首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Complexes cis,trans-Fe(CO)2(PMe3)2RR′ (R = CH3, R′ = Ph (2); R = CH3, R′ = CHCH2 (3); R = CHCH2, R′ = Ph (4); R = R′ = CHCH2 (5); R = R′ = CH3 (6)) were prepared by reaction of cis,trans-Fe(CO)2(PMe3)2RCl (1) with organolithium reagents LiR′. All complexes were characterized in solution by IR and 1H, 31P and, in a few cases, 13C NMR mono- and bi-dimensional spectroscopies. Complexes 5 and 6 were structurally characterized by X-ray diffractometric methods. In solution complexes 2, 3 and 4 undergo slowly coupling of the σ-hydrocarbyl substituents leading to Fe(CO)3(PMe3)2 and other decomposition products. Complex 6 was very stable in solution in the absence of nucleophiles and in the solid state. Complex 5 transformed through intramolecular coupling of the vinyl groups into Fe(CO)(PMe3)24-butadiene) (7), which was characterized in solution by IR and NMR spectroscopies.  相似文献   

2.
Four phenyl-substituted pyrazolylimine ligands 2-(C3HN2Me2-3,5)(C(Ph)N(4-R2C6H2(R1)2-2,6)) (L1: R1 = iPr, R2 = H; L2: R1 = H, R2 = NO2; L3: R1 = R2 = H; L4: R1 = H, R2 = OCH3) were synthesized. The influences of steric bulk and electronic effect of pyrazolylimine ligands on the structures of their corresponding nickel complexes were investigated. Ligands with more bulky and electron withdrawing substituents on N-phenyl ring produced four-coordinate nickel complexes (2-(C3HN2Me2-3,5))(C(Ph)(4-R2C6H2(R1)2-2,6)NiBr2 (1, R1 = iPr, R2 = H; 2, R1 = H, R2 = NO2)), whereas the ligands with less bulky and electron donating substituents on N-phenyl ring formed bis-pyrazolylimine dinickel tetrahalides (bis-2-(C3HN2Me2-3,5))(C(Ph)N(4-R2C6H2 (R1)2-2,6)Ni2Br4 (3, R1 = R2 = H; 4, R1 = H, R2 = OCH3)) and six-coordinate nickel dihalides (bis-2-(C3HN2Me2-3,5))(C(Ph)N(4-R2C6H2(R1)2-2,6) NiBr2 (5, R1 = R2 = H;6, R1 = H, R2 = OCH3)). The solid-state structures of complexes 1, 4 and 5 have been confirmed by X-ray single-crystal analyses. Activated by methylaluminoxane (MAO), complexes 1, 2, 5 and 6 showed moderate to high activity for ethylene oligomerization, and complex 5 revealed the highest activity up to 8.96 × 105 g oligomer/(mol Ni · h). The proportions of resultant oligomers were mainly C4-C8 and a little C10-C14 determined by gas chromatography/mass spectrometry.  相似文献   

3.
Three mono-nuclear copper(II) complexes [Cu(tepza)X]ClO4 (X = Cl, 1; X = NCS, 2; X = dca, 3) and two dinuclear bridging complexes [Cu2(tepza)2(μ-C4O4)](ClO4)2·H2O(4) and [Cu2(tepza)2(μ-C5O5)](ClO4)2(5) where tepza = tris[2-ethyl(1-pyrazolyl)]amine, dca = dicyanamide, C4O42− = 3,4-dihydroxycyclobut-3-ene-1,2-dionate (squarate dianion) and C5O52− = 4,5-dihydroxycyclopent-4-ene-1,2,3-trionate (croconate dianion) were synthesized and structurally characterized by IR and UV-Vis spectroscopy as well as by single X-ray crystallography. In the solid state, the geometry of copper(II) centers in these complexes are as follows: close to SP in 2, distorted TBP in 3, predominant SP in 4, and distorted octahedral in 5, whereas in solution distorted SP geometry was generally found. The squarato and the croconato dianions in complexes 4 and 5 are bridging the two copper(II) centers in cis-bis-monodentate and bis-bidentate bonding modes, respectively. Magnetic susceptibility measurements at variable temperatures (2-300 K) reveal the weak antiferromagnetic coupling in the two bridging dinuclear complexes 4 (= −24.9 cm−1) and 5 (= −3.1 cm−1).  相似文献   

