首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
The reaction of dioxygen with the copper(I) complex of the tridentate ligand 1,1,4,7,7-pentamethyldiethylenetriamine (Me5dien) has been investigated using low-temperature stopped-flow techniques. The formation of a bis(μ-oxo)copper(III) complex as a reactive intermediate could be detected spectroscopically at low temperatures and a quantitative kinetic analysis was performed for this system. Crystal structures of the copper(II) complexes [(Me-bpa)Cu(Cl)2] (1), [{(Me-bpa)Cu(Cl)(ClO4)}2] (2), [{(MeL)Cu(Cl)(ClO4)}2] (3), and [(MeL)Cu(NCS)2] (4) (Me-bpa = N-methyl-[bis(2-pyridyl)methyl]amine; MeL = N-methyl-[(2-pyridyl)ethyl(2-pyridyl)methyl]amine) are reported.  相似文献   

2.
The one pot aqueous reaction of M(ClO4)2 (M = Cu2+ or Ni2+) with N-methylbis[2-(2-pyridylethyl)]amine (MeDEPA) and N,N′-dimethyl-N,N′-bis(2-pyridylmethyl)ethylenediamine (bpmen) and 1,4,7,10-tetraazacyclododecane (cyclen) in presence of sodium dicyanamide (Nadca) yielded dicyanamido-bridged polynuclear complex {[Cu(MeDEPA)(μ-1,5-dca)]ClO4}n (1), and two dinuclear complexes [Cu2(bpmen)2(μ-1,5-dca)]2(ClO4)5dca (2) and [Ni(cyclen)(μ-1,5-dca)]2(ClO4)2 (3). These complexes were characterized by IR and UV-Vis spectroscopy. Room temperature single-crystal X-ray studies have confirmed that the Cu(II) centers in 1 and 2 adopt geometries that are more close to trigonal bipyramidal (TBP) in 1 and close to square pyramidal (SP) in 2, whereas in 3, the Ni(II) centers are located in octahedral environment with doubly bridged μ-1,5-dca bonding mode. The intermolecular M···M distances in these complexes are in the range of 7.3-8.6 Å. Variable temperature magnetic susceptibility studies have confirmed that the dca-bridges mediate very weak antiferromagnetic interaction between the M(II) centers with J values of −0.35, −0.18 and −0.43 cm−1 for 1, 2 and 3, respectively. The results are compared and discussed in the light of other related bridged μ-1,5-dca Cu(II) and Ni(II) complexes.  相似文献   

3.
Copper(II) complexes of new N3O- and N2O2-donor tripodal ligands bearing one or two o-substituted phenol moieties have been synthesized as models for the galactose oxidase active site. The complexes of 2-[N-(1-methyl-2′-imidazolylmethyl)-N-(6″-methyl-2″-pyridylmethyl)-aminomethyl)]-4-methyl-6-methylthiophenol (MeSL), [Cu(MeSL)Cl], and N-(6-methyl-2-pyridylmethyl)-N,N-bis(2′-hydroxy-3′,5′-di-tert-butylbenzyl)amine (t-buL2mepy), [Cu(t-buL2mepy)(H2O)], have been revealed by X-ray structural analysis to have a square-pyramidal structure with one and two phenolate oxygens in the basal plane, respectively. [Cu(MeSL)Cl] was converted into a Cu(II)-o-methylthiophenoxyl radical species by electrochemical or Ce(IV) oxidation. An o-methoxyphenoxyl radical in a similar complex was considerably more stable than the 2,4-di(tert-butyl)phenoxyl radical. While t-buL2mepy reacted with Cu(ClO4)2 to give [Cu(t-buL2mepy)(H2O)] without disproportionation, an N2O2-donor ligand containing an o-methoxyphenol, a 2,4-di(tert-butyl)phenol, and an N-methylimidazole moiety gave a phenoxyl radical complex exhibiting the characteristic absorption peak at 478 nm as a reddish powder by the reaction with Cu(ClO4)2 as a result of spontaneous disproportionation. It exhibited a quasi-reversible redox wave at E1/2=0.34 V (vs. Ag/AgCl) in CH3CN, which is lower than the potentials of the copper complexes of various N3O-donor ligands, and oxidized ethanol to acetaldehyde with a low turnover number.  相似文献   

