2] (M = Ni (5), M = Co (6)) and one end-to-end thiocyanato-bridged polymeric [Ni(dmbpy)(μ1,3-SCN)(NCS)]n (7) have been synthesized and characterized by single crystal X-ray diffraction analysis and magnetic studies. Complexes 1-6 comprise five-coordinate M(II) ions bridged by two end-on azide ligands. The bridging M-N-M bond angles are in the small range 104.1-105.2°. Complex 7 consists of a singly thiocyanate-bridged Ni(II) chain in which Ni(II) ions are five-coordinate. This research suggests that the bulky ligands play a key role in the formation of five-coordinate coordination structure. All complexes display intramolecular intermetallic ferromagnetic coupling with JNiNi and JCoCo of ca. 23 or 13 cm−1 based on the Hamiltonian (S1 = S2 = 1 for Ni2, or 3/2 for Co2). The singly SCN-bridged chainlike complex 7 shows intrachain ferromagnetic interaction with J = 3.96(2) cm−1 and D = −4.55(8) cm−1 (. Magneto-structural correlationship has been investigated.  相似文献   

12.
The reactions of trans-[(PPh3)2M(CO)Cl] (M = Rh and Ir) with benzildiimine (H2BDI = 2) derived from benzil-bis(trimethylsilyl)diimine (Si2BDI) (1) in a 1:2 and 1:1 molar ratio afforded the cationic bis-benzildiiminato complexes [Rh(PPh3)2(HBDI)2]Cl (3) and the mono-benzildiimine complex [Ir(PPh3)2(CO)(H2BDI)]Cl (4), respectively. Both complexes are fully characterized using IR, FAB-MS, NMR spectroscopy and elemental analysis. The single crystal X-ray structure analysis reveals a distorted octahedral coordination geometry for the Rh(III) in 3 and a highly distorted square pyramidal geometry for Ir(I) in 4. In addition, the solid-state structure of Si2BDI is reported here for the first time showing the substituents highly twisted because of steric reasons.  相似文献   

13.
The synthesis of diethyl (pyridin-2-, -3-, -4-ylmethyl)phosphate (2-pmOpe, 3-pmOpe, 4-pmOpe) ligands and their palladium (II) complexes of general formula trans-[PdCl2L2] (L = 2-pmOpe, 3-pmOpe,4-pmOpe) has been described. Pyridine phosphate derivatives were synthesized via the condensation of phosphorochloridic acid diethyl ester with an appropriate pyridinylmethanol in the presence of triethylamine. The compounds have been identified and characterized by IR, far-IR, 1H NMR, 31P NMR, 31P CP-MAS NMR and elemental analyses. The crystal and molecular structures of palladium (II) complexes, i.e., [PdCl2(2-pmOpe)2] and [PdCl2(4-pmOpe)2] determined by the X-ray diffraction method, are presented. In both structures, Pd(II) ions are four-coordinated by two chlorine atoms and two pyridine nitrogen atoms. The geometry of complexes is square-planar and adopt a trans configuration, which is consistent with preparation method.  相似文献   

14.
Four new zinc(II) complexes [Zn(dien)(μ-nic)]2(BPh4)2·2CH3OH (1), {[Zn(dien)(isonic)]BPh4}n (2), [Zn(tren)(nic)]BPh4 (3) and [Zn(tren)(isonic)]BPh4 (4) (dien/tren = diethylenetriamine/triethylenetriamine, nic/isonic = nicotinate/isonicotinate anion) were synthesized and structurally characterized by IR, 1H NMR and single crystal X-ray diffraction. In the zinc(II) complexes of dien, both nicotinate and isonicotinate connect the zinc(II) ions via N,O-bis-monodentate mode. Complex 1 contains a centrosymmetric dinuclear unit bridged by two nicotinate anions in anti-parallel way. Complex 2 is characterized by an infinite one-dimensional zigzag chain bridged by isonicotinate anion in an end-to-end mode. The Zn···Zn distance is 6.782 for 1 and 8.805 Å for 2. While in the complexes of tren, both 3 and 4 are mononuclear complexes with nicotinate and isonicotinate coordinated to zinc(II) ion through only one oxygen atom of their carboxylate groups. The zinc(II) ions in all of the four complexes are in a distorted trigonal bipyramidal geometry. Complex 3 forms a dinuclear unit and complex 4 forms an infinite 2D sheet structure through intermolecular H-bonds. In all of the crystal lattices, the counterions act to balance the electronic charge at the same time to construct different 3D structures through noncovalent interactions such as C-H···π, N-H···π and van der Waals interactions.  相似文献   

