首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three mixed ligands coordination polymers (CPs) [Ag1.5(apym)(nta)0.5]n (1), [(NH4)Ag2(mapym)(nta)·(H2O)3]n (2), [Ag2(dmapym)3(Hnta)]n (3) (apym = 2-aminopyrimidine, mapym = 4-methyl-2-aminopyrimidine, dmapym = 4, 6-dimethyl-2-aminopyrimidine, H3nta = nitrilotriacetate) were synthesized and characterized. For 1-3, as the substituents change from H to one methyl and two methyl groups, the dimensionalities of 1-3 decrease from three-dimension (3D) to one-dimension (1D) due to the steric effect of methyl groups. For 1, the μ2-apym ligands link the Ag(I) ions to form a 1D double-chain incorporating ligand unsupported Ag···Ag interaction. The nta3− ligands extend the 1D double-chain into a 3D framework. In 2, one heptadentate nta3− ligand binds four Ag(I) ions and incorporates μ2-mapym ligand to link metal centers to form a 2D sheet which can be simplified to be a 103 net. Complex 3 features a 1D chain structure incorporating Hnta2− and monodentate dmapym ligands. The substituents on the pyrimidyl ring intensively influence the coordination environments of metal ion and the coordination modes of the carboxyl group, and thus determine the structures of the CPs. The photoluminescent properties of 1-3 were also investigated.  相似文献   

2.
A series of new diorganotin and triorganotin(IV) heterocyclicdicarboxylates [(nBu3Sn)2(2,5-pdc)] (1), {[(2-FC6H4CH2)3Sn]2(2,5-pdc)} (2), {[(2-ClC6H4CH2)3Sn]2(2,5-pdc)} (3), {[(4-CNC6H4CH2)3Sn]2(2,5-pdc)} (4), {[(4-ClC6H4CH2)3Sn]2(2,5-pdc)} (5), [(Ph)2Sn(2,6-pdc)(H2O)] (6), {[nBu3Sn(2,6-pdc)SnnBu3]2(H2O)2} · C2H3N (7) and {[Ph3Sn(2,3-pdz)SnPh3]2(H2O)} (8) have been obtained by reactions of diorganotin(IV) and triorganotin (IV) oxide with 2,6 or 2,5-H2pdc (pdc = pyridinedicarboxylate) or 2,3-H2pdz (pdz = pyrazinedicarboxylate). Complexes 1-8 were characterized by elemental, IR and NMR spectra analyses. The crystal and molecular structures of compounds 1, 6, 7 and 8 have been determined by X-ray single crystal diffraction. Compound 1 has 2D network structures. Compound 6 has 1D polymeric chain and 3D framework supramolecular structures due to the coordinated water molecules. Compound 7 has a monomeric structure, but the supramolecular structures are network.  相似文献   

3.
A new easily synthetic route with a 96% yield of ligand 2-(3,5-diphenyl-1H-pyrazol-1-yl)ethanol (L) is obtained. The reactivity of L against Pd(II), Zn(II) and Cu(II) leads to [PdCl2(L)2] (1), [ZnCl2(L)] (2) and [CuCl(L′)]2 (3) (L′ is the ligand L without alcoholic proton), respectively. According to the different geometries imposed by the metallic centre and the capability of L to present various coordination links, it has been obtained complexes with square planar (1 and 3) or tetrahedral (2) geometry and different nuclearity: monomeric (1 and 2) or dimeric (3). Complete characterisation by analytical and spectroscopic methods, resolution of L and 1-3 by single-crystal X-ray diffraction and magnetic studies for complex 3 are presented.  相似文献   

4.
The reaction of 2-(methylthioethanol) with 1,8-dichloroanthraquinone and 1,5-dichloroanthraquinone in THF with base produces 1,8-bis(2-methylthioethoxy)anthraquinone (1) and 1,5-bis(2-methylthioethoxy)anthraquinone (2), respectively. Silver(I) complexes of 1 and 2 have been synthesized after combination with [Ag(CH3CN)4]BF4 in 1:1 M ratio to yield, [(1,8-bis(2-methylthioethoxy)anthraquinone)Ag]BF4, (3) and [(1,5-bis(2-methylthioethoxy)anthraquinone)Ag·CH3CN]BF4, (4). X-ray crystal structures of the free ligand (1) and the Ag(I) complexes (3 and 4) are reported. The intraannular carbonyl group forms a coordinate-covalent bond with Ag(I) and, in the solid state, both silver(I) complexes are found as coordination polymers.  相似文献   

