首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By regulating the pH values, two new zinc(II) coordination polymers, formulated as [Zn4(μ7-CTAI)(μ3-OH)(μ2-OH)3(H2O)2]n·2n(H2O) (1), [Zn2(μ7-CTAII)(H2O)3]n (2) have been prepared by a flexible ligand, cyclohexane-1,2,4,5-tetracarboxylic acid (H4CTA) under hydrothermal conditions. Complex 1 exhibits a two-dimensional binodal (3,6)-connected topological network containing rare octanuclear zinc(II) clusters as the secondary building units (SBU1). Complex 2 displays a three-dimensional binodal (4,8)-connected topological network containing unusual Zn4(COO)6 secondary building units (SBU2). And importantly, the conformation of H4CTA in 1 exhibits (a,e,e,a) fashion and transforms to thermodynamically more stable conformation (e,a,e,e) type in 2 by pH-controlled. In addition, both of the complexes show strong photoluminescence at room temperature, and may be good candidates for potential luminescence materials.  相似文献   

2.
Reaction of [WVIS4]2− with ethane-1,2-dithiol edtH2 in the presence of the sulfide scavenger Cd2+ yielded the dinuclear tungstate syn-[{(edt)WV(O/S)}2(μ-S)2]2− (1), with the terminal S/O disordered over the two tungsten sites in the ratio 0.8:02. In the presence of thiocyanate, phosphine and CuI, the anionic cuboidal clusters of composition [{(SCN)3WV}2{CuI(PPh3)}23-S)4]2− (2) and (3, diphos = 1,2-bis(o-diphenylphosphinophenyl)ethane), and possibly via an intermediate [{(SCN)3WVS}2(μ-S)2]4−. The crystal and molecular structures of [Et4N]21, [Et4N]22 · H2O and [Et4N]23 · H2O have been determined.  相似文献   

3.
Dinuclear dichloro complexes [Ru(C6H6)Cl2]2, [Ru(p-MeC6H4 iPr)Cl2]2, [Ru(1,2,4,5-C6H2Me4)Cl2]2, and [Ru(C6Me6)Cl2]2 react in ethanol with p-bromothiophenol to give the corresponding cationic complexes [Ru2(C6H6)2(p-S-C6H4-Br)3]+ (1), [Ru2(p-MeC6H4 iPr)2(p-S-C6H4-Br)3]+ (2), [Ru2(1,2,4,5-C6H2Me4)2(p-S-C6H4-Br)3]+ (3), and [Ru2(C6Me6)2(p-S-C6H4-Br)3]+ (4), which can be isolated in quantitative yield as their chloride salts. X-ray structure analysis of these complexes shows that the nature of the arene ligand influences the folding of the p-S-C6H4-Br units. In 1, where the less hindered arene ligand is present, the three phenyl rings of the thiolato units are not constrained to a coplanar arrangement, whereas in 4 the C6Me6 forces the three phenyl rings to be in perfect planarity. Complexes 2 and 3 show an intermediary arrangement.  相似文献   

4.
The scope of formation and structures of tungsten-iron-sulfur clusters has been explored using reactions based on [(Tp*)WS3]1− (1) as the ultimate precursor. The reaction system 1/FeCl2/NaSEt/S affords the cubane cluster [(Tp*)WFe3S4Cl3]1− (2), which with NaSEt is converted to [(Tp*)WFe3S4(SEt)3]1− (3).Clusters 2 and 3 contain the cubane [WFe33-S)4]3+ core.Complex 1 with FeCl2/NaSEt forms [(Tp*)WFe2S3Cl2(SEt)]1− (4) with the cuboidal [WFe22-S)23-S)(μ2-SR)]2+ core.Treatment of 2 with excess Et3P yields the edge-bridged double [(Tp*)2W2Fe6S8(PEt3)4] (5) with the [W2Fe63-S)64-S)2] core. Reaction of 2 with excess leads a mixture of products, from which [(Tp*)2W2Fe5S9Na(SH)(MeCN)]3−(6) was identified.This cluster, as closely related [(Tp)2Mo2Fe6S9(SH)2]3−, exhibits a core topology [W2Fe5Na(μ2-S)23-S)66-S)] very similar to the PN cluster of nitrogenase. All reactions were carried out in acetonitrile. The structures of 2-6 were established crystallographically as Et4N+ salts. In the cubane series, substitution of tungsten for molybdenum decreases the [MFe3S4]3+/2+ redox potential by ca. 0.20 V but has a negligible effect on electron distribution. This work expands the small set of previously known weak-field W-Fe-S clusters, demonstrates the existence of tungsten-containing edge-bridged double cubanes and clusters with the PN core topology, and introduces a new cuboidal core structure as found in 4 (Tp = hydrotris(pyrazolyl)borate, Tp* = hydrotris(3,5-dimethylpyrazolyl)borate).  相似文献   

