首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactions of CoCl2 with three equivalents of 2-(phenylimino)pyrrolyl sodium salts, performed under a nitrogen atmosphere, lead to the formation of the Co(III) complexes [Co(κ2N,N′-NC4H3C(H)N-C6H5)3] (2a), [Co(κ2N,N′-NC4H3C(CH3)N-C6H5)3] (2b) and [Co(κ2N,N′-NC16H9C(H)N-C6H5)3] (2c), accommodating three chelating iminopyrrolyl ligands. Complexes 2a-c were obtained in moderate yields, and their characterisation by 1H, 13C NMR and X-ray diffraction show they are diamagnetic and have an octahedral geometry about the cobalt centre, respectively. Uncharacterised products were obtained in the same reaction involving ligand precursors such as 2-(2,6-dimethylphenylimino)pyrrolyl sodium salts, which is attributed to a greater steric hindrance in the coordination of three of these bulkier ligands. The redox behaviour of complexes 2a-c shows an irreversible reduction wave with a peak potential in the range −3.2 to −3.7 V. Upon reduction, the complexes decompose giving rise, in the case of 2a, to a redox pattern compatible with the formation of [Co(κ2N,N′-NC4H3C(H)N-C6H5)2].  相似文献   

2.
Transmetallation reactions of ortho-mercurated iminophosphoranes (2-ClHgC6H4)Ph2PNR with [AuCl4] gives new cycloaurated iminophosphorane complexes of gold(III) (2-Cl2AuC6H4)Ph2PNR [R = (R,S)- or (S)-CHMePh, p-C6H4F, tBu], characterised by NMR and IR spectroscopies, ESI mass spectrometry and an X-ray structure determination on the chiral derivative R = (S)-CHMePh. The chloride ligands of these complexes can be readily replaced by the chelating ligands thiosalicylate and catecholate; the resulting derivatives show markedly higher anti-tumour activity versus P388 murine leukaemia cells compared to the parent chloride complexes. Reaction of (2-Cl2AuC6H4)Ph2PNPh with PPh3 results in displacement of a chloride ligand giving the cationic complex [(2-Cl(PPh3)AuC6H4)Ph2PNPh]+, indicating that the PN donor is strongly bonded to the gold centre.  相似文献   

3.
A series of new five-coordinate acyl vinyl cobalt(III) complexes Co{η1-C(CCPh)CHPh}[C(O)CCO] L2(L = PMe3) (6-10) were prepared via formal insertion of diphenylbutadiyne into Co-H function of mer-octahedral hydrido-acyl(phenolato)-cobalt(III) complexes. The complexes are diamagnetic. One square pyramidal structure of complex 6 was confirmed by X-ray diffraction analysis. These complexes are stable in solid state. In solution, six-coordinate acyl vinyl carbonyl cobalt(III) complex 11 is approved through the reaction of complex 7 with CO and the structure of complex 11 was determined by X-ray method.  相似文献   

4.
The reactions of either [RhCl(C8H14)2]2 (2) or [RhCl(C2H4)2]2 (3) with Schiff-bases 1a-d derived from 2-aminopyridine afford, in the presence of four equivalents of PiPr3, the octahedral chloro(hydrido)rhodium(III) complexes [{(C5H4N)NC(C6H4R)}RhHCl(PiPr3)2] (4a-d) in which the metalated Schiff-base behaves as a chelating ligand. Treatment of 4a (RH) with NaI and CF3SO3Tl produce the corresponding derivatives [{(C5H4N)NC(C6H5)}RhHX(PiPr3)2] (5, 6) by salt metathesis. The triflato compound 6 reacts with nBu4NF · xH2O to give [{(C5H4N)NC(C6H5)}RhHF(PiPr3)2] (7). While attempts to eliminate HCl from 4a failed, the reaction of 4a with AgPF6 generates the five-coordinate cationic complex [{(C5H4N)NC(C6H5)}RhH(PiPr3)2]PF6 (8) which adds one equivalent of acetonitrile to give [{(C5H4N)NC(C6H5)}RhH(NCCH3)(PiPr3)2]PF6 (9). Treatment of 4a with either nBu2Mg or LiAlH4 affords the dihydridorhodium(III) compound [{(C5H4N)NC(C6H5)}RhH2(PiPr3)2] (10) being also accessible from 8 and nBu2Mg.  相似文献   