5.
In aqueous solution, the reaction of Cu(ClO4)2 and di(2-pyridylmethyl)amine, DPA with the disodium salt of pyrazole-3,5-dicarboxylate (Na2Hpzdc) in presence of sodium azide afforded the azido complex [Cu3(DPA)3(μ-pzdc)(μ-N3)](ClO4)2·2H2O (1) whereas when reaction was conducted in absence of sodium azide the perchlorato complex [Cu3(DPA)3(μ-pzdc)(μ-ClO4)](ClO4)2·3H2O (2) was obtained. The complexes were structurally characterized by physicochemical techniques and by single crystal X-ray crystallography in case of 1. The coordination sphere of the two complexes which are iso-structural polymeric 1D systems consist of three independent Cu(DPA) units, one pzdc bridging ligand and one end-on bridging azido group in 1 or one bridging perchlorato group in 2. The three Cu(II) centers in both complexes may be described as axially elongated octahedral. Magnetic susceptibility measurements reveal the weak anti-ferromagnetic coupling in the two complexes (= −23.2 cm−1 for 1 and −14.8 cm−1 for 2).  相似文献   

6.
The crystal structures of four Ag(I) and Hg(II) complexes of the ligand 1,4-bis(1-benzyl-benzimidazol-2-yl)cyclohexane (N-BBzBimCH) have been described, that is, [Hg2(N-BBzBimCH)Cl4] (1), [Hg(N-BBzBimCH)Br2] (2), [Ag(N-BBzBimCH)](NO3)(H2O) (3) and [Ag2(N-BBzBimCH)(CF3OCO)2] (4). All these compounds show 1D polymeric structures in the solid state. In complexes 1 and 4, the chloride ions and the trifluoroacetate groups bridge the [Hg2(N-BBzBimCH)Cl2] and [Ag2(N-BBzBimCH)] fragments, respectively, to generate 1D polymers. While the bromide ions in complex 2 and nitrate groups in complex 3 are only serving as terminal ligands to suffice the coordination geometry of the metal centers. In all cases, weak intermolecular interactions such as C-H?X (X = Cl, Br) contacts, hydrogen bonds, π-π interactions and C-H?π stacking play important roles to extend the 1D chain structures to 2D network. Solid state fluorescence of these compounds was also studied.  相似文献   

7.
The nuclearity, bonding and H-bonded networks of copper(I) halide complexes with thiophene-2-carbaldehyde thiosemicarbazones {(C4H3S)HC2N3-N(H)-C1(S)N1HR} are influenced by R substituents at N1 atom. Thiophene-2-carbaldehyde-N1-methyl thiosemicarbazone (HttscMe) or thiophene-2-carbaldehyde-N1-ethyl thiosemicarbazone (HttscEt) have yielded halogen-bridged dinuclear complexes, [Cu2(μ-X)21-S-Htsc)2(Ph3P)2] (Htsc, X: HttscMe, I, 1; Br, 2; Cl, 3; HttscEt, I, 4; Br, 5; Cl, 6), while thiophene-2-carbaldehyde-N1-phenyl thiosemicarbazone (HttscPh) has yielded mononuclear complexes, [CuX(η1-S-HttscPh)2] (X, I, 7a; Br 8; Cl, 9) and a sulfur bridged dinuclear complex, [Cu2(μ-S-HttscPh)21-S-HttscPh)2I2] 7b co-existing with 7a in the same unit cell. These results are in contrast to S-bridged dimers [Cu2(μ-S-Httsc)21-Br)2(Ph3P)2] · 2H2O and [Cu2(μ-S-Httsc)21-Cl)2(Ph3P)2] · 2CH3CN obtained for R = H and X = Cl, Br (Httsc = thiophene-2-carbaldehyde thiosemicarbazone) as reported earlier. The intermolecular CHPh?π interaction in 1-3 (2.797 Å, 1; 3.264 Å, 2; 3.257 Å, 3) have formed linear polymers, whereas the CHPh?X and N3?HCH interactions in 4-6 (2.791, 2.69 Å, 5; 2.776, 2.745 Å, 6, respectively) have led to the formation of H-bonded 2D polymer. The PhN1H?π, interactions (2.547 Å, 8, 2.599 Å, 9) have formed H-bonded dimers only. The Cu?Cu separations are 3.221-3.404 Å (1-6).  相似文献   

