首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Although it is well established that cellular transformation with tumor virus leads to changes on glucose metabolism, the effects of cell infection by non-transforming virus are far to be completely elucidated. In this study, we report the first evidence that cultured Vero cells infected with the alphavirus Mayaro show several alterations on glucose metabolism. Infected cells presented a two fold increase on glucose consumption, accompanied by an increment in lactate production. This increase in glycolytic flux was also demonstrated by a significant increase on the activity of 6-phosphofructo 1-kinase, one of the regulatory enzymes of glycolysis. Analysis of the kinetic parameters revealed that the regulation of 6-phosphofructo 1-kinase is altered in infected cells, presenting an increase in Vmax along with a decrease in Km for fructose-6-phosphate. Another fact contributing to an increase in enzyme activity was the decrease in ATP levels observed in infected cells. Additionally, the levels of fructose 2,6-bisphosphate, a potent activator of this enzyme, was significantly reduced in infected cells. These observations suggest that the increase in PFK activity may be a compensatory cellular response to the viral-induced metabolic alterations that could lead to an impairment of the glycolytic flux and energy production.  相似文献   

5.
6.
7.
8.
Increasing the flux through central carbon metabolism is difficult because of rigidity in regulatory structures, at both the genetic and the enzymatic levels. Here we describe metabolic engineering of a regulatory network to obtain a balanced increase in the activity of all the enzymes in the pathway, and ultimately, increasing metabolic flux through the pathway of interest. By manipulating the GAL gene regulatory network of Saccharomyces cerevisiae, which is a tightly regulated system, we produced prototroph mutant strains, which increased the flux through the galactose utilization pathway by eliminating three known negative regulators of the GAL system: Gal6, Gal80, and Mig1. This led to a 41% increase in flux through the galactose utilization pathway compared with the wild-type strain. This is of significant interest within the field of biotechnology since galactose is present in many industrial media. The improved galactose consumption of the gal mutants did not favor biomass formation, but rather caused excessive respiro-fermentative metabolism, with the ethanol production rate increasing linearly with glycolytic flux.  相似文献   

9.
The ability of baker's yeast (Saccharomyces cerevisiae) to rapidly increase its glycolytic flux upon a switch from respiratory to fermentative sugar metabolism is an important characteristic for many of its multiple industrial applications. An increased glycolytic flux can be achieved by an increase in the glycolytic enzyme capacities (Vmax) and/or by changes in the concentrations of low-molecular-weight substrates, products, and effectors. The goal of the present study was to understand the time-dependent, multilevel regulation of glycolytic enzymes during a switch from fully respiratory conditions to fully fermentative conditions. The switch from glucose-limited aerobic chemostat growth to full anaerobiosis and glucose excess resulted in rapid acceleration of fermentative metabolism. Although the capacities (Vmax) of the glycolytic enzymes did not change until 45 min after the switch, the intracellular levels of several substrates, products, and effectors involved in the regulation of glycolysis did change substantially during the initial 45 min (e.g., there was a buildup of the phosphofructokinase activator fructose-2,6-bisphosphate). This study revealed two distinct phases in the upregulation of glycolysis upon a switch to fermentative conditions: (i) an initial phase, in which regulation occurs completely through changes in metabolite levels; and (ii) a second phase, in which regulation is achieved through a combination of changes in Vmax and metabolite concentrations. This multilevel regulation study qualitatively explains the increase in flux through the glycolytic enzymes upon a switch of S. cerevisiae to fermentative conditions and provides a better understanding of the roles of different regulatory mechanisms that influence the dynamics of yeast glycolysis.  相似文献   

10.
11.
The metabolic regulation of Escherichia coli lacking a functional pykF gene was investigated based on gene expressions, enzyme activities, intracellular metabolite concentrations and the metabolic flux distribution obtained based on (13)C-labeling experiments. RT-PCR revealed that the glycolytic genes such as glk, pgi, pfkA and tpiA were down regulated, that ppc, pckA, maeB and mdh genes were strongly up-regulated, and that the oxidative pentose phosphate pathway genes such as zwf and gnd were significantly up-regulated in the pykF mutant. The catabolite repressor/activator gene fruR was up-regulated in the pykF mutant, but the adenylate cyclase gene cyaA was down-regulated indicating a decreased rate of glucose uptake. This was also ascertained by the degradation of ptsG mRNA, the gene for which was down-regulated in the pykF mutant. In general, the changes in enzyme activities more or less correlated with ratios of gene expression, while the changes in metabolic fluxes did not correlate with enzyme activities. For example, high flux ratios were obtained through the oxidative pentose phosphate pathway due to an increased concentration of glucose-6-phosphate rather than to favorable enzyme activity ratios. In contrast, due to decreased availability of pyruvate (and acetyl coenzyme A) in the pykF mutant compared with the wild type, low flux ratios were found through lactate and acetate forming pathways.  相似文献   