4.
Four seven-coordinated manganese(II) complexes [Mn(tpa)(η1-NO3)(η2-NO3)] (1), [Mn(bpia)(η1-NO3)(η2-NO3)] (2), [Mn(tpa)(η1-NO3)(η2-NO3)] (3), [Mn(tpa)(η1-NO3)(η2-NO3)] (4), and one octacoordinated manganese(II) complex [Mn(bppza)(η2-NO3)2] (5) have been synthesized and characterized using the tripodal tetradentate ligands tpa, bpia, bipa, ipqa, and bppza (tpa: tris(2-pyridylmethyl)amine, bpia: bis(2-pyridylmethyl)(2-(N-methyl)imidazolylmethyl)amine, bipa: bis-(2-(N-methyl)imidazolylmethyl)(2-pyridylmethyl)amine, ipqa: (2-(N-methyl)imidazolylmethyl)(2-pyridylmethyl)(2-quinolylmethyl)amine, and bppza: bis(2-pyridylmethyl)(2-pyrazylmethyl)amine). The crystal structures for all compounds have been determined. 1, 2 and 3 crystallize in the triclinic space group , 4 crystallizes in the orthorhombic space group Pbca, whereas the eight-coordinated 5 crystallizes in the monoclinic space group P21/n. All compounds have one bidentate bound nitrate group in common. The coordination number and its geometry depend on the coordination mode of the second nitrate group. The coordination polyhedron for 1, 2, 3 and 4 is best described as an oblate octahedron and the one for 5 as a doubly oblate octahedron.  相似文献   

5.
The reaction of the Tc(II) nitrosyl complex (Bu4N)[Tc(NO)Cl4] with di-(2-picolyl)(NEt)amine in methanol yields the neutral complex [Tc(NO)Cl(py-N(Et)-py)]. The reaction of the Tc(I) nitrosyl complex [Tc(NO)Cl2(HOMe)(PPh3)2] with this tridentate ligand yields cationic [Tc(NO)Cl(py-N(Et)-py)(PPh3)]Cl. These two complexes have been structurally characterized. The reaction of [Tc(NO)Cl2(HOMe)(PPh3)2] with the tetradentate ligand 1,4-bis-(2-pyridylmethyl)-1,4-diazobutane yields a mixture of products including cationic [Tc(NO)Cl(py-NH-NH-py)]Cl and cationic [Tc(NO)Cl(PPh3)(py-NH-NH∼py)]Cl, with a pyridyl terminus left dangling.  相似文献   

6.
The reaction of aqueous solutions of the preformed 1:1 Cu(ClO4)2-polydentate amine with tetrasodium 1,2,4,5-benzene tetracarboxylate (Na4bta) afforded three different types of polynuclear compounds. These include the tetranuclear complexes: [Cu4(Medpt)44-bta)(ClO4)2(H2O)2](ClO4)2·2H2O (1), [Cu4(pmdien)44-bta)(H2O)4](ClO4)4 (2), [Cu4(Mepea)44-bta)(H2O)2](ClO4)4(3), [Cu4(TPA)44-bta)](ClO4)4·10H2O (4) and [Cu4(tepa)44-bta)](ClO4)4·2H2O (5), the di-nuclear: [Cu2(DPA)22-bta)(H2O)2]·4H2O (6), [Cu2(dppa)22-bta)(H2O)2]·4H2O (7) and [Cu2(pmea)22-bta)]·14H2O (8) and the trinuclear complex [Cu3(dppa)33-bta)(H2O)2.25](ClO4)2·6.5H2O (9) where Medpt = 3,3′-diamino-N-methyldipropylamine, pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine, Mepea = [2-(2-pyridyl)ethyl]-(2-pyridylmethyl)methylamine, TPA = tris(2-pyridylmethyl)amine, tepa = tris[2-(2-pyridyl)ethyl)]amine, DPA = di(2-pyridymethyl)amine, dppa = N-propanamide-bis(2-pyridylmethyl)amine and pmea = bis(2-pyridylmethyl)-[2-(2-pyridylethyl)]amine. The complexes were structurally characterized by elemental analyses, spectroscopic techniques, and by X-ray crystallography for complexes 1, 2, 4, 6, 7 and 9. X-ray structure of the complexes reveal that bta4− is acting as a bridging ligand via its four deprotonated caboxylate groups in 1, 2 and 4, three carboxylate groups in 9 and via two trans-carboxylates in 6 and 7. The complexes exhibit extended supramolecular networks with different dimensionality: 1-D in 2 and 4 due to hydrogen bonds of the type O-H···O, 2-D in 1 and 7, and 3-D network in 6 as a result of hydrogen bonds of the types N-H···O and O-H···O. Magnetic susceptibility measurements showed very weak antiferromagnetic coupling between the CuII ions in 1-5, 7-9 (|J| = 0.02-0.87 cm−1) and weak ferromagnetic coupling for 6 (= 0.08 cm−1).  相似文献   