4.
Ligands containing the 2-organochalcogenomethylpyridine motif with substituents in the 4- or 6-position of the pyridyl ring, R4,R6-pyCH2ER1 [R4 = R6 = H, ER1 = SMe (1), SeMe (2), SPh (6), SePh (7); R4 = Me, R6 = H, ER1 = SMe (3), SPh (8), SePh (9); R4 = H, R6 = Me, ER1 = SMe (4), SPh (10), SePh (11); R4 = H, R6 = Ph, ER1 = SMe (5), SPh (12), SePh (13)] are obtained on the reaction of R4,R6-pyMe with LiBun followed by R1EER1. On reaction with PdCl2(NCMe)2, the ligands with a 6-phenyl substituent form cyclopalladated species PdCl{6-(o-C6H4)pyCH2ER1-C,N,E} (5a, 12a, 13a) with the structure of 13a (ER1 = SePh) confirmed by X-ray crystallography; other ligands form complexes of stoichiometry PdCl2(R4,R6-pyCH2ER1). Complexes with R6 = H are monomeric with N,E-bidentate configurations, confirmed by structural analysis for 3a (R4 = Me, ER1 = SMe), 7a (R4 = H, ER1 = SePh) and 9a (R4 = Me, ER1 = SePh). Two of the 6-methyl substituted complexes examined by X-ray crystallography are oligomeric with trans-PdCl2(N,E) motifs and bridging ligands, trimeric [PdCl2(μ-6-MepyCH2SPh-N,S)]3 (10a) and dimeric [PdCl2(μ-6-MepyCH2SePh-N,Se)]2 (11a). This behaviour is attributed to avoidance of the Me···Cl interaction that would occur in the cis-bidentate configuration if the pyridyl plane had the same orientation with respect to the coordination plane as observed for 3a, 7a and 9a [dihedral angles 8.0(2)-16.8(2)°]. When examined as precatalysts for the Mizoroki-Heck reaction of n-butyl acrylate with aryl halides in N,N-dimethylacetamide at 120 °C, the complexes exhibit the anticipated trends in yield (ArI > ArBr > ArCl, higher yield for electron withdrawing substituents in 4-RC6H4Br and 4-RC6H4Cl). The most active precatalysts are PdCl2(R4-pyCH2SMe-N,S) (R = H (1a), Me (3a)); complexes of the selenium containing ligands exhibit very low activity. For closely related ligands, the changes SMe to SPh, 6-H to 6-Me, and 6-H to 6-Ph lead to lower activity, consistent with involvement of both the pyridyl and chalcogen donors in reactions involving aryl bromides. The precatalyst PdCl2(pyCH2SMe-N,S) (1a) exhibits higher activity for the reaction of aryl chlorides in Bun4NCl at 120 °C as a solvent under non-aqueous ionic liquid (NAIL) conditions.  相似文献   