5.
Cobalt(III) complexes with new open chain oxime ligands: N,N′-bis(2-hydroxyiminopropionyl)-1,2-aminoethane (H2pen) and N,N′-bis(2-hydroxyiminopropionyl)-1,3-diaminopropane (H2pap) have been investigated. Single crystals of Co(papH−1)(Im2)·CH3OH (1) and Co(papH−1)(MEA)2·1.5H2O (2) (where Im = imidazole, MEA = monoethanolamine) suitable for X-ray crystallography were grown by slow evaporation of methanol/water solutions at room temperature. The molecular structures have been determined using single-crystal X-ray diffraction methods. The potentiometric and spectrophotometric results in aqueous solution reveal that both of the open chain ligands show a very high efficacy in the coordination of Co(II) ions. As it has been indicated, differences between the two oxime ligands in complexing ability may be attributed to the longer -CH2- chain in H2pap and by that a better fit of the relatively large Co(II) ion to the accessible binding site. One of the complex species confirmed under inert atmosphere, namely of type Co(LH−1) (where L = pap or pen), has been shown as the “active” form, capable of dioxygen uptake followed by irreversible oxidation to Co(III).  相似文献   

6.
The complex [(NH3)5CoO3SCF3](CF3SO3)2 reacts with excess NaNCO in warm acetone solution to give, stereoselectively, a Schiff base complex (40%) which has been characterized by standard NMR techniques as one of the six isomers of [Co{NH2C(CH3)2CH2C(CH3)=NH}2(NH3)NCO](ClO4)2 · H2O, confirmed by a single crystal X-ray structural analysis. Schiff base formation in non-basic conditions for kinetically inert Co(III) complexes is unprecedented. Also, this is only the second cyanate complex of pentaaminecobalt(III) to be structurally characterized (CoNCO: Co–N, 1.908 Å; N–C, 1.152 Å; C–O, 1.206 Å; Co–N–C, 170°; N–C–O, 177°).  相似文献   

7.
The synthesis of bis-cyclometalated [Ir(ptpy)2(gly-gly-OEt)] (2, ptpy = 2-(p-tolyl)pyridinato; gly-gly-OEt = glycylglycine ethyl ester) and [Ir(ptpy)2(gly-gly-gly-OEt)] (3, gly-gly-gly-OEt = glycylglycylglycine ethyl ester) from the reaction of [{Ir(μ-Cl)(ptpy)2}2] (1) with the corresponding peptide ester hydrochlorides in the presence of NaOMe is described. The molecular structure of 2 was confirmed by a single-crystal X-ray diffraction study. The compound crystallized from dichloromethane/iso-hexane in the space group P21/a. In the crystal packing the molecules of 2 exhibit N–H?O hydrogen bonds to the neighbor molecules to form dimeric units. The absorption and emission spectra of 2 and 3 were recorded and exhibit these compounds as strong green-emitting complexes.  相似文献   

8.
The electrophoretic migration behavior of acid-sensitive cationic alkylcobalt(III) complexes with tridentate Schiff bases and amines as well as that of related ‘inorganic’ cobalt(III) chelates with tridentate and tetradentate Schiff bases was studied. A correlation of the electrophoretic mobility of the organocobalt complexes in question with their structure was established. An attempt to optimize the analytical procedures for capillary electrophoretic separation of these rather labile complex cations is outlined. Their decomposition in solutions under ambient conditions was surveyed using this technique.  相似文献   

9.
Octahedral cis-Fe(CH3)2{2-(benzoyl)pyridyl-N,O}(PMe3)2 (1), square-pyramidal Co(CH3){2-(benzoyl)pyridyl-N,O}(PMe3)2 (2), and triangular-planar Ni{2-(benzoyl)pyridyl-η2-C,O}(PMe3)2 (3) have been synthesized by reaction of 2-benzoylpyridine with thermally labile Fe(CH3)2(PMe3)4 and Co(CH3)(PMe3)4 complexes. With Ni(CH3)2(PMe3)3, reductive elimination of ethane is observed when a η2-C,O-coordination is constituted. The complexes were investigated by NMR spectroscopic methods and the molecular structures of 1 and 2 were determined by X-ray crystallography.  相似文献   