7.
The following Schiff bases were employed as ligands in synthesizing copper(II) and zinc(II) complexes: N-[(2-pyridyl)-methyl]-salicylimine (Hsalampy), N-[2-(N,N-dimethyl-amino)-ethyl]-salicylimine (Hsaldmen), and N-[(2-pyridyl)-methyl]-3-methoxy-salicylimine (Hvalampy). The first two ligands were obtained by reacting salicylaldehyde with 2-aminomethyl-pyridyne and N,N-dimethylethylene diamine, respectively, while the third one results from the condensation of 3-methoxysalicylaldehyde with 2-aminomethyl-pyridine. Four new coordination compounds were synthesized and structurally characterized: [Cu(salampy)(H2O)(ClO4)] 1, [Cu2(salampy)2(H2trim)2] 2 (H2trim? = the monoanion of the trimescic acid), [Cu4(valampy)4](ClO4)4 · 2CH3CN 3, and [Zn3(saldmen)3(OH)](ClO4)2 · 0.25H2O 4. The crystal structure of 1 consists of supramolecular dimers resulted from hydrogen bond interactions established between mononuclear [Cu(salampy)(H2O)(ClO4)] complexes. Compound 2 is a binuclear complex with the copper ions connected by two monoatomic carboxylato bridges arising from two molecules of monodeprotonated trimesic acid. The crystal structure of 3 consists of tetranuclear cations with a heterocubane {Cu4O4} core, and perchlorate ions. Compound 4 is a trinuclear complex with a defective heterocubane structure. The magnetic properties of complexes 13 have been investigated. Compound 4 exhibits solid-state photoluminescence at room temperature.  相似文献   

8.
Four cobalt(III) complexes containing the polypyridine pentadentate ligands N,N-bis(2-pyridylmethyl)amine-N′-ethyl-2-pyridine-2-carboxamide (PaPy3H), N,N-bis(2-pyridylmethyl)amine-N′-[1-(2-pyridylethyl)acetamide (MePcPy3H), and N,N-bis(2-pyridylmethyl)amine-N′-(2-pyridylmethyl)acetamide (PcPy3H), have been synthesized. All three ligands bind the Co(III) center in the same fashion with the exception of loss of conjugation between the carboxamide moiety and the pyridine ring in the latter two. The structures of [(PaPy3)Co(OH)][(PaPy3)Co(H2O)](ClO4)3 · 3H2O (1), [(PaPy3)Co(NO2)](ClO4) · 2MeCN (2), [(MePcPy3)Co(MeCN)](ClO4)2 · 0.5MeCN (3), and [(PcPy3)Co(Cl)](ClO4) · 2MeCN (4) have been determined. These ligands with strong-field carboxamido N donor stabilize the +3 oxidation state of the Co center as demonstrated by the facile oxidation of the corresponding Co(II) complexes (prepared in situ) by H2O2, [Fe(Cp)2](BF4), or nitric oxide (NO). The Co-Namido bond distances of 1-4 lie in the narrow range of 1.853-1.898 Å. 1H NMR spectra of these complexes confirm the low-spin d6 ground states of the metal centers.  相似文献   

