首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The organotin complex [Ph3SnS(CH2)3SSnPh3] (1) was synthesized by PdCl2 catalyzed reaction between Ph3SnCl and disodium-1,3-propanedithiolate which in turn was prepared from 1,2-propanedithiol and sodium in refluxing THF. Reaction of 1 with Ru3(CO)12 in refluxing THF affords the mononuclear complex trans-[Ru(CO)4(SnPh3)2] (2) and the dinuclear complex [Ru2(CO)6(μ-κ2-SCH2CH2CH2S)] (3) in 20 and 11% yields, respectively, formed by cleavage of Sn-S bond of the ligand and Ru-Ru bonds of the cluster. Treatment of pymSSnPPh3 (pymS = pyrimidine-2-thiolate) with Ru3(CO)12 at 55-60 °C also gives 2 in 38% yield. Both 1 and 2 have been characterized by a combination of spectroscopic data and single crystal X-ray diffraction analysis.  相似文献   

2.
When the iron sulfide complexes (μ-Sx)[CpFe(CO)2]2 (x = 2, 3) are treated with O-alkyl oxalyl chlorides ROCOCOCl the complexes CpFe(CO)2SCOCO2R (1) [R = Me (a), Et (b)] are obtained. Similarly, the complexes CpFe(CO)2SeCOCO2R (2) are obtained from the analogous iron selenide (μ-Se)[CpFe(CO)2]2 reaction with the same reagents. Treatment of the iron selenide with half equivalent of oxalyl chloride produces the dimeric complex [CpFe(CO)2SeCO]2 (3). The new complexes, 1, 2 and 3, have been characterized by elemental analyses, IR and 1H NMR spectroscopy. The solid state structures of 1a, 2a, 3 and [CpFe(CO)2SCO]2 (4) were determined by an X-ray crystal structure analysis.  相似文献   

3.
New copper(II) clofibriates (clof, {2-(4-chlorophenoxy)-2-methylpropionic or 2-(4-chlorophenoxy)isobutyric acid}) of composition Cu(clof)2L2 (where L=2-pyridylmethanol (2-pymeth) (1), N-methylnicotinamide (Menia) (4), N,N-diethylnicotinamide (Et2nia) (5), isonicotinamide (isonia) (7) or methyl-3-pyridylcarbamate (mpc) (8)), [Cu(clof)2(4-pymeth)2(H2O)] · 2H2O (4-pymeth=4-pyridylmethanol) (2 · 2H2O) and Cu(clof)2L (where L=4-pymeth (3) or Et2nia (6)) have been prepared and spectroscopically characterized. All the Cu(clof)2L2 compounds seem to possess distorted octahedral copper(II) stereochemistry with differing tetragonal distortions. An X-ray analysis of 1 was carried out and it featured a tetragonal-bipyramidal geometry around the copper(II) atom. X-ray analysis of 2 · 2H2O featured a square-pyramidal geometry around copper(II) atom. Both the Cu(clof)2L compounds seem to consist of a binuclear unit of tetracarboxylate type bridging. An X-ray analysis of 6 revealed typical binuclear paddle-wheel type structure, consisting of two copper(II) atoms in square-pyramidal geometry bridged by four carboxylate anions in the xy-plane. All complexes under study were characterized by EPR and electronic spectroscopy. The antimicrobial effects have been tested on various strains of bacteria, yeasts and filamentous fungi.  相似文献   