10.
Four cobalt(III) polypyridyl complexes, [Co(phen)3−n(dpq)n]3+ (phen = 1,10-phenanthroline, dpq = dipyrido[3,2-f:2′,3′-h]-quinoxaline) (n = 0, 1, 2, and 3) were synthesized and the influences of the dpq ligand on the photophysical properties, electrochemical properties, DNA binding affinities, as well as photonuclease activities of the complexes, were examined in detail. The presence of dpq ligand increases the DNA binding affinities of the corresponding complexes remarkably with respect to [Co(phen)3]3+. With the sequential substitution of phen ligand by dpq ligand, the 1O2 quantum yields of the corresponding complexes are enhanced greatly. As a result, the photonuclease activities follow the order of [Co(dpq)3]3+ > [Co(phen)(dpq)2]3+ > [Co(phen)2(dpq)]3+ ? [Co(phen)3]3+. It was found all the examined complexes can generate OH upon UV irradiation, and OH is also involved in DNA photocleavage as reactive oxygen species.  相似文献   

11.
Rac.-p-(tris(2-aminoethyl)amine-2-(nitromethyl)ornithine)cobalt(III) trichloride (2d) was obtained by a simple three-step procedure from ornithine using cobalt template chemistry. p-(Tris(2-aminoethyl)amine-ornithine)cobalt(III) trichloride (2a) was obtained from tris(2-aminoethyl)amine (tren) and (S)-ornithine in the presence of cobalt(II), which was oxidised to cobalt(III) during the reaction. Complex 2a was selectively oxidised with thionyl chloride-dimethyl formamide to p-(tris(2-aminoethyl)amine-dehydro-ornithine)cobalt(III) trichloride 2b. Complex 2c, in which reaction of thionyl chloride-dimethyl formamide has also occurred at the δ-amine of ornithine, was obtained at longer reaction times. Complex 2b reacted with nitromethane anion to give rac.-p-(tris(2-aminoethyl)amino-2-(nitromethyl)ornithine)cobalt(III) trichloride (2d). The amino acid rac.-2-(nitromethyl)ornithine (1b) was released by reducing complex 2d with aqueous ammonium sulfide. Complex 2d was expected to release 2-(nitromethyl)ornithine (1b) in hypoxic cells, where the amino acid could act as an inhibitor of ornithine decarboxylase. Preliminary data indicated that complex 2d was weakly cytotoxic in one cell type studied.  相似文献   

12.
Binuclear lanthanide(III) compounds are of great interest because of the potential of their mutual Ln(3+)-Ln(3+) electronic couplings to produce unusually sharp images in magnetic resonance and fluorescence imaging of biological tissue. The toxicity and neuropharmacological properties of the water soluble and stable neutral binuclear complex [La(api)](2) were compared with those of binuclear complexes with lower water stability, and the components used in their syntheses. The order of the 24-h LD(50) (mg/kg body wt.) of the compounds in mice was: salicylaldehyde (2.24)160). These compounds induced convulsions, urination and defecation in mice. Due to the relatively very low toxicity of [La(api)](2), its mode of action was explored. Its proconvulsant action may possibly involve an interaction of undissociated complex with muscarinic receptors, and is reversed by atropine.  相似文献   

13.
Dichloroplatinum complexes [PtCl2L2] (L2 = cod, dppp) react with 1,2-C6H4E2 (E = O, S) in the presence of a base to produce mononuclear complexes. The diene was not readily displaced from [Pt(E2C6H4-EE)(cod)]. A second approach to complexes containing dianionic chelating ligands involved [Pt(acac)2] as precursor. Reaction with dppp and oxalic acid gave [Pt(C2O4)(dppp)], whereas the analogous reaction with Ph2PCCPPh2 produced the bimetallic complex [Pt(C2O4-OO)(μ-Ph2PCCPPh2)]2. Similar reactions with 1,2-C6H4E2 (E = O, S) also gave bimetallic products. The structures of [Pt(C2O4)(dppp)] and [Pt(C2O4-OO)(μ-Ph2PCCPPh2)]2 have been determined by X-ray crystallography.  相似文献   