8.
Heterocyclic thioamides, namely, imidazolidine-2-thione (imdzSH), 1-methyl-1, 3-imidazoline-2-thione (mimzSH), thiazolidine-2-thione (tzdSH) and 2,4-dithiouracil (dtucH2) with silver(I)/copper(I) salts in presence of triphenyl phosphine (PPh3) have yielded complexes of different nuclearity: mononuclear, [Ag(η1-S-HL)(PPh3)2Cl] (HL = imdzSH 1, mimzSH 2, tzdSH 3), dinuclear, [Ag21-S-tzdSH)2(μ-S-tzdSH)2(PPh3)2](NO3)24, and polynuclear, {Cu(μ-S,S-dtucH2)(PPh3)2X} (X = Cl 5, Br 6, I 7). All complexes have been characterized using analytical data, IR and multinuclear NMR spectroscopy (1H, 13C and 31P) and single crystal X-ray crystallography. The thio-ligands are bonded to the metal centers as neutral sulfur donors. The geometry around each metal center is distorted tetrahedral. Complexes 5-7 represent first examples of polymers of 2,4-dithiouracil in its coordination chemistry with metal salts. The hydrogen bonding interactions lead to the formation of 1D (2, 3, 7) and 2D (1, 4-6) sheet structures.  相似文献   

9.
The hydrothermal reaction of ZnCl2 with 5-(4-pyridyl)tetrazole afforded the 2D metal-organic coordination framework [Zn(OH)(4-ptz)] (1) and the mononuclear complex [Zn(4-ptz)2(H2O)4]?2(H2O) (2) [4-ptz = 5-(4-pyridyl)-tetrazolate]. Compound 1 consists of a zig-zag bidimensional network formed by rectangular (4,4) grid sheets. Molecules of 2 form a 3D extended network of hydrogen bonding involving water molecules and the tetrazolate ligand. In addition, compound 1 exhibits strong fluorescence at room temperature in the solid state.  相似文献   

10.
The Schiff base benzaldehyde-N(4),N(4)-dimethylthiosemicarbazone (LH) and its complexes [Hg(NO3)(LH)2]NO3 (1), [Hg(L)2] (2), [Hg(LH)2(μ-X)2HgX2] [X = Cl (3), Br (4)], [HgI(LH)(μ-I)2HgI(LH)] (5) and [HgI2(LH)] (6) have been synthesized and characterized by IR, mass spectrometry, 1H and 13C NMR and by single crystal X-ray diffraction. All the complexes were obtained in ethanol and complex 2, in which the ligand is deprotonated, in addition needs the presence of basic medium. From mercury(II) iodide two complexes with the same molar ratio but with different structures were isolated. In all the complexes the ligand acts as a NS chelate, except in complex 5 in which is only S-donor. The coordination number of the mercury ion and the structures of the complexes depend on the counterion. Complexes 1, 2 and 6 are monomeric species but with different coordination spheres: N2S2O2 with a distorted octahedral arrangement in complex 1, and N2S2 or NSI2 in a pseudo-tetrahedral geometry in complexes 2 and 6, respectively. However, 3, 4 and 5 are binuclear complexes with two halido bridges, but they show two different structures. In 3 and 4, each mercury ion has a different environment giving an asymmetric structure, one is bonded to two NS-ligands and two halido bridges in a distorted octahedral geometry, and the other one has a tetrahedral environment formed by four halido ligands. In complex 5 both mercury ions are equivalent with a SI3 distorted tetrahedral coordination sphere, formed by one S-bonded ligand, one terminal iodido and two iodido bridges.  相似文献   

