首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The transfer of ubiquitin (Ub) to a substrate protein requires a cascade of E1 activating, E2 conjugating, and E3 ligating enzymes. E3 Ub ligases containing U-box and RING domains bind both E2~Ub conjugates and substrates to facilitate transfer of the Ub molecule. Although the overall mode of action of E3 ligases is well established, many of the mechanistic details that determine the outcome of ubiquitination are poorly understood. CHIP (carboxyl terminus of Hsc70-interacting protein) is a U-box E3 ligase that serves as a co-chaperone to heat shock proteins and is critical for the regulation of unfolded proteins in the cytosol. We have performed a systematic analysis of the interactions of CHIP with E2 conjugating enzymes and found that only a subset bind and function. Moreover, some E2 enzymes function in pairs to create products that neither create individually. Characterization of the products of these reactions showed that different E2 enzymes produce different ubiquitination products, i.e. that E2 determines the outcome of Ub transfer. Site-directed mutagenesis on the E2 enzymes Ube2D1 and Ube2L3 (UbcH5a and UbcH7) established that an SPA motif in loop 7 of E2 is required for binding to CHIP but is not sufficient for activation of the E2~Ub conjugate and consequent ubiquitination activity. These data support the proposal that the E2 SPA motif provides specificity for binding to CHIP, whereas activation of the E2~Ub conjugate is derived from other molecular determinants.  相似文献   

2.
The Fanconi anemia (FA) pathway is essential for the repair of DNA interstrand cross-links. At the heart of this pathway is the monoubiquitination of the FANCI-FANCD2 (ID) complex by the multiprotein "core complex" containing the E3 ubiquitin ligase FANCL. Vertebrate organisms have the eight-protein core complex, whereas invertebrates apparently do not. We report here the structure of the central domain of human FANCL in comparison with the recently solved Drosophila melanogaster FANCL. Our data represent the first structural detail into the catalytic core of the human system and reveal that the central fold of FANCL is conserved between species. However, there are macromolecular differences between the FANCL proteins that may account for the apparent distinctions in core complex requirements between the vertebrate and invertebrate FA pathways. In addition, we characterize the binding of human FANCL with its partners, Ube2t, FANCD2, and FANCI. Mutational analysis reveals which residues are required for substrate binding, and we also show the domain required for E2 binding.  相似文献   

3.
In addition to inhibiting insulin receptor and IGF1R kinase activity by directly binding to the receptors, GRB10 can also negatively regulate insulin and IGF1 signaling by mediating insulin receptor and IGF1R degradation through ubiquitination. It has been shown that GRB10 can interact with the C2 domain of the E3 ubiquitin ligase NEDD4 through its Src homology 2 (SH2) domain. Therefore, GRB10 might act as a connector, bringing NEDD4 close to IGF1R to facilitate the ubiquitination of IGF1R by NEDD4. This is the first case in which it has been found that an SH2 domain could colocalize a ubiquitin ligase and its substrate. Here we report the crystal structure of the NEDD4 C2-GRB10 SH2 complex at 2.0 Å. The structure shows that there are three interaction interfaces between NEDD4 C2 and GRB10 SH2. The main interface centers on an antiparallel β-sheet composed of the F β-strand of GRB10 SH2 and the C β-strand of NEDD4 C2. NEDD4 C2 binds at nonclassical sites on the SH2 domain surface, far from the classical phosphotyrosine-binding pocket. Hence, this interaction is phosphotyrosine-independent, and GRB10 SH2 can bind the C2 domain of NEDD4 and the kinase domain of IGF1R simultaneously. Based on these results, a model of how NEDD4 interacts with IGF1R through GRB10 has been proposed. This report provides further evidence that SH2 domains can participate in important signaling interactions beyond the classical recognition of phosphotyrosine.  相似文献   

4.
The inhibitor of apoptosis (IAP) proteins are important ubiquitin E3 ligases that regulate cell survival and oncogenesis. The cIAP1 and cIAP2 paralogs bear three N-terminal baculoviral IAP repeat (BIR) domains and a C-terminal E3 ligase RING domain. IAP antagonist compounds, also known as Smac mimetics, bind the BIR domains of IAPs and trigger rapid RING-dependent autoubiquitylation, but the mechanism is unknown. We show that RING dimerization is essential for the E3 ligase activity of cIAP1 and cIAP2 because monomeric RING mutants could not interact with the ubiquitin-charged E2 enzyme and were resistant to Smac mimetic-induced autoubiquitylation. Unexpectedly, the BIR domains inhibited cIAP1 RING dimerization, and cIAP1 existed predominantly as an inactive monomer. However, addition of either mono- or bivalent Smac mimetics relieved this inhibition, thereby allowing dimer formation and promoting E3 ligase activation. In contrast, the cIAP2 dimer was more stable, had higher intrinsic E3 ligase activity, and was not highly activated by Smac mimetics. These results explain how Smac mimetics promote rapid destruction of cIAP1 and suggest mechanisms for activating cIAP1 in other pathways.  相似文献   