12.
13.
S E Davies  K M Brindle 《Biochemistry》1992,31(19):4729-4735
The influence of 6-phosphofructo-1-kinase on glycolytic flux in the yeast Saccharomyces cerevisiae was assessed by measuring the effects of enzyme overexpression on glucose consumption, ethanol production, and glycolytic intermediate levels under aerobic and anaerobic conditions. Enzyme overexpression had no effect on glycolytic flux under anaerobic conditions, but under aerobic conditions, it increased glycolytic flux up to the anaerobic level. The Pasteur effect was thus abolished in these cells. The increased glycolytic flux was accompanied by a compensatory decrease in flux in oxidative phosphorylation. The concentrations of the enzyme substrates showed only small or insignificant changes. These data imply that the enzyme has a low flux control coefficient for glycolysis. However, in cells overexpressing the enzyme, there was a compensatory decrease in 6-phosphofructo-2-kinase activity which was accompanied by a corresponding decrease in fructose 2,6-bisphosphate concentration. Measurements in vitro showed that the decrease in the concentration of this positive allosteric effector of 6-phosphofructo-1-kinase could significantly lower its specific activity in the cell and that this could compensate for the increased enzyme concentration in the overproducer.  相似文献   

14.
15.
16.
Koebmann B  Solem C  Jensen PR 《The FEBS journal》2005,272(9):2292-2303
In Lactococcus lactis the enzymes phosphofructokinase (PFK), pyruvate kinase (PK) and lactate dehydrogenase (LDH) are uniquely encoded in the las operon. We used metabolic control analysis to study the role of this organization. Earlier studies have shown that, at wild-type levels, LDH has no control over glycolysis and growth rate, but high negative control over formate production (C(Jformate)LDH=-1.3). We found that PFK and PK exert no control over glycolysis and growth rate at wild-type enzyme levels but both enzymes exert strong positive control on the glycolytic flux at reduced activities. PK exerts high positive control over formate (C(Jformate)PK=0.9-1.1) and acetate production (C(Jacetate)PK=0.8-1.0), whereas PFK exerts no control over these fluxes at increased expression. Decreased expression of the entire las operon resulted in a strong decrease in the growth rate and glycolytic flux; at 53% expression of the las operon glycolytic flux was reduced to 44% and the flux control coefficient increased towards 3. Increased las expression resulted in a slight decrease in the glycolytic flux. At wild-type levels, control was close to zero on both glycolysis and the pyruvate branches. The sum of control coefficients for the three enzymes individually was comparable with the control coefficient found for the entire operon; the strong positive control exerted by PK almost cancels out the negative control exerted by LDH on formate production. Our analysis suggests that coregulation of PFK and PK provides a very efficient way to regulate glycolysis, and coregulating PK and LDH allows cells to maintain homolactic fermentation during glycolysis regulation.  相似文献   

17.
In Saccharomyces cerevisiae the HXK2 gene, which encodes the glycolytic enzyme hexokinase II, is involved in the regulatory mechanism known as 'glucose repression'. Its deletion leads to fully respiratory growth at high glucose concentrations where the wild type ferments profusely. Here we describe that deletion of the HXK2 gene resulted in a 75% reduction in fermentative capacity. Using regulation analysis we found that the fluxes through most glycolytic and fermentative enzymes were regulated cooperatively by changes in their capacities (Vmax) and by changes in the way they interacted with the rest of the metabolism. Glucose transport and phosphofructokinase were regulated purely at the metabolic level. The reduction of fermentative capacity in the mutant was accompanied by a remarkable resilience of the remaining capacity to nutrient starvation. After starvation, the fermentative capacity of the hxk2Delta mutant was similar to that of the wild type. Based on our results and previous reports, we suggest an inverse correlation between glucose repression and the resilience of fermentative capacity towards nutrient starvation. Only a limited number of glycolytic enzyme activities changed upon starvation of the hxk2Delta mutant and we discuss to what extent this could explain the stability of the fermentative capacity.  相似文献   