9.
Treatment of a N3O-donor chelate ligand (mpppa = N-methyl-N-((6-pivaloylamido-2-pyridyl)methyl)-N-(2-pyridylethyl)amine; bpppa = N-benzyl-N-((6-pivaloylamido-2-pyridyl)methyl)-N-(2-pyridylmethyl)amine) with equimolar amounts of Mn(ClO4)2 · 6H2O and Me4NX (X = Cl, Br, I) in methanol resulted in the production of a series of mononuclear Mn(II) halide complexes of the formula [(L)Mn-X(CH3OH)]ClO4 (L = mpppa or bpppa). X-ray crystallographic studies of [(mpppa)Mn-Cl(CH3OH)]ClO4 · CH3OH (2 · CH3OH), [(mpppa)Mn-Br(CH3OH)]ClO4 · CH3OH (4 · CH3OH), [(mpppa)Mn-I(CH3OH)]ClO4 · CH3OH (6 · CH3OH), and [(bpppa)Mn-I(CH3OH)]ClO4 · O2(CH2CH3)2 (7 · O(CH2CH3)2) revealed for each a mononuclear Mn(II) center having tetradentate coordination of the chelate ligand, one coordinated halide anion, and one molecule of coordinated methanol. An increase in the Mn-X distance through the halide series (Cl, Br, I) correlates linearly with the increase in the radius of the anion. The magnetic moment of each halide complex, measured via Evans method in methanol, is consistent with the presence of a high-spin distorted octahedral Mn(II) center. The EPR features of the halide complexes in methanol do not change as a function of the nature of the halide coordinated to the Mn(II) center.  相似文献   

10.
Three kinds of copper(II) azide complexes have been synthesised in excellent yields by reacting Cu(ClO4)2 · 6H2O with N,N-bis(2-pyridylmethyl)amine (L1); N-(2-pyridylmethyl)-N′,N′-dimethylethylenediamine (L2); and N-(2-pyridylmethyl)-N′,N′-diethylethylenediamine (L3), respectively, in the presence of slight excess of sodium azide. They are the monomeric Cu(L1)(N3)(ClO4) (1), the end-to-end diazido-bridged Cu2(L2)2(μ-1,3-N3)2(ClO4)2 (2) and the single azido-bridged (μ-1,3-) 1D chain [Cu(L3)(μ-1,3-N3)]n(ClO4)n (3). The crystal and molecular structures of these complexes have been solved. The variable temperature magnetic moments of type 2 and type 3 complexes were studied. Temperature dependent susceptibility for 2 was fitted using the Bleaney-Bowers expression which led to the parameters J = −3.43 cm−1 and R = 1 × 10−5. The magnetic data for 3 were fitted to Baker’s expression for S = 1/2 and the parameters obtained were J = 1.6 cm−1 and R = 3.2 × 10−4. Crystal data are as follows. Cu(L1)(N3)(ClO4): Chemical formula, C12H13ClN6O4Cu; crystal system, monoclinic; space group, P21/c; a = 8.788(12), b = 13.045(15), c = 14.213(15) Å; β = 102.960(10)°; Z = 4. Cu(L2)(μ-N3)(ClO4): Chemical formula, C10H17ClN6O4Cu: crystal system, monoclinic; space group, P21/c; a = 10.790(12), b = 8.568(9), c = 16.651(17) Å; β = 102.360(10)°; Z = 4. [Cu(L3)(μ-N3)](ClO4): Chemical formula, C12H21ClN6O4Cu; crystal system, monoclinic; space group, P21/c; a = 12.331(14), b = 7.804(9), c = 18.64(2) Å; β = 103.405(10)°; Z = 4.  相似文献   

11.
[Ru(H)(CO)(PPh3)2(α/β-NaiR)](ClO4) (3, 4) are synthesized by the reaction of [Ru(H)(Cl)(CO)(PPh3)3] with 1-alkyl-2-(naphthyl-α/β-azo)imidazole (α-NaiR (3); β-NaiR (4)). One of the complexes [Ru(H)(CO)(PPh3)2(α-NaiMe)](ClO4) (3a) has been structurally established by X-ray diffraction study. Upon addition of Cl2 saturated in MeCN to 3 or 4 gives [Ru(Cl)(CO)(α/β-NaiR)(PPh3)2](ClO4) (for α-NaiR (5); β-NaiR (6)), without affecting metal oxidation state, which were characterized by spectroscopic measurements. The redox property of the complexes is examined by cyclic voltammetry.  相似文献   