15.
The formation of three [Tl(en)n]3+ complexes (n=1–3) in a pyridine solvent has been established by means of 205Tl and 1H NMR. Their stepwise stability constants based on concentrations, Kn=[Tl(en)n 3+]/{[Tl(en)n−1 3+]·[en]}, at 298 K in 0.5 M NaClO4 ionic medium in pyridine, were calculated from 205Tl NMR integrals: log K1=7.6±0.7; log K2=5.2±0.5 and log K3=2.64±0.05. Linear correlation between both the 205Tl NMR shifts and spin–spin coupling 205Tl–1H versus the stability constants has been found and discussed. A single crystal with the composition [Tl(en)3](ClO4)3 was synthesized and its structure determined by X-ray diffraction. The Tl3+ ion is coordinated by three ethylenediamine ligands via six N-donor atoms in a distorted octahedral fashion.  相似文献   

16.
Treatment of 3-(4-carboxyphenylhydrazono)pentane-2,4-dione (HL) with transition metal ions afforded four novel complexes, [Zn(L)(μ2-OOCCH3)(H2O)]n (1), [Zn(L)2(MeOH)4] (2), {[Cd4(η2-L)4(μ2-η2-L)4(H2O)4(MeOH)2]·MeOH} (3) and [Cd(η2-L)(μ2-η2-OOCCH3)(H2O)2]n (4). Their crystal structures have been characterized by single-crystal X-ray crystallography. In polymer 1, the acetate anions bridge the Zn(II) ions forming an infinite one-dimensional (1-D) chain with L units acting as monodentate ligands in the side chain. In mononuclear complex 2, two L ligands act as monodentate fashion to coordinate to the Zn(II) ion. In its solid-state structure, [Zn(L)2(MeOH)4] groups are joined together by hydrogen bonds forming a three-dimensional (3-D) supramolecular network. In tetranuclear complex 3, four Cd(II) ions are linked by four μ2-η2-L ligands, and chelated by another four L ligands, respectively. In polymer 4, the acetate anions bridge the Cd(II) ions leading to a 1-D chain containing chelating L units in the side chain.  相似文献   

17.
The reaction of [Rh2(acam)4(H2O)2]ClO4 (1) (Hacam = acetamide) with K2PtCl4 in aqueous solution gave crystals of [Rh2(acam)4(H2O)2][Rh2(acam)4{(μ-Cl)2PtCl2}] · 2H2O (2). The reaction of 1 with K2PdCl4 produced the palladium analog [Rh2(acam)4(H2O)2][Rh2(acam)4{(μ-Cl)2PdCl2}] · 2H2O (3) and a small amount of an aquated palladium complex [Rh2(acam)4{(μ-Cl)2PdCl(H2O)}] · H2O (4). Complexes 2 and 3 have anionic chains of [Rh2(acam)4{(μ-Cl)2MCl2}] (M = Pt, Pd), while 4 includes neutral chains of [Rh2(acam)4{(μ-Cl)2PdCl(H2O)}]. Although all of the structures include infinite chains of (-Rh-Rh-Cl-M-Cl-)n (M = Pt, Pd), the chain structures are different; zigzag for 2 and 3 and helical for 4. In the structures of 2 and 3, the counter cation [Rh2(acam)4(H2O)2]+ made a hydrogen-bonded chain with the crystallization water molecules. The cationic chains and the anionic chains are connected with hydrogen bonds. In the structure of 4, the chains are also linked together by direct hydrogen bonds between the chains and those with the crystallization water molecules. ESR spectra of the powdered samples of 2 and 3 at 77 K were consistent with a rhombic structure: for 2, g1 = 2.111, g2 = 2.054, g3 = 2.004; for 3, g1 = 2.115, g2 = 2.057, g3 = 2.007. These results indicate that there is a spin flip-flop exchange between the cations, [Rh2(acam)4(H2O)2]+, and the units in the anionic chains. The electrical conductivities of 2 and 3 were in the order of 10−7 S cm−1 at room temperature.  相似文献   