5.
Accumulation of misfolded proteins in the endoplasmic reticulum (ER) causes ER stress and activates inositol-requiring protein-1 (IRE1), among other ER-associated signaling proteins of the unfolded protein response (UPR) in mammalian cells. IRE1 signaling becomes attenuated under prolonged ER stress. The mechanisms by which this occurs are not well understood. An ER resident protein, Bax inhibitor-1 (BI-1), interacts with IRE1 and directly inhibits IRE1 activity. However, little is known about regulation of the BI-1 protein. We show here that bifunctional apoptosis regulator (BAR) functions as an ER-associated RING-type E3 ligase, interacts with BI-1, and promotes proteasomal degradation of BI-1. Overexpression of BAR reduced BI-1 protein levels in a RING-dependent manner. Conversely, knockdown of endogenous BAR increased BI-1 protein levels and enhanced inhibition of IRE1 signaling during ER stress. We also found that the levels of endogenous BAR were reduced under prolonged ER stress. Our findings suggest that post-translational regulation of the BI-1 protein by E3 ligase BAR contributes to the dynamic control of IRE1 signaling during ER stress.  相似文献   

6.
RING E3 ligases are proteins that must selectively recruit an E2-conjugating enzyme and facilitate ubiquitin transfer to a substrate. It is not clear how a RING E3 ligase differentiates a naked E2 enzyme from the E2∼ubiquitin-conjugated form or how this is altered upon ubiquitin transfer. RING-box protein 1 (Rbx1/ROC1) is a key protein found in the Skp1/Cullin-1/F-box (SCF) E3 ubiquitin ligase complex that functions with the E2 ubiquitin conjugating enzyme CDC34. The solution structure of Rbx1/ROC1 revealed a globular RING domain (residues 40–108) stabilized by three structural zinc ions (root mean square deviation 0.30 ± 0.04 Å) along with a disordered N terminus (residues 12–39). Titration data showed that Rbx1/ROC1 preferentially recruits CDC34 in its ubiquitin-conjugated form and favors this interaction by 50-fold compared with unconjugated CDC34. Furthermore, NMR and biochemical assays identified residues in helix α2 of Rbx1/ROC1 that are essential for binding and activating CDC34∼ubiquitin for ubiquitylation. Taken together, this work provides the first direct structural and biochemical evidence showing that polyubiquitylation by the RING E3 ligase Rbx1/ROC1 requires the preferential recruitment of an E2∼ubiquitin complex and subsequent release of the unconjugated E2 protein upon ubiquitin transfer to a substrate or ubiquitin chain.  相似文献   

7.
Ubiquitin ligase plays a fundamental role in regulating multiple cellular events in eukaryotes by fine-tuning the stability and activity of specific target proteins. We have previously shown that ubiquitin ligase ATL31 regulates plant growth in response to nutrient balance between carbon and nitrogen (C/N) in Arabidopsis. Subsequent study demonstrated that ATL31 targets 14-3-3 proteins for ubiquitination and modulates the protein abundance in response to C/N-nutrient status. However, the underlying mechanism for the targeting of ATL31 to 14-3-3 proteins remains unclear. Here, we show that ATL31 interacts with 14-3-3 proteins in a phosphorylation-dependent manner. We identified Thr209, Ser247, Ser270, and Ser303 as putative 14-3-3 binding sites on ATL31 by motif analysis. Mutation of these Ser/Thr residues to Ala in ATL31 inhibited the interaction with 14-3-3 proteins, as demonstrated by yeast two-hybrid and co-immunoprecipitation analyses. Additionally, we identified in vivo phosphorylation of Thr209 and Ser247 on ATL31 by MS analysis. A peptide competition assay showed that the application of synthetic phospho-Thr209 peptide, but not the corresponding unphosphorylated peptide, suppresses the interaction between ATL31 and 14-3-3 proteins. Moreover, Arabidopsis plants overexpressing mutated ATL31, which could not bind to 14-3-3 proteins, showed accumulation of 14-3-3 proteins and growth arrest in disrupted C/N-nutrient conditions similar to wild-type plants, although overexpression of intact ATL31 resulted in repression of 14-3-3 accumulation and tolerance to the conditions. Together, these results demonstrate that the physiological role of phosphorylation at 14-3-3 binding sites on ATL31 is to modulate the binding ability and stability of 14-3-3 proteins to control plant C/N-nutrient response.  相似文献   