5.
Reaction of [Mo2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 or metallic Mo under hydrothermal conditions (140 °C, 4 M HCl) gives oxido-sulfido cluster aqua complex [Mo33-S)(μ-O)2(μ-S)(H2O)9]4+ (1). Similarly, [W33-S)(μ-O)2(μ-S)(H2O)9]4+ (2) is obtained from [W2O2(μ-S)2(H2O)6]2+ and W(CO)6. While reaction of [Mo2O2(μ-S)2(H2O)6]2+ with W(CO)6 mainly proceeds as simple reduction to give 1, [W2O2(μ-S)2(H2O)6]2+ with Mo(CO)6 produces new mixed-metal cluster [W2Mo(μ3-S)(μ-O)2(μ-S)(H2O)9]4+ (3) as main product. From solutions of 1 in HCl supramolecular adduct with cucurbit[6]uril (CB[6]) {[Mo3O2S2(H2O)6Cl3]2CB[6]}Cl2⋅18H2O (4) was isolated and structurally characterized. The aqua complexes were converted into acetylacetonates [M3O2S2(acac)3(py)3]PF6 (M3 = Mo3, W3, W2Mo; 5a-c), which were characterized by X-ray single crystal analysis, electrospray ionization mass spectrometry and 1H NMR spectroscopy. Crystal structure of (H5O2)(Me4N)4[W33-S)(μ2-S)(μ2-O)2(NCS)9] (6), obtained from 2, is also reported.  相似文献   

6.
Four new binucleating ligands featuring a hydroxytrimethylene linker between two coordination sites (1,3-bis{N-[3-(dimethylamino)propyl]-N-methylamino}propan-2-ol, HL1; 1,3-bis{N-[2-(dimethylamino)ethyl]-N-methylamino}propan-2-ol, HL2; 1,3-bis[bis(2-methoxyethyl)amino]propan-2-ol, HL3; and 1-bis[(2-methoxyethyl)amino]-3-{N-[2-(dimethylamino)ethyl]-N-methylamino}propan-2-ol, HL4) were synthesized, along with the corresponding zinc complexes. The structures of three dinuclear zinc complexes ([Zn2L1(μ-CH3COO)2]BPh4 (1), [Zn2L3(μ-CH3COO)2]BPh4 (3), and [Zn2L4(μ-CH3COO)(CH3COO)(EtOH)]BPh4 (4)) and a tetranuclear zinc complex ({[Zn2L2(μ-CH3COO)]2(μ-OH)2}(BPh4)2 (2)) were revealed by X-ray crystallography. Hydrolysis of tris(p-nitrophenyl)phosphate (TNP) by these zinc complexes in an acetonitrile solution containing 5% Tris buffer (pH 8.0) at 30 °C was investigated spectrophotometrically and by 31P NMR. Although zinc complexes 1, 3, and 4 did not show hydrolysis activity, the tetranuclear zinc complex 2, containing μ-hydroxo bridges, was capable of hydrolyzing TNP. This suggests that the hydroxide moiety in the complex may have an important role in the hydrolysis reaction.  相似文献   