5.
Acetonitrile is easily displaced from [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (R = 2,6-Me2C6H3 (Xyl) (1a); Me (1b)) upon stirring in THF at room temperature in the presence of [NBu4][SCN]. The resulting complexes trans-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (trans-2a); Me (trans-2b)) are completely isomerised to cis-[Fe2{μ-CN(Me)(R)}(μ-CO)(CO)(NCS)(Cp)2] (R = Xyl (cis-2a); Me (cis-2b)) when heated at reflux temperature. Similarly, the complexes cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(NCO)(Cp)2] (M = Fe, R = Me (4a); M = Ru, R = Xyl (4b); M = Ru, R = Me (4c)) and cis-[M2{μ-CN(Me)(R)}(μ-CO)(CO)(N3)(Cp)2] (M = Fe, R = Xyl (5a); M = Fe, R = Me (5b); M = Ru, R = Xyl (5c)) can be obtained by heating at reflux temperature a THF solution of [M2{μ-CN(Me)(R)}(μ-CO)(CO)(MeCN)(Cp)2][SO3CF3] (M = Fe, R = Xyl (1a); M = Fe, Me (1b); M = Ru, R = Xyl (1c); M = Ru, R = Me (1d)) in the presence of NaNCO and NaN3, respectively. The reactions of 5 with MeO2CCCCO2Me, HCCCO2Me and (NC)(H)CC(H)(CN) afford the triazolato complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3C2(CO2Me)2}(Cp)2] (M = Fe, R = Xyl (6a); M = Fe, R = Me (6b); M = Ru, R = Xyl (6c)), [M2{μ-CN(Me)(R)}(μ- CO)(CO){N3C2(H)(CO2Me)}(Cp)2] (M = Fe, R = Me (7a); M = Ru, R = Xyl (7b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3C2(H)(CN)}(Cp)2] (8), respectively. The asymmetrically substituted triazolato complexes 7-8 are obtained as mixtures of N(1) and N(2) bonded isomers, whereas 6 exists only in the N(2) form. Methylation of 6-8 results in the formation of the triazole complexes [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(CO2Me)2}(Cp)2][CF3SO3] (9), [M2{μ-CN(Me)(R)}(μ-CO)(CO){N3(Me)C2(H)(CO2Me)}(Cp)2][CF3SO3] (M = Fe, R = Me (10a); M = Ru, R = Xyl (10b)) and [Fe2{μ-CN(Me)(Xyl)}(μ-CO)(CO){N3(Me)C2(H)(CN)}(Cp)2][CF3SO3], 11. The crystal structures of trans-2b, 4b · CH2Cl2, 5a, 6b · 0.5CH2Cl2 and 8 · CH2Cl2 have been determined.  相似文献   

6.
The ruthenium complexes [RuII(bbp)(L)(Cl)] (1), [RuII(bbp)(L)(H2O)] (2) and [RuII(bbp)(L)(DMSO)] (3) {bbp = 2,6-bis(benzimidazol-2-yl)pyridine, L = o-iminoquinone} have been synthesized in a stepwise manner starting from [RuIII(bbp)Cl3]. The single crystal X-ray structures, except for the complex 2, have been determined. All the complexes were characterized by UV-Vis, FT-IR, 1H NMR, Mass spectroscopic techniques and cyclic voltammetry. The RuIII/RuII couple for complexes 1, 2, and 3 appears at 0.63, 0.49, 0.55 V, respectively versus SCE. It is observed that complex 2, on refluxing in acetonitrile, results into [RuII(bbp)(L)(CH3CN)], 4 which has been prepared earlier in a different method. The structural, spectral and electrochemical properties of complexes 1, 2 and 3 were compared to those of earlier reported complex 4, [RuII(bbp)(L)(CH3CN)].  相似文献   