11.
Four Cd(II) metal-organic complexes, namely, [Cd(Cl)2(bbdmbm)] (1), [Cd(NO3)(N3)(bbdmbm)1.5] (2), [Cd(BBA)2(bbdmbm)(H2O)] (3), [Cd(DNBA)2(bbdmbm)] (4), (bbdmbm = 1,1-(1,4-butanediyl)bis(5,6-dimethylbenzimidazole), HBBA = 4-bromobenzoic acid, and HDNBA = 3,5-dinitrobenzoic acid) have been obtained from hydrothermal reactions of different Cd(II) salts with the mixed ligands of bbdmbm and five anions (Cl, NO3, N3, BBA and DNBA). Single crystal X-ray diffraction analyses reveal that the four complexes exhibit different structures. Complex 1 possesses a one-dimensional (1D) helical chain, which is finally extended into a two-dimensional (2D) supramolecular structure through π-π stacking interactions. Complex 2 shows a 1D ladderlike chain bridged by bbdmbm ligands with two kinds of coordination conformations. Complex 3 is a 1D coordination polymer and is ultimately extended into a 2D supramolecular network through H-bonding interactions. Complex 4 displays a dinuclear cluster, which is finally packed into a three-dimensional (3D) supramolecular framework through three kinds of π-π stacking interactions. The Cd(II) exhibits four different coordination modes in complexes 1-4, respectively. The results indicate that the anion ligands with different steric hindrance and size play important roles in the coordination modes of Cd(II) and construction of the title complexes, leading to the structural diversity. In addition, the conformations of bbdmbm ligand also show some effect on the final structures. Fluorescence properties of complexes 1-4 are reported in this paper.  相似文献   

12.
Six copper(I) complexes {[Cu2(L1)(PPh3)2I2] · 2CH2Cl2}n (1), {[Cu2(L2)(PPh3)2]BF4}n (2), [Cu2(L3)(PPh3)4I2] · 2CH2Cl2 (3), [Cu2(L4)(PPh3)4I2] (4), [Cu2(L5)(PPh3)2I2] (5) and [Cu2(L6)(PPh3)2I2] (6) have been prepared by reactions of bis(schiff base) ligands: pyridine-4-carbaldehyde azine (L1), 1,2-bis(4′-pyridylmethyleneamino)ethane (L2), pyridine-3-carbaldehyde azine (L3), 1,2-bis(3′-pyridylmethyleneamino)ethane (L4), pyridine-2-carbaldehyde azine (L5), 1,2-bis(2′-pyridylmethyleneamino)ethane (L6) with PPh3 and copper(I) salt, respectively. Ligand L1 or L2 links (PPh3)2Cu2(μ-I)2 units to form an infinite coordination polymer chain. Ligand 3 or 4 acts as a monodentate ligand to coordinate two copper(I) atoms yielding a dimer. Ligand 5 or 6 chelates two copper(I) atoms using pyridyl nitrogen and imine nitrogen to form a dimer. Complexes 1-4 exhibit photoluminescence in the solid state at room temperature. The emission has been attributed to be intraligand π-π* transition mixed with MLCT characters.  相似文献   

13.
Three Cd (II)-M (II) hetero-nuclear coordination polymers, [FeCd2(Hcit)2(H2O)2]n (1), [CoCd2(BTC)2(H2O)4]n (2) and [Cd3(Hcit)2(H2O)2]n (3) (H4cit = citric acid, H3BTC = 1,3,5-benzenetricarboxyl acid), were synthesized through hydrothermal method. They were characterized through elemental analysis, IR spectra, UV-Vis absorption spectra, X-ray powder diffraction, single-crystal X-ray diffraction and surface photovoltage spectra (SPS). Structural analysis indicates that 1 and 3 possess 2D structures, which are further connected to 3D structures by hydrogen bonds. 2 is a 3D Cd-Co coordination polymer bridged by BTC3− groups. The SPS show that 1 and 2 present positive photovoltage response in 300-550 nm, but the photovoltage response of 3 appears in 300-400 nm. It is indicated that the limits of SPS response bands of polymers 1 and 2 are wider than those of 3 because of introduction of the other transition metal ions. There is a good corresponding relationship between SPS and UV-Vis absorption spectra.  相似文献   