18.
Complex formation of thiourea with copper takes place as an intermediate step in the preparation of copper sulfide thin films by spray pyrolysis starting from aqueous solutions of copper(II) chloride and thiourea. The stoichiometry of the complex and that of the resulting thin film primarily depends on the molecular ratio of the starting materials. For comparison, the structures of all copper(I) thiourea complexes found in the Cambridge Structural Database are classified in this paper. In addition, syntheses, structural (single crystal XRD also at low temperature 193 K) and spectroscopic studies (FTIR and Raman) of six copper-thiourea complexes are now reported. The copper to thiourea stoichiometric ratio is 1:3 in four of these complexes, but their structures are basically different as dimerization or polymer formation takes place depending on whether the water of crystallisation is present or absent. The structure of bis(μ-thiourea)tetrakis(thiourea)dicopper(I) dichloride dihydrate, [Cu2(tu)6]Cl2 · 2H2O (1) was determined at room and also at low temperature. Bis(μ-thiourea)tetrakis(thiourea)dicopper(I) dibromide dihydrate, [Cu2(tu)6]Br2 · 2H2O (2) is isomorphous with 1, like the anhydrous compounds chlorotris(thiourea)copper(I), [Cu(tu)3]Cl (3) and bromotris(thiourea)copper(I), [Cu(tu)3]Br (4) are isomorphous. In the third isomorphous pair of complexes the copper to thiourea stoichiometric ratio is 1:1, viz. chloro(thiourea)copper(I) hemihydrate, [Cu(tu)]Cl · 0.5H2O (5) and bromo(thiourea)copper(I) hemihydrate, [Cu(tu)]Br · 0.5H2O (6). During the preparation of chloro(thiourea)copper(I) hemihydrate (5) a reaction by product α,α-dithiobisformamidinium dichloride, [SC(NH2)2]2Cl2 (7) was identified and structurally characterized which made it possible to suggest a reaction path leading to complex formation.  相似文献   

19.
Complexes of the types cis-Pt(amine)2I2 were transformed into the iodo-bridged dimers, which were characterized mainly by multinuclear (195Pt, 1H and 13C) magnetic resonance spectroscopy. For bulby amines, the dinuclear species were synthesized directly from K2[PtI4]. Compounds with several primary aliphatic and cyclic amines and two secondary amines were studied. In 195Pt NMR, two signals were observed between −3899 and −4080 ppm in acetone. These species were assigned to the cis and trans dinuclear compounds I(amine)Pt(μ-I)2PtI(amine). We suggest that the most shielded compound is the trans isomer. The difference between the two isomers is 12-13 ppm for the primary amine system and 26-27 ppm for the two secondary amines. There seems to be a slight dependence of the proton affinity in the gas phase of the amine (linear amines) with the δ(Pt) chemical shifts of the dinuclear Pt(II) compounds. The 2J(195Pt-1HN) coupling constants are slightly larger for the trans isomers (average 67 Hz, vs. 56 Hz). The 3J(195Pt-1H) coupling constants were detected only for the dimethylamine compounds, 46 Hz (trans) and 44 Hz (cis). In 13C NMR, the values of 2J(195Pt-13C) and 3J(195Pt-13C) were also found to be very slightly larger for the trans complexes (average 19 and 25 Hz vs. 15 and 18 Hz). The structures were confirmed by X-ray diffraction studies of the n-butylamine and diethylamine compounds. The two crystals were those of the trans dinuclear complexes.  相似文献   

20.
Pt(II) and Pd(II) compounds containing the free radical 4-aminoTEMPO (4amTEMPO) were synthesized and characterised by X-ray diffraction methods. The disubstituted complexes cis- and trans-Pt(4amTEMPO)2I2 were studied. The trans isomer was prepared from the isomerisation of the cis analogue. The two Pd(II) compounds trans-Pd(4amTEMPO)2X2 (X = Cl and I) were also characterised by crystallographic methods. A mixed-ligand complex cis-Pt(DMSO)(4amTEMPO)Cl2 was synthesized from the isomerisation of the trans isomer in hot water. Its crystal structure was also determined. In all the complexes, the 4amTEMPO ligand is bonded to the metal through the -NH2 group, since the nitroxide O atom is not a good donor atom for the soft Pt(II) and Pd(II) metals. The conformation of the 4-aminoTEMPO ligand was compared to those of the few reported structures in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号