7.
In view of the wide applicability and versatility of titanium based Lewis acids in selective organic synthesis including asymmetric synthesis, we have synthesized a family of mono and polyatomic titanium derivatives. The polymetallic complexes prepared are bridged by pyridimine, quinone and triazine based ligands. The synthesis of [{Ti(O-i-Pr)3(Oddbf)}2] (1), [Ti(O-i-Pr)2(Oddbf)2] (2), [{Ti(O-i-Pr)2(Oddbf)(OMent)}2] (3) (ddbfO = 2,3-dihydro-2,2-dimethyl-benzofuranoxo; MentO = (1R,2S,5R)-(−)-menthoxo), [{Ti(O-i-Pr)3(OMenpy)}2] (4), [Ti(O-i-Pr)2(OMenpy)2] (5) (MenpyO = (1S,2S,5R)-(−)-menthoxo-pyridine); [{(Ti(OR)3)2L}n] (RO = isopropoxo, (1R,2S,5R)-(−)-menthoxo) (6-11) and [{(Ti(O-i-Pr)3)3L}n] (12) was accomplished from a Lewis acid such as Ti(O-i-Pr)4, [{Ti(O-i-Pr)3(OMent)}2] or [Ti(OMent)4] and chelating ligands (ddbfOH = 2,3-dihydro-2,2-dimethyl-benzofuranol; MenpyOH = (1R,2S,5R)-(−)-5-methyl-2-isopropyl-1-(2′-pyridinyl)cyclohexan-1-ol; LH2 = 4,6-dihydroxy-2,5-diphenyl-pyrimidine, 2,4-dihydroxy-5,6-dimethyl-pyrimidine, 5,8-dihydroxy-1,4-napthoquinone, 2,5-dihydroxy-1,4-benzoquinone and LH3 = cyanuric acid) that provide a rigid framework for the metal centre. The molecular structure of 5 has been determined by single crystal X-ray diffraction studies.  相似文献   

8.
A synthetic and mechanistic study is reported on ligand substitution and other reactions of six-coordinate ruthenium(II) carbonyl complexes containing tridentate PhP(CH2CH2CH2PCy2)2 (Cyttp). Carbonylation of cis-mer-Ru(OSO2CF3)2(CO)(Cyttp) (1) affords [cis-mer-Ru(OSO2CF3)(CO)2(Cyttp)]O3SCF3 (2(O3SCF3)) and, on longer reaction times, [cis-mer-Ru(solvent)(CO)2(Cyttp)](O3SCF3)2 (solvent = acetone, THF, methanol). 2(O3SCF3) reacts with each of NaF, LiCl, LiBr, NaI, and LiHBEt3 to yield [cis-mer-RuX(CO)2(Cyttp)]+ (X = F (3), Cl (4), Br (5), I (6), H (7)), isolated as 3-7(BPh4). These conversions proceed with high stereospecificity to afford only a single isomer of the product that is assigned a structure in which the Ph group of Cyttp points toward the CO trans to X (anti when X = F, Cl, Br, or I; syn when X = H). Treatment of 2(O3SCF3) with NaOMe and CO generates the methoxycarbonyl complex [cis-mer-Ru(CO2Me)(CO)2(Cyttp)]+ (8), whereas addition of excess n-BuLi to 2(O3SCF3) in THF under CO affords mer-Ru(CO)2(Cyttp) (9). The two 13C isotopomers [cis-mer-Ru(OSO2CF3)(CO)(13CO)(Cyttp)]O3SCF3 (2′(O3SCF3): 13CO trans to PC; 2″(O3SCF3): 13CO cis to all P donors) were synthesized by appropriate adaptations of known transformations and used in mechanistic studies of reactions with each of LiHBEt3, NaOMe/CO, and n-BuLi. Whereas LiHBEt3 reacts with 2′(O3SCF3) and 2″(O3SCF3) to replace triflate by hydride without any scrambling of the carbonyl ligands, the corresponding reactions of NaOMe-CO are more complex. The methoxide combines with the CO cis to triflate in 2, and the resultant methoxycarbonyl ligand ends up positioned trans to the incoming CO in 8. A mechanism is proposed for this transformation. Finally, treatment of either 2′(O3SCF3) or 2″(O3SCF3) with an excess of n-BuLi leads to the formation of the same two ruthenium(0) isomers of mer-Ru(CO)(13CO)(Cyttp). These products represent, to our knowledge, the first example of a syn-anti pair of isomers of a five-coordinate metal complex.  相似文献   