4.
Reaction of [Rh(CO)2I]2 (1) with MeI in nitrile solvents gives the neutral acetyl complexes, [Rh(CO)(NCR)(COMe)I2]2 (R=Me, 3a; tBu, 3b; vinyl, 3c; allyl, 3d). Dimeric, iodide-bridged structures have been confirmed by X-ray crystallography for 3a and 3b. The complexes are centrosymmetric with approximate octahedral geometry about each Rh centre. The iodide bridges are asymmetric, with Rh-(μ-I) trans to acetyl longer than Rh-(μ-I) trans to terminal iodide. In coordinating solvents, 3a forms mononuclear complexes, [Rh(CO)(sol)2(COMe)I2] (sol=MeCN, MeOH). Complex 3a reacts with pyridine to give [Rh(CO)(py)(COMe)I2]2 and [Rh(CO)(py)2(COMe)I2] and with chelating diphosphines to give [Rh(Ph2P(CH2)nPPh2)(COMe)I2] (n=2, 3, 4). Addition of MeI to [Ir(CO)2(NCMe)I] is two orders of magnitude slower than to [Ir(CO)2I2]. A mechanism for the reaction of 1 with MeI in MeCN is proposed, involving initial bridge cleavage by solvent to give [Rh(CO)2(NCMe)I] and participation of the anion [Rh(CO)2I2] as a reactive intermediate. The possible role of neutral Rh(III) species in the mechanism of Rh-catalysed methanol carbonylation is discussed.  相似文献   

5.
The ligand exchange reaction of the anionic binuclear rhenium complexes (R = H (1) or Me (2)) has been studied with the carboxylic acids; benzoic acid (3, 4, and 5), fumaric acid (6), and terephthalic acid (7). The exchange with benzoic acid can be controlled by stoichiometry to one, two, or three substitutions. The doubly (4) and triply (5) substituted complexes represent new structural motifs for the triply bridged Re2(CO)6 unit. The dicarboxylic acids fumaric and terephthalic bridge two dirhenium centers. Crystal structure determinations have been carried out for the new complexes synthesized.  相似文献   

6.
The thermal reaction of Ru3(CO)12 with various carboxylic acids (benzoic, 4-hydroxyphenylacetic, ferrocenic, stearic, oleic, 4-(octadecyloxy)benzoic) in refluxing tetrahydrofuran, followed by addition of 5-(4-pyridyl)-10,15,20-triphenylporphyrin (L), gives the dinuclear complexes Ru2(CO)4(OOCR)2L2 (1: R = -C6H5, 2: R = -CH2-p-C6H4OH, 3: R = -C5H4FeC5H5, 4: R = -(CH2)16CH3, 5: R = -(CH2)7CHCH(CH2)7CH3, 6: R = -p-C6H4O(CH2)17CH3). Complexes 1-6 were characterised by IR, NMR, and ESI-MS as well as by elemental analysis. The UV-Vis spectra show the Soret band centred at 417 nm and the Q bands at 515, 550, 590 and 645 nm, respectively.  相似文献   

7.
Two new rhenium(IV) mononuclear compounds of formula NBu4[ReBr4(OCN)(DMF)] (1) and (NBu4)2[ReBr(OCN)2(NCO)3] (2) (NBu4 = tetrabutylammonium cation, OCN = O-bonded cyanate anion, NCO = N-bonded cyanate anion and DMF = N,N-dimethylformamide) have been synthesized and their crystal structures determined by single-crystal X-ray diffraction. 1 crystallizes in the monoclinic system with the space group P21/n, whereas 2 crystallizes in the triclinic one with as space group. In both complexes the rhenium atom is six-coordinated, in 1 by four Br atoms in the equatorial plane, and two trans-oxygen atoms, one of a DMF molecule and another one from a cyanato group, while in 2 by one bromide anion and five cyanate ligands, two of which are O-bonded and three N-bonded, forming a somewhat distorted octahedral surrounding. Magnetic susceptibility measurements on polycrystalline samples of 1 and 2 in the temperature range 1.9-300 K are interpreted in terms of magnetically isolated spin quartets with large values of the zero-field splitting (|2D| is ca. 41.6 and 39.2 cm−1 for 1 and 2, respectively).  相似文献   