14.
Four 2-acetylpyridine 4N-alkyl thiosemicarbazones, and their Ga(III) and In(III) complexes have been prepared and characterised by fluorescence, UV-Vis, IR, 1H and 13C NMR spectroscopy, mass spectrometry and X-ray crystallographic analysis. Comparison of the crystal structures gave an insight into the nature of the complexes formed, demonstrating a preference for [ML2]+ type complexes with gallium and [MLX3] species with indium. Stability studies on two candidates indicated that complex [InL3Cl2MeOH] was stable to chemical degradation for prolonged periods in human serum, giving this complex potential for further biological evaluation.  相似文献   

15.
The synthesis of bis-cyclometalated aminocarboxylato complexes [M(α-aminocarboxylato)(ptpy)2] (M = Rh, 3, 4, 5; M = Ir, 6, 7, 8), ptpy = 2-(p-tolyl)pyridinato; aminocarboxylato = glycinato, l-alaninato, l-prolinato) from [{M(μ-Cl)(ptpy)2}2] (M = Rh, 1; M = Ir, 2) is described. The molecular structure of [Ir(l-alaninato)(ptpy)2] (7) was confirmed by a single-crystal X-ray diffraction study. Compound 7 crystallized from methanol-iso-hexane in the space group P21. For 7 the two diastereoisomers ΔIr, SC and ΛIr, SC were found crystallizing twice per unit. Absorption and emission spectra were recorded. The rhodium compounds are weak yellow-green and the iridium species strong green emitters.  相似文献   

16.
Reactions of labile [MCl3(PPh3)2(NCMe)] (M = Tc, Re) precursors with 1H-benzoimidazole-2-thiol (H2L1), 5-methyl-1H-benzoimidazole-2-thiol (H2L2) and 1H-imidazole-2-thiol (H2L3), in the presence of PPh3 and [AsPh4]Cl gave a new series of trigonal bipyramidal M(III) complexes [AsPh4]{[M(PPh3)Cl(H2L1-3)3]Cl3} (M = Re, 1-3; M = Tc, 4-6). The molecular structures of 1 and 3 were determined by X-ray diffraction. When the reactions were carried out with benzothiazole-2-thiol (HL4) and benzoxazole-2-thiol (HL5), neutral paramagnetic monosubstituted M(III) complexes [M(PPh3)2Cl2(L4,5)] (M = Re, 8, 9; M = Tc, 10, 11) were obtained. In these compounds, the central metal ions adopt an octahedral coordination geometry as authenticated by single crystal X-ray diffraction analysis of 8 and 11. Rhenium and technetium complexes 1, 4 and rhenium chelate compounds 8, 9 have been also synthesized by reduction of [MO4] with PPh3 and HCl in the presence of the appropriate ligand. All the complexes were characterized by elemental analyses, FTIR and NMR spectroscopy.  相似文献   

17.
The preparation and variable temperature-magnetic investigation of three squarate-containing complexes of formula [Fe2(OH)2(C4O4)2(H2O)4]·2H2O (1) [Cr2(OH)2(C4O4)2(H2O)4]·2H2O (2) and [Co(C4O4)(H2O)4]n (3) [H2C4O4 = 3.4-dihydroxycyclobutene-1,2-dione (squaric acid)] together with the crystal structures of 1 and 3 are reported. Complex 1 contains discrete centrosymmetric [Fe2(OH)2(C4O4)2(H2O)4] diiron(II) units where the iron pairs are joined by a di-μ-hydroxo bridge and two squarate ligands acting as bridging groups through adjacent oxygen atoms. Two coordinated water molecules in cis position complete the octahedral environment at each iron atom in 1. The iron-iron distance with the dinuclear unit is 3.0722(6) Å and the angle at the hydroxo bridge is 99.99(7)°, values which compare well with the corresponding ones in the isostructural compound 2 (2.998 Å and 99.47°) whose structure was reported previously. The crystal structure of 3 contains neutral chains of squarato-O1,O3-bridged cobalt(II) ions where four coordinated water molecules complete the six-coordination at each cobalt atom. The cobalt-cobalt separation across the squarate bridge is 8.0595(4) Å. A relatively important intramolecular antiferromagnetic coupling occurs in 1 whereas it is very weak in 2, the exchange pathway being the same [J = −14.4 (1) and −0.07 cm−1 (2), the spin Hamiltonian being defined as ]. A weak intrachain antiferromagnetic interaction between the high-spin cobalt(II) ions occurs in 3 (J = −0.30 cm−1). The magnitude and nature of these magnetic interactions are discussed in the light of their respective structures and they are compared with those reported for related systems.  相似文献   