9.
The synthesis of bis-cyclometalated aminocarboxylato complexes [M(α-aminocarboxylato)(ptpy)2] (M = Rh, 3, 4, 5; M = Ir, 6, 7, 8), ptpy = 2-(p-tolyl)pyridinato; aminocarboxylato = glycinato, l-alaninato, l-prolinato) from [{M(μ-Cl)(ptpy)2}2] (M = Rh, 1; M = Ir, 2) is described. The molecular structure of [Ir(l-alaninato)(ptpy)2] (7) was confirmed by a single-crystal X-ray diffraction study. Compound 7 crystallized from methanol-iso-hexane in the space group P21. For 7 the two diastereoisomers ΔIr, SC and ΛIr, SC were found crystallizing twice per unit. Absorption and emission spectra were recorded. The rhodium compounds are weak yellow-green and the iridium species strong green emitters.  相似文献   

10.
The preparation and magnetic properties of three copper(II) compounds of formulae [Cu2(bpcam)2(H2O)2(C2O4)] (1), [Cu2(bpcam)2(H2O)4(C4O4)] · 10 H2O (2) and Cu2(bpcam)2(C5O5)(H2O)3 (3) [bpcam = bis(2-pyrimidyl)amidate, and are reported. The structures of two of them (1 and 2) have been solved by single crystal X-ray diffraction and consists of centrosymmetric discrete copper(II) dinuclear units bridged by bis-bidentate oxalate (1) and bis-monodentate squarate (2), with the bpcam group acting as a terminal tridentate ligand. Each copper atom in 1 exhibits a distorted elongated octahedral coordination geometry. Three bpcam nitrogen atoms and one oxalate oxygen define the basal plane while the other oxalate oxygen and a water molecule take up the axial positions. Each copper atom in 2 is in an elongated octahedral surrounding with three bpcam nitrogen atoms and one squarate oxygen in the equatorial plane and two water molecules in the axial positions. The intramolecular copper-copper separations are 5.677(1) (1) and 7.819(53) Å (2). Magnetic susceptibility measurements for 1-3 in the temperature range 1.9-290 K show the occurrence of weak ferromagnetic interactions through oxalato (J = +0.75 cm−1) and squarato (J = +1.26 cm−1), the Hamiltonian being defined by . These values are analyzed and discussed in the light of the available magneto-structural data for analogous systems. The quasi-Curie law observed in 3 (θ = −1.15 K) contrasts with the significant antiferromagnetic interaction through bis-chelating croconate in other structurally characterized croconate-bridged copper(II) complexes and rules out the presence of bridging croconate in this compound.  相似文献   

11.
The acyclic Schiff-base ligands (2-(OH)-5-(R3)C6H2-1,3-(HCNC(R1)(R2)CO2H), derived from the dialdehyde 2-hydroxy-5-R-1,3-benzenedicarboxaldehyde (R = Me or t-Bu) and two equivalents of the amino acids glycine, 2,2-diphenylglycine or phenylalanine, have been reacted with the metal acetates M(OAc)2 (M = Cu, Zn) in the presence of triethylamine, affording the complexes [HNEt3][M2(CH3CO2)2(2-(O)-5-(t-Bu)C6H2-1,3-(HCNC(R1)(R2)CO2)2] (M = Cu, R1 = R2 = C6H5, R3 = Me (1); M = Zn, R1 = R2 = H, R3 = t-Bu (2); M = Zn, R1 = R2 = C6H5, R3 = t-Bu (3); M = Zn, R1 = H, R2 = CH2C6H5, R3 = t-Bu (4)) in good yields. The crystal structures of 1·MeCN, 2·, 3·2MeOH, and 4·3MeOH have been determined.  相似文献   

12.
The reaction between Zn(OAc)2 · 2H2O (1) and the 3-iminoisoindolin-1-ones H2NCNC(O)C6R1R2R3R4 (R1-R4 = H 2; R1, R4 = H, R2, R3 = Cl 3; R1, R3, R4 = H, R2 = Me 4) in EtCN at 70 °C for ca. 12 h affords the novel family of complexes [Zn{H2NCNC(O)C6R1R2R3R4}2(OAc)2] (R1-R4 = H 5; R1, R4 = H, R2, R3 = Cl 6; R1, R3, R4 = H, R2 = Me 7) in excellent (90% and 93% for 5 and 6, correspondingly) to good (64% for 7) yields. The isolated compounds were characterized by elemental analyses (C, H, N), IR, NMR and ESI+-MS. X-ray diffraction data for 2 and 5 indicate that both free (2) and ligated (5) 3-iminoisoindolin-1-ones exist in the zwitterionic form.  相似文献   