8.
Treatment of [H(TMSO)][trans-RuCl4(TMSO)2] (1) with 2,2′-bipyridine (bpy) in ethanol at room temperature resulted an unknown mer-[RuCl3(TMSO)(bpy)] (3) and a known cis-[RuCl2(TMSO)4] (4) (TMSO =  tetramethylene sulfoxide) complexes. The 3 was obtained by the substitution with bpy in mer-[RuCl3(TMSO)3] (2), whereas 4 was obtained by one-electron reduction of 2, suggesting that 2 is a precursor for both 3 and 4. The structure of 3 was determined by single crystal X-ray diffraction. The reaction is a new synthetic procedure for 3 and/or 3 and 4 in mild reaction conditions from the anionic complex 1. It involves simultaneous substitution and redox reaction. This is the first known example of precisely characterized Ru(III)-chloride-TMSO-bpy-complex derived from anionic [H(TMSO)][trans-RuCl4(TMSO)2] at room temperature.  相似文献   

9.
A synthetic and mechanistic study is reported on ligand substitution and other reactions of six-coordinate ruthenium(II) carbonyl complexes containing tridentate PhP(CH2CH2CH2PCy2)2 (Cyttp). Carbonylation of cis-mer-Ru(OSO2CF3)2(CO)(Cyttp) (1) affords [cis-mer-Ru(OSO2CF3)(CO)2(Cyttp)]O3SCF3 (2(O3SCF3)) and, on longer reaction times, [cis-mer-Ru(solvent)(CO)2(Cyttp)](O3SCF3)2 (solvent = acetone, THF, methanol). 2(O3SCF3) reacts with each of NaF, LiCl, LiBr, NaI, and LiHBEt3 to yield [cis-mer-RuX(CO)2(Cyttp)]+ (X = F (3), Cl (4), Br (5), I (6), H (7)), isolated as 3-7(BPh4). These conversions proceed with high stereospecificity to afford only a single isomer of the product that is assigned a structure in which the Ph group of Cyttp points toward the CO trans to X (anti when X = F, Cl, Br, or I; syn when X = H). Treatment of 2(O3SCF3) with NaOMe and CO generates the methoxycarbonyl complex [cis-mer-Ru(CO2Me)(CO)2(Cyttp)]+ (8), whereas addition of excess n-BuLi to 2(O3SCF3) in THF under CO affords mer-Ru(CO)2(Cyttp) (9). The two 13C isotopomers [cis-mer-Ru(OSO2CF3)(CO)(13CO)(Cyttp)]O3SCF3 (2′(O3SCF3): 13CO trans to PC; 2″(O3SCF3): 13CO cis to all P donors) were synthesized by appropriate adaptations of known transformations and used in mechanistic studies of reactions with each of LiHBEt3, NaOMe/CO, and n-BuLi. Whereas LiHBEt3 reacts with 2′(O3SCF3) and 2″(O3SCF3) to replace triflate by hydride without any scrambling of the carbonyl ligands, the corresponding reactions of NaOMe-CO are more complex. The methoxide combines with the CO cis to triflate in 2, and the resultant methoxycarbonyl ligand ends up positioned trans to the incoming CO in 8. A mechanism is proposed for this transformation. Finally, treatment of either 2′(O3SCF3) or 2″(O3SCF3) with an excess of n-BuLi leads to the formation of the same two ruthenium(0) isomers of mer-Ru(CO)(13CO)(Cyttp). These products represent, to our knowledge, the first example of a syn-anti pair of isomers of a five-coordinate metal complex.  相似文献   

10.
Palladium(II) and platinum(II) complexes with N-alkylpyridylpyrazole-derived ligands, 2-(1-ethyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L1) and 2-(1-octyl-5-phenyl-1H-pyrazol-3-yl)pyridine (L2), cis-[MCl2(L)] (M = Pd(II), Pt(II)), have been synthesised. Treatment of [PdCl2(L)] (L = L1, L2) with excess of ligand (L1, L2), pyridine (py) or triphenylphosphine (PPh3) in the presence of AgBF4 and NaBPh4 produced the following complexes: [Pd(L)2](BPh4)2, [Pd(L)(py)2](BPh4)2 and [Pd(L)(PPh3)2](BPh4)2. All complexes have been characterised by elemental analyses, conductivity, IR and NMR spectroscopies. The crystal structures of cis-[PdCl2(L2)] (2) and cis-[PtCl2(L1)] (3) were determined by a single crystal X-ray diffraction method. In both complexes, the metal atom is coordinated by one pyrazole nitrogen, one pyridine nitrogen and two chlorine atoms in a distorted square-planar geometry. In complex 3, π-π stacking between pairs of molecules is observed.  相似文献   