7.
Three novel d10 metal coordination polymers, {[Cd(H2odpa)(phen)2]·H2O}n (1), [Cd2(odpa)(phen)(H2O)2]n (2), {[Zn4(odpa)2(phen)2(H2O)2]·H2O}n (3), (H4odpa = 4,4′-oxydiphthalic acid, phen = 1,10-phenanthroline) were obtained with different metal/ligand ratios through hydrothermal method and characterized. Compound 1 forms a one dimensional zigzag chain, in which two phen ligands chelate to one cadmium atom. Compound 2 shows a three dimensional network structure comprised of new tetranuclear cadmium clusters as the nodes and (odpa)4− anions as the linkers, exhibits an unusual topological structure. Compound 3 is an unprecedented three dimensional polymer based on octanuclear zinc clusters cross-linked by (odpa)4− anions. In 1-3, central CdII/ZnII ions and (odpa)4− ligand display completely different coordination modes and conformations. In addition, the thermal stabilities and photoluminescence properties of 1-3 were also studied.  相似文献   

8.
The reaction of 2 equiv. of [Os3(CO)10(MeCN)2] with R-CC-L-CC-R (R = H, L = (C4H2S); R = SiMe3, L = (C4H2S-C4H2S), (C4H2S-C4H2S-C4H2S), (C4H2S)-(C14H8)-(C4H2S)) affords the series of linked clusters [{Os3(CO)10}(HCC(C4H2S)CCH){Os3(CO)10}] (1), [{Os3(CO)10}(Me3SiCC(C4H2S-C4H2S)CCSiMe3){Os3(CO)10}] (2), [{Os3(CO)10}(Me3SiCC(C4H2S-C4H2S-C4H2S)CCSiMe3){Os3(CO)10}] (4) and [{Os3(CO)10}(Me3SiCC(C4H2S)-(C14H8)-(C4H2S)CCSiMe3){Os3(CO)10}] (6) as the major products. The complexes have been characterised by a range of spectroscopic methods and, in the case of 1 and 2 by single crystal X-ray crystallography. The alkyne groups cap the osmium triangles in the expected μ32-||-bonding mode and each triangle is coordinated by nine terminal and one μ2-carbonyl group. Solution UV-Vis spectra of the complexes were similar to those observed for the free ligands consistent with there being little delocalisation between the cluster units and the thiophene groups.  相似文献   

9.
Reactions of the electron-deficient triosmium cluster [Os3(CO)932-C9H6N)(μ-H)] (1) with various alkynes are described. Cluster 1 readily reacts with the activated alkyne dimethyl acetylenedicarboxylate (dmad) upon mild heating (65-70 °C) to give the adduct [Os3(CO)9(μ-C9H6N)(μ3-MeO2CCCHCO2Me)] (2). In contrast, a similar reaction of 1 with diphenylacetylene affords previously reported compounds [Os3(CO)10(μ-η2-C9H6N)(μ-H)] (3), [Os3(CO)9(μ-C4Ph4)] (4) and [Os3(CO)83-C(C6H4)C3Ph3}(μ-H)] (5) while with 2-butyne gives only the known compound [Os3(CO)7(μ-C4Me4)(μ3-C2Me2)] (6). The new cluster 2 has been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

10.
Coordinating abilities of 4R-1,2,4-triazole derivatives (R = glycine ethyl ester (L1), glycine (L2), diethylamino malonate (L3), methionine (L4) and diethyl aminomethylphosphonate (L5)) towards ZnII ions have been studied in solution, in solid state and versus three zinc-β-lactamases. The crystal structure of [Zn3(L4)6(H2O)6] (6) is described; it is the first crystal structure involving a 1,2,4-triazole functionalized methionine. It forms a trinuclear complex with central zinc octahedrally coordinated by only L4, whereas terminal zinc ions coordination sphere is completed by three water molecules. L4 exhibits a dual functionality of a bridging bidentate ligand as well as an anion. A dense hydrogen bonding network connects these trinuclear entity into a 3D supramolecular network. The ZnII ions in 6 are held at equidistance (3.848 Å) which coincidently matches with the corresponding Zn?Zn distance in the binuclear zinc enzyme from Bacillus cereus (3.848 and 4.365 Å). Among L1-L5 screened for β-lactamase assay, L4 shows modest inhibition for BcII enzyme.  相似文献   