13.
The reaction of FcCOCl (Fc = (C5H5)Fe(C5H4)) with benzimidazole or imidazole in 1:1 ratio gives the ferrocenyl derivatives FcCO(benzim) (L1) or FcCO(im) (L2), respectively. Two molecules of L1 or L2 can replace two nitrile ligands in [Mo(η3-C3H5)(CO)2(CH3CN)2Br] or [Mo(η3- C5H5O)(CO)2(CH3CN)2Br] leading to the new trinuclear complexes [Mo(η3-C3H5)(CO)2(L)2Br] (C1 for L = L1; C3 for L = L2) and [Mo(η3-C5H5O)(CO)2(L)2Br] (C2 for L = L1; C4 for L = L2) with L1 and L2 acting as N-monodentade ligands. L1, L2 and C2 were characterized by X-ray diffraction studies. [Mo(η3-C5H5O)(CO)2(L1)2Br] was shown to be a trinuclear species, with the two L1 molecules occupying one equatorial and one axial position in the coordination sphere of Mo(II). Cyclic voltammetric studies were performed for the two ligands L1 and L2, as well as for their molybdenum complexes, and kinetic and thermodynamic data for the corresponding redox processes obtained. In agreement with the nature of the frontier orbitals obtained from DFT calculations, L1 and L2 exhibit one oxidation process at the Fe(II) center, while C1, C3, and C4 display another oxidation wave at lower potentials, associated with the oxidation of Mo(II).  相似文献   

14.
Reaction of the ligands 3-phenyl-5-(2-pyridyl)pyrazole (HL1), 3,5-bis(2-pyridyl)pyrazole (HL2), 3-methyl-5-(2-pyridyl)pyrazole (HL3) and 3-methyl-5-phenylpyrazole (HL4) with [MCl2(CH3CN)2] (M = Pd(II), Pt(II)) or [PdCl2(cod)] gives complexes with stoichiometry [PdCl2(HL)2] (HL = HL1, HL2, HL3), [Pt(L)2] (L = L1, L2, L3) and [MCl2(HL4)2] (M = Pd(II), Pt(II)). The new complexes were characterised by elemental analyses, conductivity measurements, infrared and 1H NMR spectroscopies. The crystal and molecular structure of [PdCl2(HL1)] was resolved by X-ray diffraction, and consists of monomeric cis-[PdCl2(HL1)] molecules. The palladium centre has a typical square planar geometry, with a slight tetrahedral distortion. The tetra-coordinated metal atom is bonded to one pyridine nitrogen, one pyrazolic nitrogen and two chloro ligands in a cis disposition. The ligand HL1 is not completely planar.  相似文献   