12.
Three new binuclear copper(II) complexes have been synthesized and structurally characterized by X-ray crystallography, [Cu2(1,4-tpbd)(dafo)2(MeOH)2](ClO4)4·2.5H2O (1), [Cu2(1,4-tpbd) (DMSO)2(ClO4)2](OH)2·6H2O (2) and [Cu2(1,4-tpbd)(OAC)2(ClO4)2]·5H2O (3) (1,4-tpbd = N,N,N′,N′-tetrakis(2-pyridylmethyl)benzene-1,4-diamine). Complex 1 to 3 shows similar binuclear structure and each Cu atom adopts five-coordinated square-pyramidal geometry. The interactions of the three complexes with CT-DNA (Calf-thymus DNA) have been investigated by UV absorption, fluorescence spectroscopy, circular dichroism spectroscopy and viscosity. Furthermore, the three complexes display oxidative cleavage of supercoiled DNA in the presence of external agents. Complex 3 shows higher DNA affinity and nuclease activity may be attributed to its cis structural configuration and labile acetate and perchlorate anions. The cleavage mechanisms between the complexes and plasmid DNA are likely to involve singlet oxygen or singlet oxygen-like entity as reactive oxygen species. In addition, in vitro cytotoxicity studies on the Hela cell line show that the IC50 values of complexes 1-3 are 14.75, 13.67 and 16.58 μM, respectively. The apoptosis-inducing activity was also assessed by AO/EB (Acridine Orange/Ethidium bromide) staining assay, indicating they have the potential to act as effective metal-based anticancer drugs.  相似文献   

13.
The dinuclear dicarboxylato-bridged copper(II) complexes [Cu2(TPA)2(μ-tp)](ClO4)2 · H2O (1), [Cu2(TPA)2(μ-fum)](ClO4)2 · 2H2O (2) and [Cu2(pmedien)2(μ-fum)(H2O)2](ClO4)2 (3) (tp = terephthalate dianion, fum = fumarate dianion, TPA = tris(2-pyridylmethyl)amine and pmedien = N,N,N′,N″,N″-pentamethyldiethylenetriamine) were synthesized and structurally characterized by X-ray crystallography. The structures of the TPA complexes 1 and 2 consist of μ-tp or μ-fum bridging two Cu(II) centers in a bis(monodentate) bonding fashion. The coordination geometry around the Cu(II) ions in these compounds has a distorted trigonal bipyamidal geometry, TBP with four nitrogen atoms from the TPA ligand and a coordinated oxygen atom supplied by the carboxylate group of the bridged dicarboxylato ligand. Complex 3 has a distorted square pyramidal geometry achieved by the three N-atoms of the pmedien, one fum-carboxylate-oxygen and by an oxygen atom from a coordinated water molecule. The intradimer Cu…Cu distances in these complexes are 11.078(3), 8.663(4) and 9.520(3) Å for 1, 2 and 3, respectively. The electronic spectra of the complexes in aqueous solutions are in complete agreement with the assigned X-ray geometry around the Cu(II) centers. Also, analysis of the infrared spectral data for the ν(COO) stretching frequencies of the tp-carboxalato groups reveals the existence of the bis(mondentate) coordination mode for the bridged dicarboxylato ligands in compounds 1 and 2. The susceptibility measurements at variable temperature over the 2-300 K range are reported. For 1-3, it has been observed slight antiferromagnetic coupling with J values of −0.8, −3.0 and −2.9 cm−1, respectively.  相似文献   