11.
Treatment of [Ru3(CO)9{P(C4H3S)3}(μ-dppm)] (1) [dppm = bis(diphenylphosphino)methane] with molecular oxygen in benzene at 60 °C affords oxo-capped [Ru3(CO)63-CO){P(C4H3S)3}(μ-dppm)(μ3-O)] (2), while with elemental sulfur and selenium related chalcogenide-capped clusters [Ru3(CO)63-CO){P(C4H3S)3}(μ-dppm)(μ3-E)] (3, E = S; 5, E = Se) and bis(chalcogenide) clusters [Ru3(CO)6{P(C4H3S)3}(μ-dppm)(μ3-E)2] (4, E = S; 6, E = Se) result. Reaction of 1 with H2S in refluxing THF affords the previously reported [(μ-H)2Ru3(CO)7(μ-dppm)(μ3-S)] (7) together with the new sulfido-capped dihydride [(μ-H)2Ru3(CO)6{P(C4H3S)3}(μ-dppm)(μ3-S)] (8). All new compounds have been characterized by spectroscopic data, and 2 and 8 by single-crystal X-ray diffraction analyses. Oxo-capped 2 consists of a triangular ruthenium framework capped on opposite sides by oxo and carbonyl groups, while 8 consists of a ruthenium triangle by a capping sulfido ligand and two inequivalent bridging hydride ligands.  相似文献   

12.
The reaction of [Rh2(acam)4(H2O)2]ClO4 (1) (Hacam = acetamide) with K2PtCl4 in aqueous solution gave crystals of [Rh2(acam)4(H2O)2][Rh2(acam)4{(μ-Cl)2PtCl2}] · 2H2O (2). The reaction of 1 with K2PdCl4 produced the palladium analog [Rh2(acam)4(H2O)2][Rh2(acam)4{(μ-Cl)2PdCl2}] · 2H2O (3) and a small amount of an aquated palladium complex [Rh2(acam)4{(μ-Cl)2PdCl(H2O)}] · H2O (4). Complexes 2 and 3 have anionic chains of [Rh2(acam)4{(μ-Cl)2MCl2}] (M = Pt, Pd), while 4 includes neutral chains of [Rh2(acam)4{(μ-Cl)2PdCl(H2O)}]. Although all of the structures include infinite chains of (-Rh-Rh-Cl-M-Cl-)n (M = Pt, Pd), the chain structures are different; zigzag for 2 and 3 and helical for 4. In the structures of 2 and 3, the counter cation [Rh2(acam)4(H2O)2]+ made a hydrogen-bonded chain with the crystallization water molecules. The cationic chains and the anionic chains are connected with hydrogen bonds. In the structure of 4, the chains are also linked together by direct hydrogen bonds between the chains and those with the crystallization water molecules. ESR spectra of the powdered samples of 2 and 3 at 77 K were consistent with a rhombic structure: for 2, g1 = 2.111, g2 = 2.054, g3 = 2.004; for 3, g1 = 2.115, g2 = 2.057, g3 = 2.007. These results indicate that there is a spin flip-flop exchange between the cations, [Rh2(acam)4(H2O)2]+, and the units in the anionic chains. The electrical conductivities of 2 and 3 were in the order of 10−7 S cm−1 at room temperature.  相似文献   