18.
Six antimony adducts with N-donor neutral ligands (1,10-phenanthroline, 4,4′-bipyridine) have been obtained following the reaction of antimony halides with phenanthroline and 4,4′-bipyridine. By changing the solvent and stoichiometry, we obtained six different complexes, Sb(phen)Cl3 (1), Sb(phen)Br3 (2), Sb2(phen)4Br8 (3) and Sb(bpy)Cl3 (4), Sb(bpy)2Cl3 (5), Sb(bpyH · bpyH2)Br6 (6) (where phen = 1,10-phenanthroline, bpy = 4,4′-bipyridine). All the complexes have been characterized via elemental analysis, FT-IR and NMR (1H, 13C) spectroscopy. The crystal structures of complexes 2, 3 and 6 have been determined by X-ray single crystal diffraction.The structural analysis show that the coordination sphere around antimony atom in complex 2 is a distorted square pyramid, coordinated by three bromine atoms and two nitrogen atoms from phen. In complex 3, the central antimony atom is six-coordinated through four bromine atoms and two nitrogen atoms forming a distorted octahedral geometry. Besides that, there are also uncoordinated 1,10-phenanthroline bonded by hydrogen bonds and π-π stacking interactions, which is rarely observed in previous reports. The crystal structure of complex 6 consists of bpyH · bpyH2 trications and hexabromoantimonate trianions. The antimony atom in the anion has a distorted octahedral environment. Additionally, all complexes present a 3D framework built up by N-H?Br, C-H?Br and C-H?Cl weak hydrogen bonds interactions.  相似文献   

19.
Copper(II), nickel(II) and cobalt(II) complexes of the aspirin metabolite salicylglycine (H2L), of stoichiometry M(HL)2·solvate, have been prepared and characterised. In these complexes salicylglycinate is coordinated to the metal via its carboxylato group and possibly also its amide oxygen in the copper(II) complex. Under basic conditions copper(II) forms the complex Cu(LH−1)·2H2O·MeOH, in which the ligand is coordinated to the metal via its carboxylate and phenolate oxygen atoms and the deprotonated peptide nitrogen atom.  相似文献   

20.
Abstract

Azo linked salicyldehyde and a new 2-hydroxy acetophenone based ligands (HL1 and HL2) with their copper(II) complexes [Cu(L1)2] (1) and [Cu(L2)2] (2) were synthesized and characterized by spectroscopic methods such as 1H, 13C NMR, UV–Vis spectroscopy and elemental analyses. Calculation based on Density Functional Theory (DFT), have been performed to obtain optimized structures. Binding studies of these copper (II) complexes with calf thymus DNA (ct-DNA) and torula yeast RNA (t-RNA) were analyzed by absorption spectra, emission spectra and Viscosity studies and Molecular Docking techniques. The absorption spectral study indicated that the copper(II) complexes of 1 and 2 had intrinsic binding constants with DNA or RNA in the range of 7.6?±?0.2?×?103?M?1 or 6.5?±?0.3?×?103M?1 and 5.7?±?0.4?×?104 M?1 or 1.8?±?0.5?×?103 M?1 respectively. The synthesized compounds and nucleic acids were simulated by molecular docking to explore more details mode of interaction of the complexes and their orientations in the active site of the receptor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号