14.
Complexes [Cu(HSas)(H2O)] · 2H2O (H3Sas = N-(2-hydroxybenzyl)-l-aspartic acid) (1), [Cu(HMeSglu)(H2O)] · 2H2O (H3MeSglu = (N-(2-hydroxy-5-methylbenzyl)-l-glutamic acid) (2), [Cu2(Smet)2] (H2Smet = (N-(2-hydroxybenzyl)-l-methionine) (3), [Ni(HSas)(H2O)] (4), [Ni2(Smet)2(H2O)2] (5), and [Ni(HSapg)2] (H2Sapg = (N-(2-hydroxybenzyl)-l-aspargine) (6) have been synthesized and characterized by chemical and spectroscopic methods. Structural determination by single crystal X-ray diffraction studies revealed 1D coordination polymeric structures in 2 and 4, and hydrogen-bonded network structure in 5 and 6. In contrast to previously reported coordination compounds with similar ligands, the phenol remains protonated and bonded to the metal ions in 2 and 4, and also probably in 1. However, the phenolic group is non-bonded in 6.  相似文献   

15.
Assembly of N,N′-bis(4-picolinoyl)hydrazine (H2L) with cadmium nitrate in the presence of dicyanamide anion (dca) affords a new coordination polymer {[Cd(HL)(dca)] · (H2O)0.5}n (1), in which the [Cd(HL)]n layers are extended by dca bridges to result in a three-dimensional (3-D) coordination framework. The network structure of 1 has unusual (3,5)-connectivity and represents a new type of (4·62)(4·66·83) topology. Two such identical and complementary networks are entangled to generate a twofold parallel interpenetrating supramolecular lattice.  相似文献   

16.
Three silver complexes Ag2(L)2(NO3)2 (1), Ag2(L)2(SO3CF3)2(H2O)0.5 (2), and [Ag2(L)2(NO3)2]n (3) were prepared from molecular clips, 2,2′-Bis(imidazol-1-ylmethyl)-biphenyl (L) and structurally characterized to investigate the structural-luminescent relation. Compound 1 is a bimetallic supramolecular rectangle in which two L ligands are connected by two linearly coordinated Ag(I) ions. Compound 2 is described as a double helicate due to the nature of the twist of the imidazole groups after coordination to Ag(I) centers. In compound 3, the Ag(I) centers are connected by L ligands into a one-dimensional zigzag chain. Solid state and solution fluorescent measurements exhibit the presence of ligand-based emission at 415 and 435 nm of compounds 1 and 2, respectively. It is said that the dihedral angles between the two imidazole rings coordinated to one Ag(I) center affect the emission properties.  相似文献   

17.
Ten transition metal coordination complexes [Cu2(phen)(p-tpha)(μ-O)]n1, [Cu(m-tpha)(imH)2]n2, [Ni(5-Haipa)2(H2O)2]n3, [Ni(phen)2(H2O)2]·btc·[Ni(H2O)6]0.5·9H2O 4, [Co(2,5-pdc)(H2O)2]n·nH2O 5, [Co2(2,5-pdc)2(H2O)6]n·2nH2O 6, [Fe(2,5-Hpdc)2(H2O)2]·H2O 7, [Co(C6H4NO2)3]·H2O 8, [Fe22-btec)(μ2-H2btec)(bipy)2(H2O)2]n9, [Mn(phen)(2,5-pdc)(H2O)2]·H2O 10 (H4btec = 1,2,4,5-benzenetetracarboxylic acid, phen = 1,10-phenanthroline, 2,5-H2pdc = 2,5-pyridine-dicarboxylic acid, p-tpha = p-phthalic acid, m-tpha = m-phthalic acid, bipy = 2,2′-bipyridine, 5-H2aipa = 5-aminoisophthalic acid, imH = imidazole, H3btc = 1,3,5-benzenetricarboxylic acid) were synthesized through hydrothermal method. They were characterized by UV-Vis absorption spectra, single-crystal X-ray diffraction and surface photovoltage spectra (SPS). Structural analysis indicated that the complexes 1, 2, 3, 5, 6 and 9 were linked into infinite structures bridged by organic acid ligands. The other four complexes were molecular complexes and further connected to 2D or 3D structures by the hydrogen bonds. The SPS of complexes 1-10 indicate that there are positive response bands in the range of 300-800 nm showing different levels of photo-electric conversion properties. The intensity, position, shape and the number of the response bands in SPS are obviously different since the structure, species, valence, dn electrons configuration and coordinated environment of the center metals are different. There are good relationships between SPS and UV-Vis spectra.  相似文献   