8.
9.
In the yeast Saccharomyces cerevisiae, key regulatory enzymes of gluconeogenesis such as fructose-1,6-bisphosphatase are degraded via the ubiquitin proteasome system when cells are replenished with glucose. Polyubiquitination is carried out by the Gid complex, a multisubunit ubiquitin ligase that consists of seven different Gid (glucose-induced degradation-deficient) proteins. Under gluconeogenic conditions the E3 ligase is composed of six subunits (Gid1/Vid30, Gid2/Rmd5, Gid5/Vid28, Gid7, Gid8, and Gid9/Fyv10). Upon the addition of glucose the regulatory subunit Gid4/Vid24 appears, binds to the Gid complex, and triggers ubiquitination of fructose-1,6-bisphosphatase. All seven proteins are essential for this process; however, nothing is known about the arrangement of the subunits in the complex. Interestingly, each Gid protein possesses several remarkable motifs (e.g. SPRY, LisH, CTLH domains) that may play a role in protein-protein interaction. We, therefore, generated altered versions of individual Gid proteins by deleting or mutating these domains and performed co-immunoprecipitation experiments to analyze the interaction between distinct subunits. Thus, we were able to create an initial model of the topology of this unusual E3 ubiquitin ligase.  相似文献   

10.
Cullin-RING ligases are multisubunit E3 ubiquitin ligases that recruit substrate-specific adaptors to catalyze protein ubiquitylation. Cul3-based Cullin-RING ligases are uniquely associated with BTB adaptors that incorporate homodimerization, Cul3 assembly, and substrate recognition into a single multidomain protein, of which the best known are BTB-BACK-Kelch domain proteins, including KEAP1. Cul3 assembly requires a BTB protein “3-box” motif, analogous to the F-box and SOCS box motifs of other Cullin-based E3s. To define the molecular basis for this assembly and the overall architecture of the E3, we determined the crystal structures of the BTB-BACK domains of KLHL11 both alone and in complex with Cul3, along with the Kelch domain structures of KLHL2 (Mayven), KLHL7, KLHL12, and KBTBD5. We show that Cul3 interaction is dependent on a unique N-terminal extension sequence that packs against the 3-box in a hydrophobic groove centrally located between the BTB and BACK domains. Deletion of this N-terminal region results in a 30-fold loss in affinity. The presented data offer a model for the quaternary assembly of this E3 class that supports the bivalent capture of Nrf2 and reveals potential new sites for E3 inhibitor design.  相似文献   

11.
12.
In fission yeast (Schizosaccharomyces pombe), the E3 ubiquitin ligase Dma1 delays cytokinesis if chromosomes are not properly attached to the mitotic spindle. Dma1 contains a C-terminal RING domain, and we have found that the Dma1 RING domain forms a stable homodimer. Although the RING domain is required for dimerization, residues in the C-terminal tail are also required to help form or stabilize the dimeric structure because mutation of specific residues in this region disrupts Dma1 dimerization. Further analyses showed that Dma1 dimerization is required for proper localization at spindle pole bodies and the cell division site, E3 ligase activity, and mitotic checkpoint function. Thus, Dma1 forms an obligate dimer via its RING domain, which is essential for efficient transfer of ubiquitin to its substrate(s). This study further supports the mechanistic paradigm that many RING E3 ligases function as RING dimers.  相似文献   

13.
The human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, interacts with several host cellular proteins including uracil DNA glycosylase-2 (UNG2) and a cullin-RING E3 ubiquitin ligase assembly (CRL4DCAF1). The ligase is composed of cullin 4A (CUL4A), RING H2 finger protein (RBX1), DNA damage-binding protein 1 (DDB1), and a substrate recognition subunit, DDB1- and CUL4-associated factor 1 (DCAF1). Here we show that recombinant UNG2 specifically interacts with Vpr, but not with Vpx of simian immunodeficiency virus, forming a heterotrimeric complex with DCAF1 and Vpr in vitro as well as in vivo. Using reconstituted CRL4DCAF1 and CRL4DCAF1-Vpr E3 ubiquitin ligases in vitro reveals that UNG2 ubiquitination (ubiquitylation) is facilitated by Vpr. Co-expression of DCAF1 and Vpr causes down-regulation of UNG2 in a proteasome-dependent manner, with Vpr mutants that are defective in UNG2 or DCAF1 binding abrogating this effect. Taken together, our results show that the CRL4DCAF1 E3 ubiquitin ligase can be subverted by Vpr to target UNG2 for degradation.  相似文献   