15.
The preparation, crystal structure and variable temperature-magnetic investigation of three 2-(2′-pyridyl)imidazole-containing chromium(III) complexes of formula PPh4[Cr(pyim)(C2O4)2]·H2O (1), AsPh4[Cr(pyim)(C2O4)2]·H2O (2) and [Cr2(pyim)2(C2O4)2(OH2)2]·2pyim · 6H2O (3) [pyim = 2-(2′-pyridyl)imidazole, , and ] are reported herein. The isomorphous compounds are made up of discrete [Cr(pyim)(C2O4)2] anions, cations [X = P (1) and As (2)] and uncoordinated water molecules. The chromium environment in 1 and 2 is distorted octahedral with Cr-N and Cr-O bond distances varying in the ranges 2.040(3)-2.101(3) and 1.941(3)-1.959(3) Å, respectively. The angle subtended by the chromium(III) ion by the two didentate oxalate ligands cover the range 82.49(12)-82.95(12)°, values which are somewhat greater than those concerning the chelating pyim molecule [77.94(13) (1) and 78.50(13)° (2)]. Complex 3 contains discrete centrosymmetric [Cr2(pyim)2(C2O4)2(OH)2] neutral units where the two chromium(III) ions are joined by a di-μ-hydroxo bridge, the oxalate and pyim groups acting as peripheral didentate ligands. Uncoordinated water and pyim molecules are also present in 3 and they contribute to the stabilization of its structure by extensive hydrogen bonding and π-π type interactions. The values of the intramolecular chromium-chromium separation and angle at the hydroxo bridge in 3 are 2.9908(12) Å and 99.60(16)°, respectively. Magnetic susceptibility measurements of 1-3 in the temperature range 1.9-300 K show the occurrence of weak inter- (1 and 2) and intramolecular (3) antiferromagnetic couplings. The magnetic properties of 3 have been interpreted in terms of a temperature-dependent exchange integral, small changes of the angle at the hydroxo bridge upon cooling being most likely responsible for this peculiar magnetic behavior.  相似文献   

16.
Thiocarbonate ruthenium complexes of the form CpRu(L)(L′)SCO2R (L = L′ = PPh3 (1), 1/2 dppe (2), L = PPh3, L′ = CO (3); R = Et (a), Bun (b), C6H5 (c), 4-C6H4NO2 (d)) have been synthesized by the reaction of the corresponding sulfhydryl complexes, CpRu(L)(L′)SH, with chloroformates, ROCOCl, at low temperature. The bis(triphenylphosphine) complexes 1 can be converted to 3 under CO atmosphere. The crystal structures of CpRu(PPh3)2SCO2Bun (1b), CpRu(dppe)SCO2Bun (2b), and CpRu(PPh3)(CO)SCO2Bun (3b) are reported.  相似文献   

17.
Alkynyl Pd(II) azido complexes of the type [Pd(N3)(CCR)L2] (1-3) were obtained by reactions of aqueous NaN3 with [Pd(Cl)(CCR)L2] (R = Ph or C(O)OMe). Treating compounds 1-3 with organic isocyanides (R-NC) afforded novel complexes, trans-[Pd(CCPh)(NCNR)(PMe3)2] (R = 2,6-Me2C6H3 (4) or 2,6-Et2C6H3 (5)) and trans-[Pd(CCR)(CN4-t-Bu)L2] (6: L = PMe3, R = Ph; 7: L = PEt3, R = C(O)OMe; 8: L = PMe3, R = C(O)OMe), which contain either a carbodiimido or a C-coordinated tetrazolato group. Reactions of compounds 1 and 2 with R-NCS (R = 2,6-Me2C6H3 or CH2CH3) and 1,4-phenylene diisothiocyanate (C6H4(NCS)2) smoothly proceeded to give tetrazole-thiolato complexes, trans-[Pd(CCPh)(SCN4-R)L2] (L = PMe3, R = Et (9) or 2,6-Me2C6H3 (10); L = PEt3, R = 2,6-Me2C6H3 (11)), and a phenylene-bridged dinuclear Pd(II) tetrazole-thiolato complex, [(PEt3)2(CCPh)Pd(SCN4-(μ-C6H4)-SCN4)Pd(CCPh)(PEt3)2] (12), respectively. Complexes 9-12 contain the Pd-S bond that is formed by the dipolar cycloaddition of the organic isothiocyanate to the Pd-azido bond. In contrast, the corresponding reactions of compounds 1and 2 with C6F5CN and Me3SiCN (organic nitriles, R-CN) gave an N-coordinated Pd(II)-tetrazolato compound {trans-[Pd(CCPh)(N4C-C6F5)(PMe3)2] (13)} and a mixture of Pd(II)-cyano complexes {trans-[Pd(CCPh)(CN)(PEt3)2] (14) and [Pd(CN)2(PEt3)2] (15)}, respectively. Bis(phosphine) bis(cyano) complexes of Pd and Ni, [M(CN)2L2] (L = PEt3, PMe3; L2 = DEPE), could be obtained independently by the reactions of [M(N3)2L2] with excess Me3SiCN in organic solvents.  相似文献   