11.
Thiocarbonate ruthenium complexes of the form CpRu(L)(L′)SCO2R (L = L′ = PPh3 (1), 1/2 dppe (2), L = PPh3, L′ = CO (3); R = Et (a), Bun (b), C6H5 (c), 4-C6H4NO2 (d)) have been synthesized by the reaction of the corresponding sulfhydryl complexes, CpRu(L)(L′)SH, with chloroformates, ROCOCl, at low temperature. The bis(triphenylphosphine) complexes 1 can be converted to 3 under CO atmosphere. The crystal structures of CpRu(PPh3)2SCO2Bun (1b), CpRu(dppe)SCO2Bun (2b), and CpRu(PPh3)(CO)SCO2Bun (3b) are reported.  相似文献   

12.
Substitution of thf ligands in [Cr(thf)3Cl3] and [Cr(thf)2(OH2)Cl3] was investigated. 2,2′-Bipyridine (bipy) was reacted with [Cr(thf)3Cl3] to form [Cr(bipy)(thf)Cl3] (1), which was subsequently reacted with water to give [Cr(bipy)(OH2)Cl3] (2). Reaction of 1 with acetonitrile (CH3CN), pyridine (py) and pyridine derivatives to form [Cr(bipy)(L)Cl3] (L = CH3CN 3, py 4 and 4-pyR with R = NH25, But6 and Ph 7). In addition, the substitution of bipy in [Cr(thf)3Cl3] was followed by 1H NMR spectroscopy at room temperature, which showed completion of the reaction in ca. 100 min. Complex 2 was characterised by single crystal X-ray diffraction. The theoretical powder diffraction pattern of 2 was compared to the experimentally obtained powder X-ray diffraction pattern, and shows excellent agreement. The dimer [Cr2(bipy)2Cl4(μ-Cl)2] was cleaved asymmetrically to give the anionic complex [Cr(bipy)Cl4] (8) and [Cr(bipy)2Cl2]+ (9). Complexes 8 and 9 were characterised by single crystal X-ray diffraction.  相似文献   

13.
Trityl borate salts [4-RPyCPh3][B(C6F5)4] (R = H 1, tBu 2, Et 3, NMe24) and [R3PCPh3][B(C6F5)4] (R = Me 5, nBu 6, Ph[1] 7, p-MeC6H48) are readily prepared via equimolar reaction of the appropriate pyridine or phosphine and trityl borate [CPh3][B(C6F5)4]. The analogous reactions of PiPr3 affords the product [(p-iPr3P-C6H4)Ph2CH][B(C6F5)4] (9) while the corresponding reactions of Cy3P and tBu3P gave the cyclohexadienyl derivatives [(p-R3PC6H5)CPh2][B(C6F5)4] (R = Cy 10, tBu 11). X-ray structures of 5 and 9 are reported.  相似文献   