18.
The dinuclear terephthalato-bridged nickel(II) complexes [Ni2(cyclen)2(μ-tp)](ClO4)2 (1) [Ni2(trpn)2(μ-tp)(H2O)2](ClO4)2 (2) and [Ni2(3,3,3-tet)2(μ-tp)(H2O)2](ClO4)2 · 2H2O (3), where tp = terephthalate dianion, cyclen = 1,4,7,10-tetraazacyclododecane, trpn = tris(3-aminopropyl)amine and 3,3,3-tet = 1,5,9,13-tetraazatridecane, were synthesized and structurally characterized by X-ray crystallography. Their magnetic susceptibilities were also determined at variable temperatures over the range 2-300 K. The structures of these complexes consist of μ-tp bridging two Ni(II) centers in a bis(bidentate) bonding fashion in 1 and in bis(monodentate) bonding fashion in 2 and 3. The coordination geometry around the Ni(II) ions in these compounds has a distorted octahedral geometry with four nitrogen atoms from the amine ligand (cyclen, trpn or 3,3,3-tet) and two coordinated oxygen atoms supplied by the chelated carboxylate group of the bridged terephthalate ligand in 1, and by one tp-carboxylate-oxygen in 2 and 3. The sixth coordination site in the last two complexes 2 and 3 is achieved via an oxygen atom from a coordinated water molecule. The intradimer Ni…Ni distances in these complexes are 10.740, 11.428 and 11.537 Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Ni(II) centers. Also, the analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(bidentate) and bis(monodentate) coordination modes for the bridged terephthalate ligand in 1, 2 and 3, respectively. Despite the different coordination modes of the tp bridging ligand in these complexes, they all exhibit very weak antiferromagnetic coupling. The coupling constants J were found to be −2.2, −0.6 and −1.5 cm3 K mol−1 for the complexes 1, 2 and 3, respectively. The structural and magnetic results of 1-3 are discussed in relation to the other related published μ-terephthalato dinuclear Ni(II) compounds.  相似文献   

19.
Two new pyrazole-derived ligands, 1-ethyl-3,5-bis(2-pyridyl)pyrazole (L1) and 1-octyl-3,5-bis(2-pyridyl)pyrazole (L2), both containing alkyl groups at position 1 were prepared by reaction between 3,5-bis(2-pyridyl) pyrazole and the appropriate bromoalkane in toluene using sodium ethoxide as base.The reaction between L1, L2 and [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) resulted in the formation complexes of formula [MCl2(L)] (M = Pd(II), L = L1 (1); M = Pd(II), L = L2 (2); M = Pt(II), L = L1 (3); M = Pt(II), L = L2 (4)). These complexes were characterised by elemental analyses, conductivity measurements, infrared, 1H, 13C{1H} NMR and HMQC spectroscopies. The X-ray structure of the complex [PtCl2(L2)] (4) was determined. In this complex, Npyridine and Npyrazole donor atoms coordinate the ligand to the metal, which complete its coordination with two chloro ligands in a cis disposition.  相似文献   

20.
Two novel cadmium(II) coordination polymers [Cd(pyip)(ox)]·H2O (1) and [Cd2(pyip)2(ox)2·(H2O)][Cd(pyip)(ox)]·4(H2O) (2) (pyip = 2-(pyridin-3-yl-1H-imidazo [4,5-f][1,10]phenanthroline, H2ox = oxalic acid), have been hydrothermal synthesized and characterized by single crystal X-ray diffraction. Compound 1 is 1D zigzag chain, in which oxalate anion as bridging ligand is responsible for the formation of the main framework and pyip as chelating ligand grafts on two sides of the zigzag chain. Compound 2 contains two kinds of independent polymers [Cd2(pyip)2(ox)2(H2O)] (A) and [Cd(pyip)(ox)] (B) to form an interdigitated 1D + 1D structure, in which polymers A and B are paratactically assembled in an ABCD sequence. The fundamental unit of polymer B in 2 is the same as that in 1. For compounds 1-2, weak interactions, primarily hydrogen bonding and π?π stacking interactions, have greatly influence on the supramolecular motifs recognized in the crystal packing. Especially, the oxalate anions as bridging ligand simultaneously adopt multiform coordination modes in two compounds. In addition, 1 and 2 displayed a strong fluorescent emission in the solid state at room temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号