13.
Assembly of isonicotinic acid ligand (HL) with metal halide, five new hybrid complexes [CdI2(C5H4NCOOH)(C5H4NHCOO)] · H2O (1), Nan[ZnCl2(C5H4NCOO)]n · 2nH2O (2), [CdX(C5H4NCOO)]n (X = Br (3), I (4)) and [Cd3Cl2(OH)2(C5H4NCOO)2]n (5) were obtained, which display a variety of structural motifs, ranging from zero-dimensional to complicated three-dimensional networks. Complex 1 possesses an isolated unit MX2 that is further connected into 3D networks through hydrogen bonding and π-π stacking interactions. Complex 2 is characterized by an infinite one-dimensional chain of zinc atoms bridged by L ligands. While complexes 3 and 4 possess X-bridging 1[CdX2/2] inorganic chains connected by L ligands to form a 2D hybrid network structure. In the case of 5, the cadmium(II) cation is bridged by μ3-Cl atom and μ3-OH group to form a 2-D 2[Cd6/2Cl6/33-OH)2] inorganic layer which is further extended into 3-D framework by bridging L ligand via Cd-N and Cd-O bonds. The optical properties of 1, 4, and 5 in the solid state are investigated at room temperature and time-dependent DFT (TDDFT) calculation using the B3LYP functional has been performed on 1. The result indicated that the emission band of 1 is attributed to an admixture of MLCT (metal-to-ligand charge-transfer) and LLCT (ligand-to-ligand charge-transfer).  相似文献   

14.
New chiral tetrahedral clusters (μ3-S)OsCoMo(CO)8C5H4C(O)R(R = H 2, CH3 3, C6H4C(O)OCH3 4) were synthesized by the reaction of the precursor (μ3-S)OsCo2(CO)9 1 with the functionally substituted metal exchange reagents [Mo(CO)35-C5H4)C(O)R] (R = H, CH3, C6H4C(O)OCH3). Then clusters 2, 3 and 4 were treated with 2,4-dinitrophenylhydrazine to obtain clusters (μ3-S)OsCoMo(CO)8C5H4CNNHC6H3(NO2)2R (R = H 5, CH3 6, C6H4C(O)OCH3 7), respectively. All the clusters were characterized by Element Analysis, IR and 1H NMR. The structures of clusters 3 and 4 were established by X-ray single crystal diffraction. Interestingly, carbonyl group on the cyclopentadienyl ligand and cyclopentadienyl ring are not in the same plane, in cluster 3, torsion angle C27-C28-C29-O18 is −176.1(9), but in cluster 4, torsion angle C12-C13-C14-O9 is 167.5(17), which shows that carbonyl function group on the cyclopentadienyl ligand offsets the cyclopentadienyl ring more markedly than that in cluster 3. It showed that both conjugated effects and space hinder of phenyl ring in the cluster 4 are important factors to decide atoms positioning in three-dimensional structure of the clusters.  相似文献   

15.
Interaction of [Cp*RuCl(μ-Cl)]2 with 2,2′-bipyridine (2,2′-bipy) in the presence of Na[PF6] gave a chloride bridging dinuclear complex [{Cp*Ru(2,2′-bipy)}2(μ-Cl)][PF6] (1). In the crystal structure, the cation [{Cp*Ru(2,2′-bipy)}2(μ-Cl)]+ contains a bent Ru-Cl-Ru linkage with an angle of 141.87(12)°. The tris(μ-hydroxo)diruthenium complex [{(η6-p-cymene)Ru}2(μ-OH)3][BF4] in acetone solution was treated by 4,4′-bipyridine (4,4′-bipy) to give a hydroxo-bridged tetranuclear complex [{(η6-p-cymene)Ru}2(μ-OH)2(μ-4,4′-bipy)]2[BF4]4 (2). Complex 2 consists of four (η6-p-cymene)Ru moieties connected by two 4,4′-bipy and four hydroxo-bridging groups, forming a novel metallomacrocycle with alternating hydroxyl and 4,4′-bipy bridges between the ruthenium atoms. Spectroscopic properties along with electrochemistry of two organoruthenium (II) complexes 1 and 2 are reported.  相似文献   