14.
Mononuclear zinc complexes of a family of pyridylmethylamide ligands abbreviated as HL, HLPh, HLMe3, HLPh3, and MeLSMe [HL = N-(2-pyridylmethyl)acetamide; HLPh = 2-phenyl-N-(2-pyridylmethyl)acetamide; HLMe3 = 2,2-dimethyl-N-(2-pyridylmethyl)propionamide; HLPh3 = 2,2,2-triphenyl-N-(2-pyridylmethyl)acetamide; MeLSMe = N-methyl-2-methylsulfanyl-N-pyridin-2-ylmethyl-acetamide] were synthesized and characterized spectroscopically and by single crystal X-ray structural analysis. The reaction of zinc(II) salts with the HL ligands yielded complexes [Zn(HL)2(OTf)2] (1), [Zn(HL)2(H2O)](ClO4)2 (2), [Zn(HLPh3)2(H2O)](ClO4)2 (3), [Zn(HLPh)Cl2] (4), [Zn(HLMe3)Cl2] (5), and [Zn(MeLSMe)Cl2] (6). The complexes are either four-, five- or six-coordinate, encompassing a variety of geometries including tetrahedral, square-pyramidal, trigonal-bipyramidal, and octahedral.  相似文献   

15.
Copper(II) complexes of a series of linear pentadentate ligands containing two benzimidazoles, two thioether sulfurs and a amine nitrogen, viz. N,N-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}amine(L1), N,N-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}N-methylamine (L2), 2,6-bis{4-(2″-benzimidazolyl)(methyl)-3-thiabutyl}pyridine(L3), N,N-bis{4-(2″-benzimidazolyl)-2-thiabutyl}amine (L4), N,N-bis{4-(2″-benzimidazolyl)-2-thiabutyl}N-methylamine (L5) and 2,6-bis{4-(2″-benzimidazolyl)-2-thiabutyl}-3pyridine (L6) have been isolated and characterized by electronic absorption and EPR spectroscopy and cyclic and differential pulse voltammetry. Of these complexes, [Cu(L1)](BF4)2 (1) and [Cu(L2)](BF4)2 (4) have been structurally characterized by X-ray crystallography. The coordination geometries around copper(II) in 1 and 4 are described as trigonal bipyramidal distorted square based pyramidal geometry (TBDSBP). The distorted CuN3S basal plane in them is comprised of amine nitrogen, one thioether sulphur and two benzimidazole nitrogens and the other thioether sulfur is axially coordinated. The ligand field spectra of all the complexes are consistent with a mostly square-based geometry in solution. The EPR spectra of complexes [Cu(L1)](BF4)2 (1), [Cu(L1)](NO3)2 (2), [Cu(L2)](BF4)2 (4) and [Cu(L3)](ClO4)2 (6) are consistent with two species indicating the dissociation/disproportionation of the complex species in solution. All the complexes exhibit an intense CT band in the range 305-395 nm and show a quasireversible to irreversible CuII/CuI redox process with relatively positive E1/2 values, which are consistent with the presence of two-coordinated thioether groups. The addition of N-methylimidazole (mim) replaces the coordinated thioether ligands in solution, as revealed from the negative shift (222-403 mV) in the CuII/CuI redox potential. The present study reveals that the effect of incorporating an amine nitrogen donor into CuN2S2 complexes is to generate an axial copper(II)-thioether coordination and also to enforce lesser trigonality on the copper(II) coordination geometry.  相似文献   

16.
The ether oxygen coordination to the zinc center in the complexes with dipicolylamine (DPA)-derived ligands, N-(2-methoxyethyl)-N,N-bis(2-pyridylmethyl)amine (L), N-(3-methoxypropyl)-N,N-bis(2-pyridylmethyl)amine (L′), and N-{3-(2-pyridylmethyloxy)propyl}-N,N-bis(2-pyridylmethyl)amine (LPy) has been discussed. Upon chelation of the oxygen atom, L forms a five-membered chelate ring with respect to the 2-aminoethyl ether moiety whereas L′ forms a six-membered chelate in 3-aminopropyl ether unit. This difference was highlighted by the crystal structures of ZnCl2 complexes, in which [Zn(L)Cl2] (1) exhibited ether oxygen coordination but [Zn(L′)Cl2] (2) had the ether oxygen non-coordinated. The terminal pyridyl group of LPy facilitates the ether oxygen atom coordination via a metal binding from the basal plane trans to the aliphatic nitrogen.  相似文献   