14.
The iron hydrido complex HFe(CO)2{P(OPh)3}{(PhO)2POC6H4} (1), was rapidly deprotonated by DBU or [BzMe3N][OH] in THF to afford the new carbonyl iron anion [Fe(CO)2{P(OPh)3}{(PhO)2POC6H4}] ([2]), containing an ortho-metallated triphenyl phosphite ligand. Complex [2] reacted with triorganostannyl and plumbyl salts and with halogens to give the octahedral FeII compounds Fe(CO)2{P(OPh)3}{(PhO)2POC6H4}(X) (X=SnPh3, 3; SnMe3, 4; PbPh3, 5; PbMe3, 6; Cl, 7; Br, 8; I, 9). The Group 14 complexes 3-6 were obtained in one isomeric form in which the PIII-donor atoms are mutually cis, the carbonyl ligands are cis and the P(OPh)3 and MR3 (M=Sn, Pb; R=Ph, Me) groups are trans as determined by solution-state IR, 31P and 13C NMR spectroscopic data. This geometry was confirmed for 3 by a single crystal X-ray diffraction study. The halide complexes, however, were obtained as a mixture of isomers. The major isomer (7, X=Cl; 8a, X=Br; 9a, X=I) has cis P atoms, trans CO groups and the halide located trans to the phosphorus atom of the ortho-metallated phosphite ligand. The structure of 9a was confirmed by an X-ray diffraction study. Two other isomers, designated 8b (X=Br) and 9b (X=I), with cis P atoms and cis CO groups were isolated from the reactions of [2] with Br2 and I2, respectively. The structure of the latter was established by X-ray crystallography and is related to 9a by exchange of the P(OPh)3 ligand and a carbonyl group such that the metal-bound C atom of the five-membered metallacycle is trans to CO. The stereo-geometry of 8b could not be unambiguously assigned from the spectroscopic data; however, two of the seven possible geometric isomers were suggested as plausible structures.  相似文献   

15.
The meta-diaminoaryl ferrocenes Fc-NCN-H (3) and Fc-CC-NCN-H (5) (Fc = (η5-C5H5)(η5-C5H4)Fe, NCN-H = C6H3(CH2NMe2)2-3,5) can be used as precursors in the preparation of heterobimetallic transition metal complexes of structural type Fc-NCN-MX (NCN = [C6H2(CH2NMe2)2-2,6]; MX = PdCl (7), PtCl (8), PtI (9)) and Fc-CC-NCN-MX (MX = PdCl (11), PdI (12), PtCl (13)), respectively. They are accessible by applying different synthesis procedures, including oxidative addition and metallation-transmetallation processes.Cyclovoltammetric studies show that the ferrocene moieties in 3, 5, 7-9 and 11-13 can reversibly be oxidised. The potential of the Fe(II)/Fe(III) redox couple decreases with increasing electron density at the NCN pincer unit. The use of 8 as a possible (electro)chemical sensor in the detection of SO2 is discussed as well.The solid-state structures of 8 and 13 are reported. The crystals of 8 contain two molecules of 8 in the asymmetric unit. The plane of the C6H2 moiety is with 27.2(3)° and 38.2(3)° tilted towards the C5H4 entity, while in 13 an angle of 45.9(3)° can be found. The d8-electron configured platinum atoms possess a somewhat distorted square-planar surrounding, setup by two Me2NCH2ortho-substituents, the NCN Cipso carbon atom and the chloride ligand.  相似文献   

16.
Reaction of Mo2(O2CCH3)2(DMepyF)2 (HDMepyF=N,N-di(6-methyl-2-pyridyl)formamidine) with HBF4 in CH2Cl2/CH3CN afforded the complex trans-[Mo2(H2DMepyF)2(CH3CN)4](BF4)6 (1), which crystallized in two forms, trans-[Mo2(H2DMepyF)2(CH3CN)4](ax-CH3CN)2(BF 4)6 · 2CH3CN (1a), and trans- [Mo2(H2DMepyF)2(CH3CN)4](ax-BF4) 2(BF4)4 · 2CH3CN (1b). The molecular structures of complexes (1) consist of two quadruply bonded molybdenum atoms, which are spanned by two trans-bridging formamidinate ligands and coordinated by four trans-CH3CN. Each H2DMepyF+ ligand adopts an s-cis,s-cis- conformation. The difference between 1a and 1b is that complex 1a contains two CH3CN molecules as axial ligands, while 1b contains two BF4 anions as axial ligands. Complex 1 is the first dimolybdenum complex containing a pair of trans bridging ligands and two pairs of trans-CH3CN ligands.  相似文献   