16.
We synthesized iron(III), cobalt(II), copper(II) and zinc(II) complexes [FeIII(HBPClNOL)Cl2]·H2O (1), [CoII(H2BPClNOL)Cl2] (2), [CuII(H2BPClNOL)Cl]Cl·H2O (3), and [ZnII(HBPClNOL)Cl] (4), where H2BPClNOL is the ligand (N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)[(3-chloro)(2-hydroxy)]propylamine). The complexes obtained were characterized by elemental analysis, IR and UV-visible spectroscopies, electrospray ionization mass spectrometry (ESI-MS), tandem mass spectrometry (MS/MS), and cyclic voltammetry. X-ray diffraction studies were performed for complexes (3) and (4) revealing the presence of mononuclear and dinuclear structures in solid state for (3). However, the zinc complex is mononuclear in solid state. Biological studies of complexes (1)-(4) were carried out in vitro for antimicrobial activity against nine Gram-positive bacteria (Staphylococcus aureus strains RN 6390B, COL, ATCC 25923, Smith Diffuse, Wood 46, enterotoxigenic S. aureus FRI-100 (SEA+), FRI S-6 (SEB+) and SEC FRI-361) and animal strain S. aureus LSA 88 (SEC/SED/TSST-1+). The following sequence of inhibition promoted by the complexes was observed: (4) > (2) > (3) > (1), showing the effect of the metal on the biological activity. To directly observe the morphological changes of the internal structure of bacterial cells after the treatment, transmission electron microscopy (TEM) was employed. For the most active complex [ZnII(HBPClNOL)Cl] (4), granulation deposits around the genetic material and internal material leaking were clearly detected.  相似文献   

17.
The reactions of 2-amino-anthracene with [Os3(CO)10(CH3CN)2] have been studied and the products structurally characterized by spectroscopic, X-ray diffraction, photophysical and electrochemical techniques. At room temperature in CH2Cl2 two major, isomeric products are obtained [Os3(CO)10(μ-η2-(N-C(1))-NH2C14H8)(μ-H)] (1, 14%) and [Os3(CO)10(μ-η2-(N-C(3))-NHC14H9)(μ-H)] (2, 35%) along with a trace amount of the dihydrido complex [Os3(CO)9(μ-η2-(N-C(3))-NHC14H8)(μ-H)2] (3). In refluxing tetrahydrofuran only complexes 2 and 3 are obtained in 24% and 28%, respectively. A separate experiment shows that complex 1 slowly converts to 2 and that the rearrangement is catalyzed by adventitious water and involves proton transfer to the anthracene ring. Complex 1 is stereochemically non-rigid; exhibiting edge to edge hydride migration while 2 is stereochemically rigid. Complex 3 is also stereochemically non-rigid showing a site exchange process of the magnetically nonequivalent hydrides typical for trinuclear dihydrides. Interestingly, 2 decarbonylates cleanly to the electronically unsaturated 46e cluster [Os3(CO)932-(N-C(3))-NHC10H9)(μ-H)] (4, 68%) in refluxing cyclohexane, while photolysis of 2 in CH2Cl2 yields only a small amount of 3 along with considerable decomposition. The mechanism of the conversion of 1 to 2 and the dependence of the product distribution on solvent are discussed. All four compounds are luminescent with compounds 1-3 showing emissions that can be assigned to radiative decay associated with the anthracene ligand. Complexes 1-3 all show irreversible 1e reductions in the range of −1.85-2.14 V while 4 shows a nicely reversible 1e wave at −1.16 V and a quasi-reversible second 1e wave at −1.62 V. Irreversible oxidations are observed in the range from +0.35 to +0.49 V. The relationship between the cluster ligand configurations and the observed electrochemical and photochemical behavior is discussed and compared with that of the free ligand.  相似文献   