18.
The electrochemical behavior of the Pt(II)-based Baeyer-Villiger catalysts of the general formulae [Pt(μ-OH)(PP)]2(BF4)2 (PP = dppe (1a), 2Fdppe (1 b), 4Fdppe (1c), dfppe (1d), dmpe (1e), depe (1f), dippe (1g), dtbpe (1h)) and [Pt(OH2)2(PP)](OTf)2 (PP = dppe (2a), 2Fdppe (2b), 4Fdppe (2c), dfppe (2d)) is reported. They exhibit irreversible reduction processes whose potentials reflect the Lewis acidity of the metal centres, showing (for the aromatic diphosphine complexes) overall relations with the number of fluorine atoms, with JPt-P, with the ν(CN) coordination shift of a ligand isocyanide probe and with the catalytic activity. Single-crystal X-ray diffraction analyses were carried out for [Pt(μ-OH)(4Fdppe)]2(BF4)2 (1c) and [Pt(μ-OH) (dippe)]2(BF4)2 (1g).  相似文献   

19.
A series of osmium(VI) nitrido complexes containing pyridine-carboxylato ligands OsVI(N)(L)2X (L = pyridine-2carboxylate (1), 2-quinaldinate (2) and X = Cl (a), Br (1b and 2c) or CH3O (2b)) and [OsVI(N)(L)X3] (L = pyridine-2,6-dicarboxylate (3) and X = Cl (a) or Br (b)) have been synthesised. Complexes 1 and 2 are electrophilic and react readily with various nucleophiles such as phosphine, sulfide and azide. Reaction of OsVI(N)(L)2X (1 and 2) with triphenylphosphine produces the osmium(IV) phosphiniminato complexes OsVI(NPPh3)(L)2X (4 and 5). The kinetics of nitrogen atom transfer from the complexes OsVI(N)(L)2Br (2c) (L = 2-quinaldinate) with triphenylphosphine have been studied in CH3CN at 25.0 °C by stopped-flow spectrophotometric method. The following rate law is obtained: −d[Os(VI)]/dt = k2[Os(VI)][PPh3]. OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) reacts also with [PPN](N3) to give an osmium(III) dichloro complex, trans-[PPN][OsIII(L)2Cl2] (6). Reaction of OsVI(N)(L)2Cl (L = 2-quinaldinate) (2a) with lithium sulfide produces an osmium(II) thionitrosyl complex OsII(NS)(L)2Cl (7). These complexes have been structurally characterised by X-ray crystallography.  相似文献   

20.
A series of pyrazole-bridged heterometallic 3d-4f complexes, [CuDy(ipdc)2(H2O)4] · (2H2O)(H3O+) (1) and [CuLn(pdc)(ipdc)(H2O)4] · H3O+ (Ln = Ho (2), Er (3), Yb (4); H3ipdc = 4-iodo-3,5-pyrazoledicarboxylic acid; H3pdc = 3,5-pyrazoledicarboxylic acid), {[Cu3Ln4(ipdc)6(H2O)16] · xH2O}n (Ln = Sm (5), x = 8.5; Ln = Eu (6), x = 7; Ln = Gd (7), Tb (8), x = 9), have been synthesized and structurally characterized. Ligand H3ipdc was in situ obtained by iodination of ligand H3pdc. Complexes 1-4 are pyrazole-bridged heterometallic dinuclear complexes, and 2-4 are isostructural. Complexes 5-8 are isostructural and comprised of an unusual infinite one-dimensional tape-like chain based on pyrazole-bridged heterometallic dinuclear units. The magnetic properties of compounds 1-4, 7 and 8 have been investigated through the magnetic measurement over the temperature range of 1.8-300 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号