14.
The C2-WW-HECT-type ubiquitin ligases Smurf1 and Smurf2 play a critical role in embryogenesis and adult bone homeostasis via regulation of bone morphogenetic protein, Wnt, and RhoA signaling pathways. The intramolecular interaction between C2 and HECT domains autoinhibits the ligase activity of Smurf2. However, the role of the Smurf1 C2 domain remains elusive. Here, we show that the C2-HECT autoinhibition mechanism is not observed in Smurf1, and instead its C2 domain functions in substrate selection. The Smurf1 C2 domain exerts a key role in localization to the plasma membrane and endows Smurf1 with differential activity toward RhoA versus Smad5 and Runx2. Crystal structure analysis reveals that the Smurf1 C2 domain possesses a typical anti-parallel β-sandwich fold. Examination of the sulfate-binding site analysis reveals two key lysine residues, Lys-28 and Lys-85, within the C2 domain that are important for Smurf1 localization at the plasma membrane, regulation on cell migration, and robust ligase activity toward RhoA, which further supports a Ca(2+)-independent localization mechanism for Smurf1. These findings demonstrate a previously unidentified role of the Smurf1 C2 domain in substrate selection and cellular localization.  相似文献   

15.
Mdm2 and Mdmx are oncoproteins that have essential yet nonredundant roles in development and function as part of a multicomponent ubiquitinating complex that targets p53 for proteasomal degradation. However, in response to DNA damage, Mdm2 and Mdmx are phosphorylated and protect p53 through various mechanisms. It has been predicted that Mdm2-Mdmx complex formation modulates Mdm2 ligase activity, yet the mechanism that promotes formation of Mdm2-Mdmx complexes is unknown. Here, we show that optimal Mdm2-Mdmx complex formation requires c-Abl phosphorylation of Mdm2 both in vitro and in vivo. In addition, Abl phosphorylation of Mdm2 is required for efficient ubiquitination of Mdmx in vitro, and eliminating c-Abl signaling, using c-Abl(-/-) knock-out murine embryonic fibroblasts, led to a decrease in Mdmx ubiquitination. Further, p53 levels are not induced as efficiently in c-Abl(-/-) murine embryonic fibroblasts following DNA damage. Overall, these results define a direct link between genotoxic stress-activated c-Abl kinase signaling and Mdm2-Mdmx complex formation. Our results add an important regulatory mechanism for the activation of p53 in response to DNA damage.  相似文献   

16.
The Tol assembly of proteins is an interacting network of proteins located in the Escherichia coli cell envelope that transduces energy and contributes to cell integrity. TolA is central to this network linking the inner and outer membranes by interactions with TolQ, TolR, TolB, and Pal. Group A colicins, such as ColA, parasitize the Tol network through interactions with TolA and/or TolB to facilitate translocation through the cell envelope to reach their cytotoxic site of action. We have determined the first structure of the C-terminal domain of TolA (TolAIII) bound to an N-terminal ColA polypeptide (TA(53-107)). The interface region of the TA(53-107)-TolAIII complex consists of polar contacts linking residues Arg-92 to Arg-96 of ColA with residues Leu-375-Pro-380 of TolA, which constitutes a β-strand addition commonly seen in more promiscuous protein-protein contacts. The interface region also includes three cation-π interactions (Tyr-58-Lys-368, Tyr-90-Lys-379, Phe-94-Lys-396), which have not been observed in any other colicin-Tol protein complex. Mutagenesis of the interface residues of ColA or TolA revealed that the effect on the interaction was cumulative; single mutations of either partner had no effect on ColA activity, whereas mutations of three or more residues significantly reduced ColA activity. Mutagenesis of the aromatic ring component of the cation-π interacting residues showed Tyr-58 of ColA to be essential for the stability of complex formation. TA(53-107) binds on the opposite side of TolAIII to that used by g3p, ColN, or TolB, illustrating the flexible nature of TolA as a periplasmic hub protein.  相似文献   

17.
18.
RBX1 (RING box protein 1), also known as ROC1 (Regulator of Cullin 1), is an essential component of SCF (Skp1/Cullins/F-box) E3 ubiquitin ligases, which target diverse proteins for proteasome-mediated degradation. Our recent study showed that RBX1 silencing triggered a DNA damage response (DDR) leading to G(2)-M arrest, senescence, and apoptosis, with the mechanism remaining elusive. Here, we show that, in human cancer cells, RBX1 silencing causes the accumulation of DNA replication licensing proteins CDT1 and ORC1, leading to DNA double-strand breaks, DDR, G(2) arrest, and, eventually, aneuploidy. Whereas CHK1 activation by RBX1 silencing is responsible for the G(2) arrest, enhanced DNA damage renders cancer cells more sensitive to radiation. In Caenorhabditis elegans, RBX-1 silencing causes CDT-1 accumulation, triggering DDR in intestinal cells, which is largely abrogated by simultaneous CDT-1 silencing. RBX-1 silencing also induces lethality during development of embryos and in adulthood. Thus, RBX1 E3 ligase is essential for the maintenance of mammalian genome integrity and the proper development and viability in C. elegans.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号