18.
This study investigates the effect of overexpression of key glycolytic enzymes exhibiting either native or alternative allosteric regulation on glucose bioconversion by resting Escherichia coli cells previously engineered for ethanol production. Homologous and heterologous pyruvate kinases (Pyk) and phosphofructokinases (Pfk) were individually and simultaneously overexpressed. Overexpression of the E. coli Pfk led to a shift from ethanol to lactate formation (three-fold above the control level) while overexpression of Pyks accelerated lactate formation two-fold with less reduction in ethanol formation. Further increase in lactate formation (five-fold above the control level) resulted from overexpression of Pfk from Lactobacillus bulgaricus which, unlike the E. coli Pfk, is not allosterically regulated by either phosphoenolpyruvate or ADP. These effects on the carbon flux distribution were accompanied by significant changes in the intracellular concentrations of several glycolytic intermediates. Increased Pfk levels led primarily to reduced levels of hexose phosphates. Increased Pyk activity resulted in more complex changes which were different for overexpressed native Pyk and for overexpressed Bacillus stearothermophilus Pyk, which differs from E. coli Pyk in lacking activation by fructose 1,6-diphosphate, but is allosterically activated by AMP and ribose 5-phosphate. Simultaneous overexpression of native Pfk and Pyk caused a Pfk-overexpression-like phenotype with lower levels of hexose phosphates and further increased lactate formation (nine-fold above the control level). The flux data demonstrate that overexpression of even single enzymes early in a central pathway can increase the fluxes to a particular metabolic product, although it may not affect the glucose uptake rate.  相似文献   

19.
Huntington's disease (HD) is a progressive neurodegenerative disorder characterized by multifarious dysfunctional alterations including mitochondrial impairment. In the present study, the formation of inclusions caused by the mutation of huntingtin protein and its relationship with changes in energy metabolism and with pathological alterations were investigated both in transgenic and 3-nitropropionic acid-treated mouse models for HD. The HD and normal mice were characterized clinically; the affected brain regions were identified by immunohistochemistry and used for biochemical analysis of the ATP-producing systems in the cytosolic and the mitochondrial compartments. In both HD models, the activities of some glycolytic enzymes were somewhat higher. By contrast, the activity of glyceraldehyde-3-phosphate dehydrogenase was much lower in the affected region of the brain compared to that of the control. Paradoxically, at the system level, glucose conversion into lactate was enhanced in cytosolic extracts from the HD brain tissue, and the level of ATP was higher in the tissue itself. The paradox could be resolved by taking all the observed changes in glycolytic enzymes into account, ensuing an experiment-based detailed mathematical model of the glycolytic pathway. The mathematical modelling using the experimentally determined kinetic parameters of the individual enzymes and the well-established rate equations predicted the measured flux and concentrations in the case of the control. The same mathematical model with the experimentally determined altered V(max) values of the enzymes did account for an increase of glycolytic flux in the HD sample, although the extent of the increase was not predicted quantitatively. This suggested a somewhat altered regulation of this major metabolic pathway in HD tissue. We then used the mathematical model to develop a hypothesis for a new regulatory interaction that might account for the observed changes; in HD, glyceraldehyde-3-phosphate dehydrogenase may be in closer proximity (perhaps because of the binding of glyceraldehyde-3-phosphate dehydrogenase to huntingtin) with aldolase and engage in channelling for glyceraldehyde-3-phosphate. By contrast to most of the speculation in the literature, our results suggest that the neuronal damage in HD tissue may be associated with increased energy metabolism at the tissue level leading to modified levels of various intermediary metabolites with pathological consequences.  相似文献   

20.
Abstract

Cancer cells reprogram metabolism to maintain rapid proliferation under often stressful conditions. Glycolysis and glutaminolysis are two central pathways that fuel cancer metabolism. Allosteric regulation and metabolite driven post-translational modifications of key metabolic enzymes allow cancer cells glycolysis and glutaminolysis to respond to changes in nutrient availability and the tumor microenvironment. While increased aerobic glycolysis (the Warburg effect) has been a noted part of cancer metabolism for over 80 years, recent work has shown that the elevated levels of glycolytic intermediates are critical to cancer growth and metabolism due to their ability to feed into the anabolic pathways branching off glycolysis such as the pentose phosphate pathway and serine biosynthesis pathway. The key glycolytic enzymes phosphofructokinase-1 (PFK1), pyruvate kinase (PKM2) and phosphoglycerate mutase 1 (PGAM1) are regulated by upstream and downstream metabolites to balance glycolytic flux with flux through anabolic pathways. Glutamine regulation is tightly controlled by metabolic intermediates that allosterically inhibit and activate glutamate dehydrogenase, which fuels the tricarboxylic acid cycle by converting glutamine derived glutamate to α-ketoglutarate. The elucidation of these key allosteric regulatory hubs in cancer metabolism will be essential for understanding and predicting how cancer cells will respond to drugs that target metabolism. Additionally, identification of the structures involved in allosteric regulation will inform the design of anti-metabolism drugs which bypass the off-target effects of substrate mimics. Hence, this review aims to provide an overview of allosteric control of glycolysis and glutaminolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号