17.
Two new mixed ligand complexes of copper(II) with N,N,N,N″,N″-pentamethyldiethylenetriamine and polypyridine ligands have been prepared and characterized by means of spectroscopic, magnetic and single-crystal X-ray diffraction methods. These two complexes are isomorph and isostructure in which the coordination polyhedron about the copper(II) ion is distorted square pyramidal. [Cu(PMDT)(bipy)]2+ and [Cu(PMDT)(phen)]2+ show an absorption wavelength maximum at 625 and 678 nm, respectively, assigned to the d-d transition. Antibacterial, antifungal and superoxide dismutase activities of these complexes have also been measured. It was observed that [Cu(PMDT)(bipy)](ClO4)2 was more effective against P. Pyocyanea and Klebsiella sp. than S. aureus. Similarly, Fusarium sp. was highly susceptible against [Cu(PMDT)(bipy)](ClO4)2 but less susceptible against [Cu(PMDT)(phen)](ClO4)2.  相似文献   

18.
The syntheses and structural characterization of four cobalt(II)-salicylate complexes, [(TPA)CoII(HSA)](ClO4) (1), [(isoBPMEN)CoII(HSA)](BPh4) (2), [(TPzA)CoII(HSA)](ClO4) (3) and [(6Me3TPA)CoII(HSA)](BPh4) (4) [TPA = tris(2-pyridylmethyl)amine, isoBPMEN = N1,N1-dimethyl-N2,N2-bis(2-pyridylmethyl)ethane-1,2-diamine, TPzA = tris((3,5-dimethyl-1H-pyrazole-1-yl)methyl)amine and 6Me3TPA = tris(6-methyl-2-pyridylmethyl)amine] are described. While 2, 3 and 4 are unreactive towards dioxygen, 1 reacts slowly with molecular oxygen to a cobalt(III)-salicylate complex, [(TPA)CoIII(SA)](ClO4) (1a). Two different crystalline forms, 1a and 1a·4H2O were isolated depending upon the condition of oxidation and crystallization. The solid-state structures of cobalt(III)-salicylate unit in both 1a and 1a·4H2O show a six-coordinate distorted octahedral coordination geometry at the cobalt(III) center ligated by the tetradentate ligand (TPA) where the dianionic salicylate (SA) binds in a bidentate fashion through one carboxylate and one phenolate oxygen. The hydrated form 1a·4H2O reveals a hexameric water cluster formation in the inorganic lattice host. The complex cation and the perchlorate counterion are involved in stabilizing the (H2O)6 cluster in a rare ‘pentamer planar+1’ conformation. A one-dimensional water tape consisting of edge-shared water hexamers is observed. The water tape represents a subunit of ice structure.  相似文献   

19.
In this account we report the synthesis, structure and characterization of a dimeric Cu(II) complex, [Cu2(PaPy3H)2](ClO4)4 (bis[N,N-bis(2-pyridylmethyl)amine-N-ethyl-2-pyridine-2-carboxamidecopper(II)]). In this complex, the coordination of the designed ligand PaPy3H to the Cu(II) centers is completed by the bis(picolyl)methyl amine portion of one PaPy3H unit and the oxygen and pyridine nitrogen atoms of the pyridine-2-carboxamide moiety of a second PaPy3H ligand. The resulting dimeric complex demonstrates a new mode of coordination of the ligand PaPy3H.  相似文献   

20.
The reactions of 4-(p-dimethylaminophenyl)-6-phenyl-2,2′-bipyridine (HL) with three metal salts of platinum(II), copper(I) and zinc(II) provide the new complexes [Pt(L)(PPh3)]ClO4 (1), [Cu(HL)2]BF4 (2), [Cu(HL)(PPh3)]BF4 (3) and [Zn(HL)2](ClO4)2 (4). All the structures of these four complexes have been characterized by single crystal X-ray diffraction, and their spectroscopic properties were investigated. Especially for complex 1, upon protonation, the excited state can be tuned from the intraligand charge transfer (ILCT) to the metal-to-ligand charge transfer (MLCT), and such switching in the excited state is acid/base reversible. The time-dependent density functional theory (TD-DFT) calculation was used to interpret the absorption spectra of complex 1, and the calculated result is consistent with those of experiments results. In contrast with 1, the lowest energy absorption at 410-650 nm of complexes 2 and 3 can be assigned to MLCT excited state. In solid state or solution complex 4 exhibits intense photoluminescence attributed to a ILCT transition in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号