17.
The new aryl phosphinites PPh2OR (R = 2,4,6-Me3C6H2, 1; R = 2,6-Ph2C6H3, 2) have been prepared from chlorodiphenylphosphine and the corresponding phenols. In these ligands, the ortho-positions of the aromatic phosphite function are blocked by methyl and phenyl substituents, which allows coordination to metal centres without ortho-metallation. Thus, reaction with [PdCl2(cod)] leads to the complexes trans-[PdCl2(PPh2OR)2] (R = 2,4,6-Me3C6H2, 3; R = 2,6-Ph2C6H3, 4), while the reaction with [Rh2(CO)4Cl2] gives trans-[Rh(CO)Cl(PPh2OR)2] (R = 2,4,6-Me3C6H2, 5; R = 2,6-Ph2C6H3, 6). The single-crystal X-ray structure analyses of 3 and 5 confirm the trans-coordination of the new ligands in these square-planar complexes.  相似文献   

18.
Two new complexes, {[MnAu2(CN)4(NITpPy)2(H2O)2]}n (1) and {[Co(N(CN)2)2(NITpPy)2(H2O)2]}n (2), have been synthesized and characterized. The single-crystal X-ray analysis for the complexes 1 and 2 demonstrates that each M(II) (M = Mn or Co) ion assumes a distorted octahedral MN4O2 coordination polyhedron. Four nitrogen atoms come from the cyanide groups and the pyridyl rings in a common plane, and two oxygen atoms come from the H2O molecules in trans-positions. The structures of complexes 1 and 2 illustrate that aurophilicity and/or hydrogen bonding interactions play important roles in increasing dimensionality. Magnetic investigations on complexes 1 and 2 show the presence of weak antiferromagnetic interactions.  相似文献   

19.
It was found that the lanthanide diiodides LnI2 (1) (Ln = Nd, Sm, Eu, Dy, Tm, Yb) are dissolved in isopropylamine (IPA) without redox transformations. Stability of the formed solutions decreases in a row Eu ≈ Yb > Sm > Tm > Dy > Nd. Removing of a solvent in vacuum leaves complexes LnI2(IPA)x (2) (Nd, x = 5; Sm, Eu, Dy, Tm, Yb, x = 4) as crystalline colored solids. Stability of 2-Nd,Dy,Tm is higher than that of known THF or DME coordinated salts. Divalent state of metal in the products is confirmed by data of UV-Vis spectroscopy, magnetic measurements and their chemical behavior. Structure of 2-Eu and 2-Tm was established by X-ray diffraction analysis. Oxidation of 2-Nd,Dy in IPA affords amine-amides (PriNH)Ln(IPA)y (3) (Nd, y = 4; Dy, x = 3). n-Propylamine also dissolves the iodides 1-Sm,Eu,Dy,Tm,Yb but stability of the solutions is significantly lower. 1-Nd vigorously reacts with PrnNH2 even at −30 °C which hampers the formation of the solution.  相似文献   

20.
The reaction of 2-(2-aminophenyl)benzothiazole (Habt) with [Re(CO)5Br] led to the isolation of the rhenium(I) complex fac-[Re(Habt)(CO)3Br] (1). With trans-[ReOCl3(PPh3)2], the ligand Habt decomposed to form the oxofree rhenium(V) complex [Re(itp)2Cl(PPh3)] (2) (itp = 2-amidophenylthiolate). From the reaction of trans-[ReOBr3(PPh3)2] with 2-(2-hydroxyphenyl)benzothiazole (Hhpd) the complex [ReVOBr2(hpd)(PPh3)] (3) was obtained. Complexes 1-3 are stable and lipophilic. 1H NMR and infrared assignments, as well as the X-ray crystal structures, of the complexes are reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号