18.
The syntheses and structures of homo- and heteronuclear biscarbene complexes with bithiophene spacers were investigated. The complexes were synthesized by lithiation of bithiophene followed by metallation using combinations of the metal precursors MnMeCp(CO)3, W(CO)6, Mo(CO)6 and Cr(CO)6, after which the reaction was quenched with triethyloxonium tetrafluoroborate. This classical Fischer method yielded monocarbene complexes, [MLnC(OEt)C4H2S-C4H3S], ([MLn] = Cr(CO)51a, W(CO)52a or MnMeCp(CO)23a), homonuclear biscarbene complexes, [MLnC(OEt)C4H2S-C4H2SC(OEt)MLn], ([MLn] = Cr(CO)51b, W(CO)52b or MnMeCp(CO)23b) and heteronuclear biscarbene complexes, [MLnC(OEt)C4H2S-C4H2SC(OEt)M′Ln] (1d: [MLn] = Cr(CO)5 and [M′Ln] = W(CO)5; 1e: [MLn] = MnMeCp(CO)2 and [M′Ln] = Cr(CO)5; 1f: [MLn] = Cr(CO)5 and [M′] = Mo(CO)5); 2d: [MLn] = MnMeCp(CO)2 and [M′Ln] = W(CO)5; 3c: [MLn] = MnMeCp(CO)2 and [M′Ln] = Mo(CO)5). Electron density calculations with the gaussian03 software package of 1e revealed a polar rod with the negative pole towards the chromium carbene side, whereas the biscarbenes 1d and 1b showed very little polarity. By-products resulting from activation of the carbene moieties in homonuclear biscarbene complexes included (i) ester-type complexes of the form [MLnC(OEt)C4H2S-C4H2SC(O)OEt], ([MLn] = Cr(CO)51c or W(CO)52c), formed in situ in the reaction of 1b and 2b, (ii) the organic bis-ester compound [EtOC(O)C4H2S-C4H2SC(O)OEt] 4, where both metal moieties had been substituted by oxygen and (iii) the carbon-carbon coupled dimeric bithienyl compound [C4H3S-C4H2SC(O)C(O)C4H2S-C4H3S] 5. By-products obtained from heteronuclear biscarbene reactions contain the former diketo compound (or a derivative) as spacer between two metal carbonyl fragments and have the general formula [MLnC(OEt)C4H2S-C4H2SCR-CR′C4H2S-C4H2SC(OEt)MLn] (5a: [M] = Cr(CO)5, R = OH, R′ = OEt; 5b: [M] = W(CO)5, R = R′ = O; 5c: [M] = Mo(CO)5, R = R′ = O). Reaction of 1d, 1e and 1f with hex-3-yne resulted in the formation of benzannulated products 6a, 6b and 6c. All novel complexes were fully characterized using various spectroscopic techniques. The crystal structures of 1b, 2a and 5 are reported.  相似文献   

19.
The phenyldi(2-thienyl)phosphine (PhPTh2) complexes [Os3(CO)12−n(PhPTh2)n] (n = 1-3) (1-3) have been prepared. Thermolysis of 1 and either 2 or 3 in octane affords carbon-hydrogen bond activation products [Os3(CO)93-PPhTh(C4H2S)}(μ-H)] (4) and [Os3(CO)8(PPhTh2){μ3-PPhTh(C4H2S)}(μ-H)] (5), respectively. Both exist as isomeric mixtures differing in the relative positions of phenyl and thienyl substituents with respect to the triosmium centre. The nature of the process has been confirmed by a single crystal X-ray diffraction analysis of 4.  相似文献   

20.
Reactions of the β-diketiminate lithium salt L2Li [L2={(2,6-Me2C6H3)NC(Me)}2CH] with anhydrous LnCl3 (Ln=Yb, Sm, Nd) in 1:1 molar ratio in THF afforded the new β-diketiminate lanthanide complexes L2LnCl(THF)(μ-Cl)2Li(THF)2 (Ln=Yb (1), Sm (2), Nd (3)). Recrystallization of complexes 1-3 from toluene gave the neutral complexes L2LnCl2(THF)2 (Ln=Yb (4), Sm (5), Nd (6)). Recrystallization of complexes 4 and 5 in hot toluene for two times gave the dinuclear complexes L2ClLn(μ-Cl)3LnL2(THF) (Ln=Yb (7), Sm (8)). Treatment of the mother liquor of complex 2 in hot toluene for three times gave the novel trinuclear complex L2SmCl(μ-Cl)3SmL2(μ-Cl)Li(L2H)(THF) (9). Each of these complexes was well characterized, while complexes 3, 7 and 9 have been characterized by X-ray diffraction structure determination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号